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ABSTRACT

 الأهداف:  لتقييم الجرعات الإشعاعية للرئة في علاج حالات سرطان 
الثدي باستخدام العلاج الإشعاعي المنخفض الجلسات.

حالة   150 رجعي  بأثر  الإشعاعي  العلاج  خطط  تحليل  الطريقة:  
من حالات سرطان الثدي التي تم علاجها بوحدة العلاج الإشعاعي 
يناير  بين  ما  الفترة  في  جدة  العزيز  عبد  الملك  جامعة  بمستشفى 
2012م وحتى مارس 2015م، باستخدام العلاج الإشعاعي المنخفض 
الجلسات. جميع المرضى تلقوا 42.4 جراي على 16 جلسة تشمل 
الثدي والغدد الليمفاوية المجاورة، باستخدام طاقة 6 ميجا فولت، أو 
18 ميجا فولت، أو كليهما. تم تسجيل حجم الرئة المتلقي 20 جراي 
العوامل  وتقييم  المجاورة،  للرئة  الإشعاعية  الجرعة  ومتوسط  وأكثر، 

المؤثرة على ذلك.

النتائج:  متوسط حجم الرئة المتلقي 20 جراي وأكثر كان 24.6% 
للرئة  الإشعاعية  الجرعة  متوسط  وكان  المجاورة،  الرئة  حجم  من 
بين  إحصائيا  معتبر  لكن  بسيط  ترابط  وجد  جراي.   11.9 المجاورة 
)p=0.043(. وجد أن  المتلقاة  الرئة ومقدار الجرعة الإشعاعية  حجم 
الغدد  المريضة وعمق  الرئة تنخفض مع زيادة سمك جسم  جرعات 
الليمفاوية )p<0.0001( ، وتزداد مع مقدار تغطية الغدد الليمفاوية 
 .)p=0.003( ترقوية  الفوق  الليمفاوية  والغدد   )p=0.001( الإبطية 
باستخدام  معتبر  بشكل  تنخفض  المجاورة  للرئة  الإشعاعية  الجرعة 
الطاقة الأعلى )p=0.001(، حيث أن متوسط حجم الرئة المتلقي 20 
جراي وأكثر كان %27.8، و%25.4، و%21.2 مع الطاقات 6 ميجا 
فولت، وطاقات مختلطة، و18 ميجا فولت، على التوالي. استخدام 
الجرعات  بانخفاض  علاقة  له  أن  يبدو  الثدي  للوح  منخفضة  درجة 

الإشعاعية للرئة.

بياناتنا أن استخدام طاقة أعلى تقلل بشكل معتبر  الخاتمة:  ترجح 
الجرعة الإشعاعية للرئة. استخدام زاوية منخفضة للوح العلاج للثدي 
قد يقلل من مقدار الجرعة الإشعاعية للرئة، مازال هناك احتياج لمزيد 

من البحث حول هذه الملاحظة.

Objectives: To report the ipsilateral lung dosimetry data 
of breast cancer (BC) patients treated with loco-regional 
hypofractionated radiotherapy (HFRT). 

Methods: Treatment plans of 150 patients treated in the 
Radiotherapy Unit, King Abdulaziz University Hospital, 
Jeddah, Kingdom of Saudi Arabia between January 2012 

and March 2015 by HFRT for BC were retrospectively 
reviewed. All patients received 42.4 Gy in 16 fractions by 
tangential and supra-clavicular fields with 6 MV, 18 MV, 
or mixed energies. Ipsilateral lung dosimetric data V20Gy 
and mean lung dose (MLD) were recorded. Correlations 
between lung dose, patient characteristics, and treatment 
delivery parameters were assessed by a logistic regression 
test.

Results: The mean ipsilateral lung V20Gy was 24.6% 
and mean MLD was 11.9 Gy. A weak, but statistically 
significant correlation was found between lung dose and 
lung volume (p=0.043). The lung dose was significantly 
decreasing with patient separation and depth of axillary 
lymph node (ALN) and supra-claviculary lymph nodes 
(SCLN) (p<0.0001), and increasing with ALN (p=0.001) 
and SCLN (p=0.003) dose coverage. Lung dose 
significantly decreased with beam energy (p<0.0001): 
mean V20Gy was 27.8%, 25.4% for 6 MV, mixed energy, 
and 21.2% for 18 MV. The use of a low breast-board 
angle correlates with low lung dose.

