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A B S T R A C T   

Workers’ unsafe behavior is a primary cause leading to falling accidents on construction sites. 
This study aimed to explore how to utilize psychophysiological characteristics to predict 
consciously unsafe behaviors of construction workers. In this paper, a psychological questionnaire 
was compiled to measure risky psychology, and wireless wearable physiological recorders were 
employed to real-timely measure the physiological signals of subjects. The psychological and 
physiological characteristics were identified by correlation analysis and significance test, which 
were then utilized to develop unsafe behavior prediction models based on multiple linear 
regression and decision tree regressor. It was revealed that unsafe behavior performance was 
negatively correlated with task-related risk perception, while positively correlated with hazard-
ous attitude. Subjects experienced remarkable increases in skin conductivity, while notable de-
creases in the inter-beat interval and skin temperature during consciously unsafe behavior. Both 
models developed for predicting unsafe behavior were reliably and well-fitted with coefficients of 
determination higher than 0.8. Whereas, each model exhibited its unique advantages in terms of 
prediction accuracy and interpretability. Not only could study results contribute to the body of 
knowledge on intrinsic mechanisms of unsafe behavior, but also provide a theoretical basis for the 
automatic identification of workers’ unsafe behavior.   

1. Introduction 

Construction is widely recognized as one of the most hazardous industries worldwide. This industry has experienced higher rates of 
safety accident than others resulting in a significant number of casualties [1–3]. In the United States, there were over 1000 fatal 
occupational injuries in construction each year since 2016 [4]. And this number rose to 1075 in 2021, a 37.6% increase since 2011 [4]. 
The injuries mainly resulted from the falls to a lower level, defined as one of the Construction Focus Four hazards by the Occupational 
Safety and Health Administration, reported to continue to be the leading cause of work-related deaths, representing more than one in 
three (34.6%) construction fatalities that year [4]. In the European Union (EU), more than one-fifth (21.5%) of all fatal accidents at 
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work took place within the construction industry in 2020, leading the way for all industries [5]. In Norway, construction had the 
highest share of fatal occupational accidents in 2021 with one-fourth of accidents [6]. Among the reported accidents at work, falls were 
the type of accident with the largest number accounting for 21.26% [6]. In China, there were 689 fatal accidents in housing and 
municipal engineering in 2020, resulting in 794 fatalities [7]. According to statistical analysis, falling accidents were the most frequent 
and caused the highest number of fatalities, accounting for 52.41% and 46.93% of all construction accidents and fatalities respectively 
between 2017 and 2019 [8]. In recent years, occupational health and safety in construction have been facing serious challenges, which 
may be primarily responsible for the peculiarities of working activities in this industry, where hazard analysis and safety management 
are more difficult than in other industries [9]. 

Working at height is both common and hazardous in construction sites. Statistics indicated that more than 90% of construction 
work tasks involved working at height, and around 69% of construction accidents occurred in high-risk areas such as scaffolding, holes, 
or edges [10]. Unfavorable factors in both work and natural environments, such as narrow space and inadequate safety guards, can 
increase the likelihood of unsafe behavior among workers, ultimately posing threats to their safety and health [11]. Research has 
shown that workers’ unsafe behavior is often the direct or critical cause of construction accidents [12,13]. Haslam et al. [14] also found 
that human factors contributed to approximately 70% of work-related accidents in construction. And a sample survey revealed that 
45.8% ± 6.4% of construction workers reported their engaging in consciously unsafe behavior [15]. 

Human unsafe behavior may be committed for many reasons. Usually, it refers to a deliberate but non-malevolent deviation from 
recommended safety behavior such as safety procedures, regulations, and rules [16,17]. A cognitive model of construction workers’ 
unsafe behavior reveals that human error is produced by five stages including obtaining information, understanding information, 
perceiving responses, selecting a response, and taking action [18]. Human unsafe behavior is divided into consciously unsafe behavior 
and unconsciously unsafe behavior [19]. Consciously unsafe behavior comes with a purpose and intention [20,21]. It is perceived to 
arise under the domination of risk-taking motives in the excessive pursuit of minimized working hours and high outcomes [22,23]. 
This motivation arises from a combination of individual misjudgment of risk and the team’s inability to enforce constraints [23]. It has 
been demonstrated that time pressure and the presence of other personnel on site were the main contributors to the unsafe behaviors of 
construction workers [24]. Psychophysiological research has also shown that an individual’s motivation, emotion, and cognition can 
significantly impact their behavior and the ability to adapt to their surroundings [25,26]. This, in turn, can be reflected in physiological 
activities in an organism. 

Following these research clues, our study is focused on the psychological and physiological characteristics during consciously 
unsafe behaviors. From there, it further aims to explore the potential of significant indictors as predictors for such behaviors. In other 
words, this study is an attempt to answer the following research question: how to utilize the psychophysiological characteristics to 
predict the consciously unsafe behaviors of construction workers. 

With the goals in mind, we performed an experiment study on consciously unsafe behaviors during working at height. The research 
approach and route are described in Fig. 1. Firstly, a simulation experiment for working at height was designed and conducted. Then, 
the risky psychological factors and the physiological characteristics during consciously unsafe behaviors were identified based on 
statistical analysis. Finally, the significant indicators were utilized to develop prediction models for unsafe behavior based on both 
methods of multiple linear regression and decision tree regressor. 

The remainder of the article is as follows. In Section 2, the research background is discussed. Section 3 presents our research 
approach, while its results are described in Section 4. Then, Section 5 discusses the results achieved addressing further research work. 
And Section 6 concludes the article. 

Fig. 1. Scheme of research approach and route.  
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2. Literature review 

Past decades have witnessed that the mechanisms underlying unsafe behaviors were extensively explored from multiple per-
spectives. For instance, Xingang Yang et al. [20] suggest that consciously unsafe behavior in construction workers is related to safety 
management and supervision, while Yang [27] identified risk management, immediate supervision, and worker actions as the key 
causal factors with strong connections. Jingjing Yang [28] presented that psychological and physiological factors interact to influence 
such behaviors. It was demonstrated that the physiological perceived control strengthened the relationship between safety knowledge 
and safety behavior [29]. In recent years, there has been a growing focus on exploring the psychological mechanisms underlying 
unsafe behavior. Rong Cai [30] developed an effective factors model of intentional unsafe behavior, which identified risk perception, 
external pressure, and safety climate as key factors. Similarly, Jingyi Zhang [31] constructed a risky psychological model, finding that 
higher levels of risk attitude and lower levels of risk perception were associated with increased scores of in-flight risk-taking behaviors. 
Yong Ren [32] used the entropy weight method and normal cloud theory to construct a model of landing risk operation propensity 
evaluation. Meanwhile, Jiang Wu [33] found that safety risk tolerance presented a negative correlation with safety literacy. While 
research on risky psychology and its impacts on flight risk-taking behaviors has been thoroughly investigated, it is still a relatively 
underexplored area in the field of building construction. 

Studies have shown that physiological signals like electrodermal activity (EDA), heart rate variability (HRV), respiration rate 
(RESP), and skin temperature (SKT) can serve as indicators of fatigue and stress levels. For example, research by Tian Xiang [34] 
revealed a positive correlation between task errors and fatigue, which was reflected in the changes in galvanic skin response (GSR), 
RESP, R–R interval, and SKT. Drivers have also been found to experience heightened nervous with a distinct rise in skin conductance 
(SC) during overtaking or under the difficult driving conditions such as frozen roads and steep slopes [35]. Similarly, it was revealed 
that miners’ safety capacity and physiological responses like GSR and heart rate (HR) both significantly increase with the severity of 
fatigue [36]. A psychophysiological measurement experiment revealed that victims experienced intense physiological changes in coal 
mine accidents, including pulse rate, HR, R–R interval, and RESP [37]. Ronan Doorley [38] found a link between cyclists’ subjective 
risk perceptions and HR while cycling in a mixed mode urban network. The HRV of drivers exposed to stressful scenarios showed a 
lower-than-normal value while the skin electricity remarkably raised compared to the normal value [39]. Healey and Picard [40] 
measured physiological responses in drivers to differentiate between mental stress, physical stress, and relaxation. Additionally, Joshi 
et al. [41] explored the impact of yogic breathing on regulating the GSR of engineering students under stress. It was also revealed that 
the skin electrical and SKT at high levels were to be a response to positive emotions while the HR at low levels to negative emotions in 
construction workers [42]. Besides, Mingzong Zhang [43] set up a “danger” zone where subjects had to pass through in the laboratory 
to investigate the relationship between fatigue and the safety performance of construction workers. In recent years, research on 
physiological characteristics during fatigue and unsafe behavior has become an emerging focus in the fields of automobile driving and 
coal mining. Whereas, there has been relatively limited research on this focus in the construction industry. 

Domestic and international scholars have obtained fruitful findings which were demonstrated strong energy in the physiological 
characteristics and fatigue detection of pilots, drivers, and miners. However, the psychophysiological mechanism of unsafe behavior 
remains in an exploration stage in the construction industry. This study intends to employ commonly used indicators such as HRV, SC, 
SKT, and RESP in measuring emotional responses to explore the psychophysiological characteristics and effective approaches to 
predicting unsafe behaviors of construction workers. It would be of great significance to realize the automatic identification of risk- 
taking propensities and timely rectification of unsafe behaviors for preventing and reducing occupational injuries and accidents 
caused by human factors in the construction industry. 

3. Materials and methods 

3.1. Questionnaire survey 

The psychological factors that contribute to unsafe behavior among construction workers include personality traits, awareness 

Table 1 
Questionnaire items.  

Indicator Question item 

Task-related risk perception 
(TRP) 

T1. Working at heights is very dangerous. T2. Failure to conduct safety education prior to working at heights tests is not in 
compliance with the specifications. T3. During the test, the failure to wear safety equipment is not in line with the specifications. 
T4. The scaffold plate in the test situation poses a safety hazard that should be addressed immediately. 

Objective risk perception 
(ORP) 

O1. Safety is paramount in the work process. O2. Safety is relative, and there are potential hazards even when invisible. O3. Safety 
measures should be given more priority when there is plenty of work to do. O4. Adequate safety protection facilities should be 
provided at the construction site. 

Hazardous attitude (HA) H1. Safety can be compromised to improve efficiency. H2. The safety belt may not be used when working on lower working 
surfaces. H3. Working at height without wearing good protective equipment when pressed for time. H4. There is no risk when 
performing skilled and simple operations. H5. Work at high altitudes on loose scaffolding. H6. No protective measures were set 
next to the reserved elevator shaft opening. H7. The wires are not led from the distribution box at the construction site. H8. Most 
tasks can be performed by hand instead of the device. H9. The scaffolding was only one-half laid when working at height. H10. 
There is no need to invest heavily in safety measures.  
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levels, cognitive processes, and attitudes toward safety. To measure these factors, we designed and compiled the Risky Psychology 
Measurement Questionnaire. This questionnaire was developed based on a thorough review of relevant literature and field in-
vestigations [31–33,44,45]. The questionnaire consists of several items, which are presented in Table 1. 

The questionnaire consisted of three parts, namely TRP, ORP, and HA, each designed to measure a different aspect of risky psy-
chology. A higher score for the first two parts indicated a greater degree of cognition about the risky situation, reflecting a higher level 
of risk perception. The third part included the dimensions of fluke, blind self-confidence, and risk-taking propensity. A higher score on 
this part indicated a more dangerous thinking mode and a higher level of HA. The questionnaire was designed using the Likert Scale 
method, with a score range of 1–5 for each item. Before its administration, the questionnaire underwent a rigorous review process and 
was approved by five experts in occupational safety and health. This review process helped to ensure that the questionnaire was well- 
designed and capable of accurately measuring the risky psychological factors. 