Conclusion: Our data suggest that the use of high energy 
photon beams and low breast-board angulation can 
reduce the lung dose. 
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Adjuvant radiotherapy (RT) after breast conservative 
surgery is the standard of care for patients with 

breast carcinomas (BC), and indicated after mastectomy, 
according to the stage of the disease.1-5 Loco-regional 
RT to the ipsilateral supra-claviculary (SCLN), 
axillary lymph nodes (ALN), or internal mammary 
nodes (IMN) could be added, according to the status 
of LN involvment. Although the conventional RT 
course consists of 50 Gy delivered in 25 daily fractions 
over 5 weeks, evidence from large randomized trials 
demonstrated that hypofractionated (HF) RT yield to 
equivalent results in terms of local control, survival, 
and radiation related toxicity.6-8 Hypofractionated dose 
regimen of 42.4 Gy in 16 fractions is routinely used at 
our institution, for various BC presentations. Regional 
lymph node (LN) irradiation includes: level 2 and 3 
of ALN and supra-clavicular LNs. While most of level 
1 ALN is irradiated by tangential fields, we assure its 
optimal dose coverage when more than 50% of lymph 
nodes are positive, in inadequate ALN dissection, or 
when there was extra capsular extension. One of the 
organs-at-risk in breast RT is the ipsilateral lung and 
established toxicities are radiation-induced pneumonitis 
and fibrosis.9 To date, there are no clear guidelines or 
recommendation regarding the acceptable dose limits 
for the lung. However, a recent meta-analysis showed 
that the strongest dose-volume-histogram (DVH) 
parameters associated with ipsilateral lung radiation-
induced pneumonitis are the lung volume receiving 20 
Gy or more (V20Gy) and mean lung dose (MLD).10 The 
authors recommended keeping the V20Gy < 24% and 
MLD <15 Gy without compromising the required dose 
coverage, and revealed that the use of supra-clavicular, 
or IMN irradiation fields correlates with an increased 
risk of pneumonitis.10 The purpose of this retrospective 
study is to report the ipsilateral lung dosimetry data 
of our patients treated with breast HF RT, seeking 
for possible correlations between lung dose, patient 
characteristics, and treatment delivery parameters. 

Methods. One-hundred-fifty patients treated in the 
Radiotherapy Unit, King Abdulaziz University Hospital, 
Jeddah, Kingdom of Saudi Arabia, between January 
2012 and March 2015 for BC after breast conservative 
surgery, or mastectomy by HFRT were included in this 

retrospective study. The study was conducted according 
to the principles of Helsinki Declaration and approved 
by the institutional Research Ethics Committee. All 
patients underwent CT-simulation in supine position 
on an angled board, with both arms placed above 
their head, which was rotated to the contralateral side 
(Somatom Sensation CT-scanner, Siemens Medical 
Systems, Erlangen, Germany). The CT axial images were 
acquired with 3 mm slice thickness, from the chin to the 
upper abdomen, including bilateral breasts and lungs. 
Patients received 42.4 Gy in 16 fractions by tangential 
and supra-clavicular fields. Lymph nodes were contoured 
according to the Radiation Therapy Oncology Group 
(RTOG) consensus definitions.11 Lungs were delineated 
using threshold auto-contouring and manually edited 
to smooth the visible lung borders.  Dose calculation 
was performed by eclipse treatment planning system, 
versions 10 and 11, using analytical anisotropic 
algorithm (AAA) and inhomogeneity correction (Varian 
Medical Systems, Palo Alto, CA, USA). All treatment 
plans were mono-isocentric, used field-in-field forward 
planning optimization, and 6 MV, 18 MV, or mixed 
beam energies. Treatment planning aimed at adequate 
dose coverage of breast, or chest wall and LNs, according 
to individual clinical condition. Dose homogeneity was 
achieved according to the International Commission 
on Radiation Units and Measurement (ICRU 50/62) 
recommendations.12,13 All treatment plans were 
retrospectively reviewed and ipsilateral lung dosimetric 
data, such as percentage of lung volume receiving 20 
Gy or more (V20Gy), and mean lung dose were recorded. 

Correlations between lung dose, patient 
characteristics (lung volume, chest wall separation, 
depth and coverage of ALN and SCLN), and treatment 
delivery parameters (beam energy, breast board angle, 
posterior supra-clavicular field) were assessed by a 
logistic regression test and a p value of <0.05 was 
considered significant. Statistical analysis was performed 
using IBM SPSS Statistics software version 20 (IBM 
Corporation, NY, USA).

Results. We identified 65 (43%) left-sided and 
85 (57%) right-sided BC patients; 46 (30%) had 
conservative surgery and 104 (70%) mastectomy. A 
weak, but significant correlation was found between 
V20Gy and lung volume (R2 = 0.027, p=0.043), not 
between MLD and lung volume (R2 = 0.013, p=0.171). 
However, on differential analysis, V20Gy appeared to 
fairly and significantly associate with the lung volume 
for left-sided cases (R2 = 0.113, p=0.006), but not for 
the right-sided ones (R2 = 0.14, p=0.283). Ipsilateral 
lung dosimetric data (n=150) are summarized in 
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Table 1. The lung dose assessed by V20Gy was decreasing 
with patient separation and depth of ALN and SCLN 
(p<0.0001). Multivariate analysis showed that the beam 
energy is the strongest factor affecting V20Gy (p<0.0001), 
when compared to patient separation (p=0.169) and 
depth of ALN (p=0.073) and SCLN (p=0.001). Lung 
V20Gy was significantly increasing with ALN (p=0.001) 
and SCLN (p=0.003) coverage were measured by the 
percentage volume of ALN and SCLN covered by at 
least 95% of the prescribed dose (V95%). The addition 
of a posterior axillary boost field had no effect on the 
lung dose. The use of a low breast board angle seems 
to decrease the lung dose. Due to the small number of 
patients treated on breast board with 10 and 20 degree 
angles, analysis of the correlation between ipsilateral 
lung dose and board angle was not performed. 
Figure 1 summarizes the correlation between ipsilateral 
lung V20Gy and patient separation. Figure 2 shows the 
correlation between ipsilateral lung V20Gy and MLD, 
and beam energy.

Discussion. The recent advances in technology 
and knowledge in radiotherapy had driven attempts 
of minimizing toxicity. In the particular case of breast 
RT, the ipsilateral lung is one of the main organ-at-
risks, as its irradiation can induce pneumonitis, or 
fibrosis.9,10 The literature on lung toxicity in breast 
irradiation is very heterogeneous: different simulation 
techniques (conventional fluoroscopy versus CT), 
different treatment planning systems (2-dimensional 

conformal radiotherapy versus 3-dimensional 
conformal radiotherapy), different sites treated (chest 
wall/breast ± ALN/SCN/IMN) were reported. Gokula 
et al10 demonstrated in a recent meta-analysis that the 
strongest DVH parameters associated with ipsilateral 
lung radiation-induced pneumonitis were V20Gy and 
MLD. They recommended to keep the V20Gy < 24% and 
MLD < 15 Gy without compromising the required dose 
coverage, and to consider other RT techniques when 
V20Gy >30%, or MLD  >15 Gy. We also emphasized 
that the use of SCN, or IMN irradiation fields 
correlates with an increased incidence of pneumonitis. 
In our institution, HF dose regimen of 42.4 Gy in 16 
fractions was implemented in postoperative breast RT 
in January 2010 and for whole breast, or chest wall, 
with or without supra-clavicular field. Providing the 
relatively long life expectation of BC patients treated 
by the current therapies and the potential impact 
of lung damage on their quality of life, it important 
to analyze the dose received by lung and its possible 
correlations with patient’s characteristics and treatment 
delivery parameters. Our data showed that the 
recommendations of Gokula et al10 for ipsilateral lung 
dose can be achieved even if a supra-clavicular field is 
used: we found mean values of 24.6% for V20Gy and 11.9 
Gy for MLD. The contribution to V20Gy from tangential 
was almost double that of supra-clavicular fields (16% 
versus 8.6%). Adding a posterior axillary boost field 
did not significantly increased the lung dose (p=0.476). 
Contouring the regional LNs makes the planner aware 

Table 1 - Ipsilateral lung dosimetric data (n=150).

Dosimetric data
n (%) V20Gy (%) MLD (Gy)

P-value
mean ± SD range mean ± SD range

Lung dose   24.6 ± 4.1    11 - 33 11.9 ± 1.6   5.6 - 15.3

Tangential fields     16. ± 3.9

Supra-clavicular fields   8.6 ± 3.