3.2. Simulation experiment of working at height 

3.2.1. Experimental subject 
The selection criteria for subjects involved were that they were healthy adult males with no cardiovascular or mental illnesses, no 

acrophobia, and possessed an understanding of working at heights. Participants were compensated with 20 RMB for their involvement. 
The optimal sample size was calculated based on the F-statistics by supposing a relative error of 0.05 and an interval probability of 0.9. 
Given a maximum of seven independent variables for psychological and physiological indictors, the sample size for modeling was 
supposed to be no less than 45 regarding the minimum sample size criteria established by Ma and Liu [46]. 

There were 75 volunteer subjects recruited from postgraduates in safety science and engineering, mechanics and civil engineering. 
This study was conducted in three stages: model construction, parameter validation, and predictive performance analysis, with 50, 15, 
and 10 subjects, respectively. The participants had knowledge of building construction and some had field investigation experience at 
construction sites. Their professional knowledge allowed them to make choices similar to those of construction workers. They were 
aged between 22 and 28 years and in good health. Before the experiment, they were required to maintain a well-regulated daily routine 
and avoid neurobehaviorally stimulating activities. Besides, they were assured that the study was conducted by university staff with a 
high level of data anonymity, security, and confidentiality. 

3.2.2. Experimental scene 
The experiment simulated in a laboratory environment has several advantages over construction sites. It is possible to control 

extraneous variables in the laboratory by eliminating the interference of other factors that may exist on sites. Besides, there are many 
challenges in collecting a sufficient number of unsafe behavior samples in a short period at construction sites, while it is more easily 
implemented in the laboratory. What’s more, subjects may be exposed to real dangers at construction sites, which can be avoided by an 
experimental design in the laboratory. 

The experimental design included a simulated platform for working at height, where subjects were induced to behave unsafely. The 
experimental platform was constructed to resemble a light roof, whose schematic diagram is depicted in Fig. 2. The platform’s main 
body was a hollow pine wood plinth (P) measuring 5 m (m) in length, 1 m in width, and 0.4 m in height. Four load-bearing wooden 
boards (B1–B4) measuring 1.2 m long and 1 m wide were placed horizontally at each end of the plinth, and a non-load-bearing gypsum 
board (B5) of the same size was placed horizontally in the middle. The wooden boards were load-bearing and safe for the subjects, 
while the gypsum board was designated as a “dangerous zone” for potential falling accidents due to its non-load-bearing nature. The 
wooden and gypsum boards were connected tightly to the plinth using screws. Targeted measures were implemented to reduce the 
actual risk exposure of the subjects. Anti-collision belts (A) were attached to the edges of the wooden and gypsum boards every 20 cm 
to keep subjects from falling off the platform. A 0.1m-thick shock-absorbing cushion (C) was placed at the bottom of the plinth to 
prevent subjects from injuries and a stair (S) was positioned alongside the plinth to allow subjects to board the platform safely. 

In addition, the laboratory was maintained at a temperature of 27 ◦C, a relative humidity of 60%, and a wind speed of 2.6 m/s by a 
constant temperature and humidity system. These settings were based on statistical data related to natural conditions at a construction 
site in summer [47]. 

The task assigned to the subject was to move from a designated starting point to an ending point by passing through the simulated 
platform for working at height. The width of the gypsum board, that is, the “dangerous zone”, was slightly larger than the average 
stride length of an adult male, making it challenging for the subjects to step over it without dropping from the platform. The subjects 
tended to undertake risky strides over the “dangerous zone” induced by the rewards and a risk-taking mentality. The risky strides in 

Fig. 2. Schematic diagram of experimental platform.  
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this way were perceived as consciously unsafe behaviors engaged in by the subjects. 

3.2.3. Experimental equipment 
ErgoLAB wireless wearable physiological recorders, a multi-parameter integrated sensor system, were employed to collect the 

physiological signals. Not only can the physiological recorders directly contact the body with minimal restraints, but they also enable 
wireless data transmission, as depicted in Fig. 3. In recent years, the ErgoLAB wireless wearable physiological recorders have been 
increasingly employed to study emergency response [48], fatigue detection [49,50], and emotional identification [51]. 

ErgoLAB human-machine-environment (HME) synchronization cloud platform is equipped with built-in targeted algorithms to pre- 
process physiological signals, such as filtering, noise reduction, interpolation, and dynamic recognition. The platform includes four 
modules for the analysis of HRV, EDA, RESP, and general signals. The HRV module mines data information including the mean inter- 
beat interval (IBI), the standard deviation of N–N intervals (SDNN), the proportion of adjacent N–N intervals with a difference greater 
than 20 ms (PNN20), the total power (TP), and the low to high frequencies ratio (LF/HF). The EDA module automatically extracts SC 
through various smoothing processes and performs the analysis of skin conductance reaction (SCR) and skin conductance level (SCL). 
The RESP module supports deriving the average respiration rate (AVRESP), the standard deviation of respiration rate (RESP Std), and 
the power of respiration rate (RESP power). The cloud platform allows the presentation of multi-channel data in the same software 
interface, as shown in Fig. 4. 

3.2.4. Experimental process 
The experiment was designed following the rules of the Declaration of Helsinki. Each subject signed a written informed consent 

form for the experiment. The experiment was conducted by the following steps depicted in Fig. 5. 
The detailed procedures during the experiment were as follows. To start with, the subjects were informed of experimental tasks and 

signed an informed consent form, providing permission for their physiological data to be collected for academic research. In the second 
place, they were assisted in wearing wireless physiological recorders and given 10 min to acclimatize themselves to the recorders. 
Then, the subjects viewed 10-min videos on working at height and completed a survey on their HAs and ORPs. Afterward, the 
physiological signals were measured in the subject’s natural state, in which they were expected to be emotionally smooth for at least 3 
min. What’s next, they were guided along a prescribed route to board the experimental platform and undertake their risky strides over 
the “dangerous zone”, that is, consciously unsafe behaviors. Meanwhile, the physiological signals were monitored in real-time during 
their unsafe behaviors. Followed by, a questionnaire survey was administered to evaluate their perceptions of task-related risks. 
Finally, the physiological signal data was saved and exported to be processed subsequently. Throughout the experiment, the behavioral 
video recording was synchronized with the physiological signal acquisition on the ErgoLAB cloud platform, as presented in the 
supplementary material. 

Targeted measures were implemented to minimize potential variations in physiological signals caused by factors other than unsafe 
behavior. The laboratory was kept quiet during the experiment to avoid dramatic emotional changes in subjects. In addition, the 
experiments were performed during the same period of 9:00 a.m. and 11:00 a.m. to minimize the impacts of physiological cycles. 

The safety of the subjects was a top priority throughout the experiment. Potential risks were thoroughly assessed, and appropriate 
measures were taken to minimize them. Specially trained assistants were responsible for guiding and attending to the subjects to 
ensure their safety during the experiment. 

3.3. Data pre-processing and analysis methods 

3.3.1. Data pre-processing 
Before statistical analysis, the physiological signal data were pre-processed using the ErgoLAB HME synchronization cloud 

Fig. 3. ErgoLAB wireless physiological recorders.  
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platform. 
The physiological data for each subject were divided into two segments based on video recording. The baseline segment repre-

sented the period during which the subject was monitored for physiological signals in their natural state, while the unsafe behavior 
segment represented the period during which the subject boarded the simulated platform and undertook their risky strides over the 
“dangerous zone". 

The pre-processing of physiological signals involved four techniques: FFT filters, smoothing, scaling, and resampling. Different 
signals lend themselves to different techniques. The EDA was subjected to low-pass filtering and Gaussian filtering for its extremely low 
frequency. The HRV, which was highly susceptible to external noise, underwent low-pass filtering, high-pass filtering, and band-stop 
filtering. The SKT, which was slightly affected by the external environment, was subjected to the system’s default sliding mean 
filtering. The RESP with a frequency below 10HZ underwent low-pass filtering, band-stop filtering, and sliding mean filtering. 

3.3.2. Statistical analysis methods 
The psychological factors analysis approach involved questionnaire tests and correlation analysis, as shown in Fig. 6. To assess the 

reliability and validity of the questionnaire, the survey data were analyzed using IBM SPSS Statistics 26.0. A higher reliability coef-
ficient is associated with a higher degree of consistency in the questionnaire. And a KMO statistic of 0.7 or higher indicated the 
appropriateness of using exploratory factor analysis (EFA) to validate the questionnaire. EFA would be conducted to extract the 
common factors of the questionnaire and determine whether it could measure all three assumed dimensions: TRP, ORP, and HA. 
Afterward, the Pearson correlation analysis was performed to identify the risky psychological factors significantly associated with 
unsafe behavior. 

The physiological characteristics were identified by integrating the normality tests, significance tests, and curve fitting, as 

Fig. 4. ErgoLAB HME synchronization cloud platform.  

Fig. 5. Scheme of experimental procedures.  
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schematized in Fig. 7. The Shapiro-Wilk test was employed to determine the normality of physiological data. The student’s t-test was 
performed for the indicators that followed a normal distribution, while the Wilcoxon rank-sum test was applied for the indicators that 
were not normally distributed. The null hypothesis for the significance test was that there were no significant differences between the 
baseline and unsafe behavior segments. If the significance value of the two-sided test was less than 0.05, the null hypothesis would be 
rejected, which indicated that the values of the indicator for the unsafe behavior segment were significantly different from those for the 
baseline segment. Curve fitting was then carried out to reveal the variation laws of physiological indicators and determine whether 
these indicators could serve as valid predictors of unsafe behavior. The fitting model consisted of basic elementary functions such as 
quadratic function, power function, exponential function, logarithmic function, inverse function, system function, etc. 

Following the significance test, prediction models of unsafe behaviors were developed based on both multiple linear regression and 
decision tree regressor, as depicted in Fig. 8. For the regression analysis, the significant indicators were taken as independent variables 

Fig. 6. Scheme of psychological factors analysis approach.  

Fig. 7. Scheme of physiological characteristics identification approach.  
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or input features, while the performance score of unsafe behavior was taken as the dependent variable or output feature. The multiple 
linear regression coefficients were estimated based on ordinary least squares. The estimates were then tested for significance and 
examined by the coefficient of determination R2. Similarly, the decision tree regression model is debugged and optimized in terms of 
R2, namely r2_score in the regressor. Finally, the two models were evaluated for their predictive performance. 

4. Results and analysis 

4.1. Quantification of unsafe behavior performance 

To investigate the relationship between consciously unsafe behavior and psychophysiological indicators, it was necessary to 
quantify unsafe behavior performance (UBP). In a previous study, Jinyi Zhang [31] evaluated flight risk-taking behavior with various 
indicators such as the grounding speed, minimum descent altitude, fuel consumption, and landing distance measured in a simulated 
flight experiment. In construction sites, workers tended to be cautious when walking on the working surface at height to prevent falls. 
Moreover, workers in hazardous situations needed to devote some time, even if briefly, to risk assessment and decision making, 
resulting in slow movement on the high working surface and long-term pause in front of the danger, which can be considered a 
performance of the subject’s ability to protect themselves from injury. 