Energy (MV)

6 24 (16)   27.8 ± 2.3    25.5 - 32.5   13. ± 1.1 11.3 - 15.1 <0.0001

6 & 18 81 (54)   25.4 ± 3.1  18.5 - 33. 12.2 ± 1.2   9.5 - 15.3

18 45 (30)   21.2 ± 4.0    11 - 27 10.8 ± 1.9   5.6 - 13.6

Breast board angle (deg)

10   9 (6)   22.9 ± 3.9    11 - 28 11.2 ± 1.5 5.6 - 13.

15 132 (88)   24.5 ± 3.7 11.5 - 33 11.9 ± 1.5  6.6 - 15.3

20   9 (6)   25.2 ± 7.5       17 - 32.5 12.1 ± 3.1  8.5 - 15.1

Posterior supra-clavicular field

Yes 116 (77)   24.3 ± 4.1    11 - 33 11.9 ± 1.6  5.6 - 15.3 0.476

No   34 (23)   25.7 ± 3.9 12.5 - 30 12.2 ± 1.6 7.1 - 15.z

V20Gy - ipsilateral lung volume receiving 20 Gy or more, MLD - mean lung dose, SD - standard deviation
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in evaluating the need for a posterior axillary boost field, 
and helps in applying different weights of anterior supra-
clavicular and posterior axillary boost fields during the 
plan optimization process, aiming to achieve adequate 
coverage for ALN and SCN without unnecessarily 
irradiate the lung. Using a mono-isocentric technique 
and field-in-field optimization is a common practice 
in breast RT, widely described in the literature.14-18 
A single iso-center has the advantage of a simple and 
reproducible positioning of the patient on linac couch 
and is reducing the workload of radiation therapists. 
Field-in-field technique is a very simplified form of 
intensity modulated radiation therapy (IMRT), which 
uses few sub-fields whose shape and weight are adjusted 
by the planner in order to achieve a homogenous dose 
distribution. Yet, the plan optimization by field-in-field 
technique may require the use of high energy photons 
to achieve an adequate homogeneity of the dose, 
especially if large volumes are to be irradiated.17,18 Our 
data showed a weak, but significant correlation between 
V20Gy and lung volume (p=0.043),  not between MLD 

Figure 1 -	Correlation between ipsilateral lung volume receiving A) 20 
Gy or more (V20Gy) and patient separation, B) depth of lymph 
nodes (LN), and C) coverage of LN. R-squared values are 
displayed on the chart.

Figure 2 -	Correlation between beam energy and the ipsilateral lung 
volume receiving A) 20 Gy or more (V20Gy) and B) mean lung 
dose (MLD). 

http://www.smj.org.sa/index.php/smj/index


635 www.smj.org.sa    Saudi Med J 2016; Vol. 37 (6)

Lung dose in breast cancer radiotherapy ... Attar et al

and lung volume (p=0.171). While these results are 
predictable for MLD, the correlation of V20Gy with lung 
volume was expected to be relevant, as V20Gy is defined 
as percentage of lung volume receiving 20 Gy or more. 
The volume of the left lung is usually smaller than the 
right one, we further proceeded to differential analysis, 
and found that V20Gy significantly associated with the 
lung volume for left-sided cases (p=0.006), but not for 
the right-sided ones (p=0.283). As 43% of our patients 
were left-sided and 57% were right-sided, the overall 
effect of the relation between V20Gy and lung volume 
appeared lessened. Twenty-four (16%) of our patients 
were treated with 6 MV, 81 (54%) with mixed energy 
(6 and 18 MV), and 45 (30%) with 18 MV. Lung dose 
significantly decreased with beam energy (p<0.0001): 
mean V20Gy was 27.8% for 6 MV, 25.4% for mixed 
energy, and 21.2% for 18 MV. These results are not 
surprising. The increased lateral range of secondary 
electrons in low density tissue, such as lung, when 
using photon energies higher than 10 MV generates 
a build-up region in lung tumors and increases the 
beam penumbra, resulting in reduced dose to the 
periphery of the target near the beam edge. This is a 
well-known phenomenon, which has been widely 
assessed in phantom measurement and Monte Carlo 
calculations.19-25 DesRosiers et al19 compared 6 MV 
to 15 MV photons in a Monte Carlo simulation for 
different beam arrangements in low density media and 
demonstrated that for every beam arrangement 15 
MV photons delivered 5-10% lower dose than 6 MV 
photons. In a similar study, comparing 6 MV to 18 MV 
for IMRT treatment for lung cancer, Madani et al24 
found significant difference in target coverage between 
the 2 energies, and highlighted the need for highly 
accurate dose calculation algorithms for heterogeneous 
media. The performance of AAA algorithm used in our 
study was evaluated against Monte Carlo calculation in 
low density tissue by several investigators, and found 
to be an adequate alternative.25-31 Based on the research 
evidence, there is a preference of low photon energies 
for the radiotherapy of lung cancer, that are even 
required in lung cancer radiation Therapy Oncology 
Group (RTOG) protocols and American Association 
of Physicists in Medicine (AAPM) guidelines.32-35 