In this study, the walking speed and residence time before reaching the danger zone were selected as indicators to calculate the 
score of UBP. The walking speed and residence time of each subject were obtained from the video recording on the ErgoLAB cloud 
platform. Raw data were provided in the supporting materials. The walking speed and residence time were dimensionless by 
employing the Z-score standardization method. The mean values of walking speed and residence time were at 0.673 m/s and 2.769s, 
respectively, with standard deviations of 0.309 m/s and 1.445s, which were then employed as the training parameters for stan-
dardization. The standardized data followed a normal distribution. The UBP score was finally obtained by accumulating the two 
indicators following consistency processing. Table 2 shows the scores of some subjects. A higher score indicated that the subject 
behaved more dangerously. 

4.2. Correlation analysis of risky psychology factors 

Reliability and validity tests were conducted on the survey data of the risky psychology questionnaire. The Cronbach’s alpha 
coefficients were 0.919, 0.717, and 0.925 respectively for the dimensions of TRP, OR, and HA, indicating high consistency and 
reliability of the survey data. The KMO value was 0.777, and Bartlett’s spherical test showed a significant approximate chi-square χ2 of 
505.67 with significance at 0.000, which both indicated that the question items were suitable for EFA and strongly correlated with 
each other. The results of EFA, as shown in Table 3, revealed three common factors with large eigenvalues, which together explained 
72.04% of the variance. The loadings of each question item on the belonging common factors were at a high level of 0.6–0.95 with no 
excessive cross-loadings greater than 0.4 following the rotation by the direct oblique intersection method. The EFA results were 
consistent with the expected dimensional division results, suggesting that the questionnaire was of good construct validity and that the 
survey data was favorable for further analysis. Finally, all question items of the three dimensions were retained based on the criterion 
of factor analysis [52,53]. 

The correlation analysis between UBP and the three common factors, namely TRP, ORP, and HA, was performed with the Pearson 
correlation analysis. The analysis results were presented in Table 4. It was observed that there was a significant negative correlation 
between UBP with TRP, and a positive correlation with HA. However, no significant correlation was found between ORP and UBP. 
Additionally, there was no significant correlation between TRP and HA. 

Fig. 8. Scheme of unsafe behavior prediction approach.  
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4.3. Physiological characteristics during consciously unsafe behavior 

4.3.1. Electrodermal activity 
EDA is the preferred term for changes in the electrical conductance of the skin, resulting from sympathetic neuronal activity [54]. 

The Shapiro-Wilk test was utilized to assess the normality of the EDA signals, including SC, SCR, and SCL. The normality test results are 
presented in Table 5. The p-value for each indicator was all found to be less than 0.05, indicating that none of them followed a normal 
distribution. Accordingly, the rank-sum test was utilized to evaluate the significance of indicators, and the results are presented in 
Table 5. The two-tailed significance values were all less than 0.05, demonstrating significant variations in these indicators. The 
variations in SC, SCL, and SCR were respectively depicted in Fig. 9. 

From Table 5 and Fig. 9, it is evident that the SC, SCL, and SCR increased remarkably when consciously unsafe behavior occurred, 
with the most noticeable variation in SC. To reveal the variation law of the indicator, curve-fitting was performed on the SC within 10 s 
before and after the occurrence of unsafe behavior. Several curve-fitting models, including the logarithmic function, inverse function, 
power function, and system function, were selected based on the distribution characteristics of the scatter diagram. The fitting results 
for SC are presented in Table 6, and the fitted curves are depicted in Fig. 10. 

As shown in Table 6, the system function model presented the highest R2 value of 0.872 and a significant level of Sig.<0.001, 
indicating its superiority over other models. Therefore, the system function described in Eq. (1) was selected as the EDA regression 
model for consciously unsafe behavior. 

Table 2 
Scores of unsafe behavior performance (part).  

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

ν 0.36 0.39 0.44 0.48 0.5 0.55 0.58 0.68 0.78 0.9 0.96 1.1 1.25 1.36 
t 4.55 4.25 4 3.6 3.45 3.15 2.75 2.45 2 1.45 1 0.75 0.55 0.35 
Score − 2.25 − 1.94 − 1.61 − 1.20 − 1.03 − 0.66 − 0.29 0.24 0.88 1.65 2.15 2.78 3.40 3.90  

Table 3 
Results of exploratory factor analysis.  

Item Factor Communality Item Factor Communality 

F1 F2 F3 

9 0.623 0.388 1 0.933  0.856 
10 0.880 0.782 2 0.738 0.332 0.811 
11 0.836 0.705 3 0.951  0.856 
12 0.734 0.672 4 0.827  0.785 
13 0.773 0.575 5  0.632 0.489 
14 0.795 0.652 6  0.784 0.578 
15 0.731 0.606 7  0.702 0.559 
16 0.832 0.697 8  0.732 0.620 
17 0.719 0.562     
18 0.727 0.510     
Rotated eigenvalues 6.228   3.598 3.157  
Variance contribution rate 34.6%   19.99% 17.54%  

Note: Loads of <0.3 were hidden. 

Table 4 
Results of correlation analysis.  

Variable TRP ORP HA UBP 

TRP 1 0.446** − 00.033 − 0.728** 
ORP 0.446** 1 0.311* − 00.197 
HA − 00.033 0.311* 1 0.587** 
UBP − 0.728** − 00.197 0.587** 1 

Note: * denoted p < 0.05; ** denoted p < 0.01. 

Table 5 
Normality and significance test of EDA.   

Normality test Rank sum test 

SC SCR SCL SC SCL SCR 

Z 0.856 0.855 0.933 − 5.745 − 4.882 − 4.529 
Sig. 0.000 0.000 0.012 0.000 0.000 0.000  
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Fig. 9. Variations in EDA indicators: (a) Variations in SC; (b) Variations in SCL; (c) Variations in SCR.  