While the lung dose sparing by high energy photons 
is detrimental in lung radiotherapy, it appears to be 
a significant advantage in breast irradiation, where 
the lung is an organ-at-risk. Nevertheless, the choice 
of appropriate beam energy in breast RT planning is 
determined by patient separation for tangential, and 
depth of LNs for supra-clavicular fields. This explains 

the results of our study: the lung dose was decreasing 
with patient separation and depth of ALN and SCLN 
(p<0.0001), as a large separation and deep LNs required 
the use of high energy in order to achieve acceptable 
dose coverage and homogeneity. However, multivariate 
analysis indicated the beam energy being the strongest 
factor affecting V20Gy (p<0.0001), when compared to 
patient separation (p=0.169), depth of ALN (p=0.073), 
and SCLN (p=0.001). High energy photons will 
generate a characteristic skin-sparing effect, under-
dosing the subcutaneous tissue, which is a possible area 
of clinical failure in breast RT. The effect can be easily 
outweighed by using a bolus.36,37

Treatment planning takes into account the 
individual clinical condition of the patient, ensuring 
adequate dose coverage to regional LNs that may not 
have been properly addressed surgically, or are known 
to be involved. The different range of dose coverage 
for different nodal regions are shown in Figure 1C. The 
aimed dose coverage of LNs had a significant effect on 
the lung dose: V20Gy was increasing with ALN (p=0.001) 
and SCLN (p=0.003) coverage assessed by V95%. For 
patients receiving breast radiotherapy, the conventional 
set-up is supine position, on an angulated breast board. 
The breast board angle is chosen to align patient’s 
sternum with the horizontal plane, thus, eliminating 
the need for collimator angulation on tangential fields 
and reducing the irradiated lung volume in cranio-
caudal direction. In our practice, the 15 degrees breast 
board angulation is usually selected, but in certain 
circumstances different angles might be used. While 
lower angle, such as 10 degrees were applied for large, or 
pendulous breast and obese patients, aiming to decrease 
the inframammary fold, larger angle of 20 degrees is 
occasionally preferred by some patients, for better 
comfort. The board angulation causes an increased 
lung volume exposed to the supra-clavicular field. 
The literature is lacking studies assessing the effect of 
breast board angulations on plan dosimetry. However, 
Yang et al38 demonstrated that a 90 degrees rotation of 
the couch along with a gantry tilt for supra-clavicular 
field, can outweigh the effect of the board angle, and 
significantly reduce the lung volume irradiated by the 
supra-clavicular field from 14.9-5.3%.38 Nevertheless, 
the technique they proposed does not allow the shield 
of the spinal cord and a compromise between cord 
avoidance and lung dose reduction is needed. Our 
study shows similar results: a trend between lung dose 
and breast board angle was noticed, favoring a low 
board angle (mean V20Gy was 22.9% for 10 degrees, 
24.5% for 15 degrees and 25.2% for 20 degrees). As 
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the contribution to lung dose from supra-clavicular 
field is approximately one third, the benefit appears low. 
Only 9 (6%) patients were treated on 10 and 20 degrees 
board, a statistical evaluation was not performed. 

Study  limitations. Selection of a hypofractionated 
dose regimen for breast cancer radiotherapy. Obviously, 
if conventional dose fractionation is to be considered, 
our results will not be accurate and further research 
work will be needed to assess the lung dose. Our 
findings concerning the correlation trends between lung 
dose, patient characteristics, and treatment delivery 
parameters stil valid.

In conclusion, we are reporting acceptable ipsilateral 
lung doses in HFBR, even if supra-clavicular fields are 
required. Our data suggest that the use of high beam 
energy significantly reduces the lung dose. Low breast 
board angulation appears to correlate with a decreased 
lung dose, and further investigation of this finding is 
needed.  
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