Table 6 
Model summary and parameter estimation of SC fitting.  

Model Model summary Parameter estimation 

R2 F df1 df2 Sig. Constant b1 

Logarithmic function 0.785 32.819 1 9 0.000 7.718 1.394 
Inverse function 0.865 57.686 1 9 0.000 10.635 − 2.435 
Power function 0.779 31.741 1 9 0.000 7.540 0.169 
System function 0.872 61.370 1 9 0.000 2.375 − 0.298  

Fig. 10. SC fitting curves during unsafe behavior.  
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y1 = 1.557t0.943 (1)  

Where t is denoted as the time during consciously unsafe behavior; y1 denoted as the skin conductance during consciously unsafe 
behavior. 

As observed in Fig. 10, the SC value showed a rapid increase of about 4 μs (μs) within 2 s (s). This suggests that construction workers 
working at height experience strong sympathetic arousal leading to increased sweat secretion, tension, and anxiety during consciously 
unsafe behaviors [55]. Thus, SC can be considered as the characteristic indicator that reflects the likelihood of unsafe behavior 
occurrence. 

4.3.2. Heart rate variability 
HRV could be quantitatively evaluated for the tension of myocardial sympathetic and vagal nerves [56]. The normality test results 

are presented in Table 7. The p-value for Mean IBI, PNN20, SDSD, SDNN, and Mean HR was found to be greater than 0.05, indicating 
that they all followed a normal distribution and could be subjected to t-tests. However, the p-values for TP and LF/HF were less than 
0.05, signifying that they did not follow a normal distribution and were appropriate for rank-sum tests. The results of the significance 
tests are presented in Table 7. The two-tailed significance of Mean IBI, Mean HR, and PNN20 was tested to be less than 0.05, 
demonstrating significant variations in these indicators. The variations of Mean IBI, Mean HR, and PNN20 are respectively depicted in 
Fig. 11. 

According to Table 7 and Fig. 11, the Mean IBI and PNN20 of the subjects decreased remarkably, while Mean HR increased 
noticeably. The most notable variation was observed in Mean IBI. Curve-fitting was performed for the Mean IBI with the greatest 
variation. The fitting results were presented in Table 8, and the fitted curves were depicted in Fig. 12. 

As shown in Table 8, the inverse function model best fits the data, with an R2 value of 0.933 and a significance level of Sig.<0.001. 
Consequently, the inverse function model represented by Eq. (2) was selected as the HRV regression model for consciously unsafe 
behavior. 

y2 = 480.682 + 305.763
1
t

(2)  

Where t is denoted as the time during consciously unsafe behavior; y2 denoted as the inter-beat interval during consciously unsafe 
behavior. 

As can be seen from Fig. 12, the IBI notably decreased by about 200 ms (ms) within 2s. This indicated that workers had faster heart 
rate rhythm when consciously unsafe behavior occurred [55]. It could be supposed that the IBI was a good predictor of unsafe 
behavior. 

4.3.3. Respiration rate 
The Shapiro-Wilk test was utilized to assess the normality of the respiration signals, including AVRESP, RESP Power, and RESP Std. 

The normality test results are presented in Table 9. The p-values were all greater than 0.05, indicating that they obeyed normal 
distributions and could be subjected to t-tests. The significance test results are presented in Table 9. The two-tailed significance of 
AVRESP and RESP SD were both tested to be less than 0.05, which indicated that there were significant variations in them. The 
variations of AVRESP and RESP SD are respectively depicted in Fig. 13. 

From Table 9 and Fig. 13, it is evident that the AVRESP of subjects increased visibly while RESP SD decreased when consciously 
unsafe behavior occurred. Given the remarkable variation, the AVRESP was selected for curve-fitting. The fitting results are presented 
in Table 10, and the fitted curves are depicted in Fig. 14. 

As shown in Table 10, the cubic function model best fit the data, with an R2 value of 00.818 and a significance level of Sig.<0.001. 
Consequently, the cubic function model represented by Eq. (3) was selected as the RESP regression model for consciously unsafe 
behavior. 

y3 = 14.658 − 0.088t1 + 0.09t2 − 0.008t3 (3)  

Where, t denoted as the time during consciously unsafe behavior; y3 denoted as the respiration rate during consciously unsafe 
behavior. 

As can be seen from Fig. 14, the RESP rose by about 1.0 rpm within 2s. It was not considered a reliable predictor of unsafe behavior 
due to the minor variations observed and the presence of frequent outliers caused by movement status and physical labor. 

Table 7 
Normality and significance test of HRV.   

Mean IBI PNN20 SDSD SDNN Mean HR TP LF/HF 

Normality test Z 0.975 0.979 0.970 0.967 0.953 0.825 0.911 
Sig. 0.442 0.526 0.270 0.203 0.055 0.000 0.002 

T-test t − 13.468 − 4.233 0.977 0.195 10.411 – – 
Sig. 0.000 0.000 0.334 0.846 0.000 – – 

Rank sum test Z – – – – – − 0.322 − 0.801 
Sig. – – – – – 0.748 0.423  
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4.3.4. Skin temperature 
The Shapiro-Wilk test was utilized to assess the normality of the SKT signals, including Mean SKT and SKT Std. The normality test 

results are presented in Table 11. The p-values were all greater than 0.05, indicating that they obeyed normal distributions and could 
be subjected to t-tests. The significance test results are presented in Table 11. The two-tailed significance of SKT Mean and SKT Std 
were both tested to be less than 0.05, demonstrating significant variations in them. The variations of SKT Mean and SKT Std are 
respectively depicted in Fig. 15. 

From Table 11 and Fig. 15, it is evident that both the SKT Mean and SKT SD decreased as consciously unsafe behavior occurred. 
Given the notable variation, the SKT Mean was selected for the curve-fitting. The fitting results of SKT are presented in Table 12, and 
the fitted curves are depicted in Fig. 16. 

As shown in Table 12, the cubic function model best fits the data, with an R2 value of 0.766 and a significance level of Sig.<0.001. 
Consequently, the cubic function model represented by Eq. (4) was selected as the SKT regression model for consciously unsafe 
behavior. 

y4 = 36.011 − 0.307t1 + 0.049t2 − 0.002t3 (4) 

Fig. 11. Variations in HRV indicators: (a) Variations in Mean IBI; (b) Variations in Mean HR; (c) Variations in PNN20.  

Table 8 
Model summary and parameter estimation of Mean IBI fitting.  

Model Model summary Parameter estimation 

R2 F df1 df2 Sig. Constant b1 b2 

Quadratic function 0.808 25.626 2 12 0.000 789.146 − 72.524 4.622 
Logarithmic function 0.833 65.038 1 13 0.000 724.761 − 104.598 – 
System function 0.902 119.151 1 13 0.000 6.195 0.486 – 
Power function 0.849 72.941 1 13 0.000 727.777 − 1.71 – 
Inverse function 0.933 180.323 1 13 0.000 480.682 305.763 –  
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Fig. 12. Mean IBI fitting curves during unsafe behavior.  

Table 9 
Normality and significance test of RESP.   

Normality test T-test 

AVRESP RESP Power RESP Std AVRESP RESP Std RESP Power 

Z/t 0.976 0.972 0.953 2.573 − 2.893 − 0.758 
Sig. 0.416 0.323 0.053 0.014 0.007 0.453  

Fig. 13. Variations in RESP indicators: (a) Variations in AVRESP; (b) Variations in RESP Std.  

Table 10 
Model summary and parameter estimation of RESP fitting.  

Model Model summary Parameter estimation 

R2 F df1 df2 Sig. Constant b1 b2 b3 

Linear function 0.561 197.728 1 155 0.000 14.692 0.122 – – 
Logarithmic function 0.525 171.081 1 155 0.000 14.842 0.351 – – 
Quadratic function 0.724 201.767 2 154 0.000 14.268 0.377 − 0.026 – 
Cubic function 0.818 229.465 3 153 0.000 14.658 − 0.088 0.090 − 0.008  
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Fig. 14. AVRESP fitting curves during unsafe behavior.  

Table 11 
Normality and significance test of SKT.   

Normality test T-test 

Mean SKT Std Mean SKT Std 

Z/t 0.982 0.985 − 3.822 − 7.113 
Sig. 0.721 0.818 0.000 0.000  

Fig. 15. Variations in SKT indicators: (a) Variations in Mean SKT; (b) Variations in SKT Std.  

Table 12 
Model summary and parameter estimation of SKT fitting.  

Model Model summary Parameter estimation 

R2 F df1 df2 Sig. Constant b1 b2 b3 

Inverse function 0.612 489.410 1 310 0.000 35.401 0.326 – – 
Quadratic function 0.523 169.514 2 309 0.000 35.756 − 0.102 0.008 – 
Cubic function 0.766 335.247 3 308 0.000 36.011 − 0.307 0.049 − 0.002 
System function 0.612 488.391 1 310 0.000 3.567 0.009 – –  
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where t is denoted as the time during consciously unsafe behavior; y4 denoted as the skin temperature during consciously unsafe 
behavior. 

As can be seen from Fig. 16, the SKT reduced instantly by 0.4 ◦C within 2s. The changes might be responsible for the increased sweat 
secretion in response to emotional changes such as tension, anxiety, and stress. The SKT could be regarded as a promising candidate for 
the prediction of consciously unsafe behavior. 

4.4. Prediction models of unsafe behavior performance 

4.4.1. Multiple linear regression model 
It was observed that UBP exhibited a statistically significant correlation with two risky psychological factors, namely TRP and HA, 

as well as three physiological indicators, namely SC, IBI, and SKT. The original multiple linear regression (MLR) model was developed 
by taking the UBP score of the original sample as the dependent variable, while the TRP, HA, SC, IBI, and SKT as independent variables. 
The parameters for the original MLR model are presented in Table 13. 

To ensure the reliability of the parameter estimation, a statistical hypothesis test was conducted on the original MLR model. The 
adjusted coefficient of determination R2 = 0.97, which indicated that the variation of the dependent variable was strongly explained 
by the independent variables. The statistic of the F-test, F = 237.594> F0.05 = 3.687, revealed that there was a significant linear 
relationship between the independent and dependent variables. 

The original MLR model was validated for stability and sensitivity to the changes in sample size. To do this, an additional 15 
subjects who had not previously participated in the original experiment were included in the analysis, resulting in an expanded sample 
from the original sample. A new model, called the super-sample MLR model, was developed by re-estimating the parameters using the 
expanded sample. Given that the parameters β both followed normal distributions, a t-test was employed to evaluate the significance of 
the differences between the β original and super-sample MLR models. The expectation was to find that the difference between the two 
models was not significant. The results of the significance test for parameter estimation are presented in Table 13. 

The p-value of the t-test was sig. = 0.9 > 0.5, indicating that there was no significant difference between the β original and super- 
sample MLR model. Therefore, the original MLR model was regarded to have passed the parameter test and expressed as the following 
equation (5): 

Fig. 16. Mean SKT fitting curves during unsafe behavior.  

Table 13 
Parameter estimations of MLR model.  

Variable Original model T-test Super-sample model 

β Std. t Sig. t Sig. β Std. t Sig. 

TRP − 0.342 0.145 − 2.327 0.025 − 0.134 0.900 − 0.341 0.118 0.118 0.006 
HA 0.334 0.115 2.857 0.007 0.330 0.092 0.092 0.001 
SC 0.570 0.244 2.345 0.024 0.554 0.204 0.204 0.009 
Mean IBI − 0.463 0.216 − 2.132 0.039 − 0.454 0.181 0.181 0.015 
SKT − 0.496 0.201 − 2.495 0.017 − 0.489 0.154 0.154 0.002 
Normality test Z 0.826  0.824 

Sig. 0.130 0.125  
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y= − 0.342x1 + 0.334x2 + 0.570x3 − 0.463x4 − 0.496x5 (5)  

where, x1 denoted as task-related risk perception; x2 as hazardous attitude; x3 as the variation of skin conductance; x4 as the variation 
of the inter-beat interval; x5 as the variation of skin temperature; y as an unsafe behavior performance score. 

The prediction performance was tested to determine whether it could be adopted for a wide range of individuals. There were ten 
subjects other than the modeling samples selected as prediction samples. Following the standardization by the training parameters, the 
MLR model was used to obtain predicted UBP scores for the prediction samples, as shown in Table 14. 

4.4.2. Decision tree regression model 
The decision tree regressor was employed to perform regression analysis on UBP. The decision tree regression (DTR) model was 

developed by taking UBP as output features and TRP, HA, SC, IBI, and SKT as input features. To split the data, 80% of the expanded 
sample was randomly assigned as a training set, while the remaining 20% was used as a validation set by the train_test_split function 
built-in to the Scikit-learn library. The prediction sample was treated as a test set for the regression analysis. The original DTR model 
was developed by the default parameters built-in to the decision tree regressor. The model needs to be debugged due to its poor R2 

performance, as indicated by an r2_score of only 0.5 on the test set. During the debugging process, it was observed that the model 
showed a higher r2_score when the random_state was set to 13 for the train_test_split function. As such, the training set obtained by 
splitting the samples under the parameter condition of random_state = 13 was selected for further debugging of the original model. The 
DecisionTreeRegressor function’s parameters, namely random_state and min_samples_leaf, were then fine-tuned. The model’s per-
formance was evaluated using r2_score on the test set as an indicator of quality. Fig. 17 displays the optimization process for the 
original DTR model. 

The optimal values for the parameters random_state and min_samples_leaf were both determined as 1, as shown in Table 15. These 
parameter values were used to develop the optimal DTR model, which yielded a maximum r2_score of 0.86 on the test set. The r2_score 
on the training set was 1, indicating that the model captured the variations in the output feature very well. The r2_score on the 
validation set was 0.819, which suggests that the model was of relatively high reliability. Overall, the results indicate that the 
regression relationships in the DTR model are strong and explain a substantial portion of the variation in the output feature. 

5. Discussion 

5.1. Implications of psychological and physiological characteristics 

The study results revealed a significant negative correlation between TRP and UBP, as well as a positive correlation between HA 
and UBP. These findings are consistent with the results of Cai Rong’s study on the factors influencing intentionally unsafe behavior in 
construction workers [30]. It was also found that ORP, which is unrelated to the task situation, did not have a significant impact on 
unsafe behavior. This indicated that risk perception is of “situation specificity”, whose connotation may change with risk situations 
[31]. That is why risk perception, a social cognitive variable, is more variable and immediate than personality traits. In contrast, the 
HA consistently exerts a significant positive influence on unsafe behavior regardless of the change in risk situations. This indicates that 
HA is more “situationally transferable” [31]. Consequently, it is crucial to provide education and training to enhance r workers’ risk 
perception and safety literacy to prevent consciously unsafe behaviors. 

Some physiological indicators showed significant changes during consciously unsafe behaviors, with SC sharply increasing by 
about 4 μs, IBI rapidly decreasing by about 200 ms, and SKT reducing by around 0.4 ◦C instantly. Similar findings were also reported in 
studies on transportation and aviation industries. For instance, it was reported that drivers who experienced an accident in a risky 
situation exhibited a greater rise in SC than drivers who did not encounter any risky situation [57]. Similarly, in aviation, pilots showed 
a significant increase in SC during critical flight situations, such as when the aircraft encountered turbulence or when the pilot made a 
mistake [58]. Furthermore, Wang Lei and Gao Shan found that IBI presented a declining trend with an increase in adventure flight time 
[35]. These findings suggest that changes in SC, IBI, and SKT may serve as physiological indicators of consciously unsafe behaviors in 
various industries. 

5.2. Exploration of the psychophysiological mechanisms of unsafe behavior 

The decision-making process of risk-taking behavior is mediated by various brain regions. Previous studies have reported negative 

Table 14 
Prediction performance of MLR model.  

Subject 1 2 3 4 5 6 7 8 9 10 

True score − 1.67 − 1.09 − 0.65 − 0.45 − 0.01 1.429 1.664 2.306 2.93 3.439 
Predicted score − 1.71 − 1.24 − 0.77 − 0.51 − 0.03 1.387 1.625 2.415 3.079 3.538 

The results of the t-test showed that there was no significant difference between the true and predicted scores, with sig. = 0.99 > 0.5. Furthermore, the 
coefficient of determination R2 for the prediction sample was 0.997, indicating that the MLR model was of superior goodness of fit and high accuracy 
for prediction.  
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correlations between risk-taking behavior and grey matter volume in specific brain regions such as the amygdala, striatum, hypo-
thalamus, and dorsolateral prefrontal cortex [59]. These associations may arise from the functional connectivity and coupling between 
these regions [60–62]. The prefrontal cortical (PFC) plays a crucial role in the processing of emotional information related to cognition 
and fear. Differences in impulsive control among individuals with or without risk proneness can be attributed to the neural basis 
provided by the PFC [63]. It sends signals to the hypothalamus, grey matter surrounding the cerebral aqueduct, and striatum [64]. 
Then, the substantia nigra in the basal ganglia releases dopamine (DA) to the striatum for potential reward prediction. The relationship 
between cognitive performance and dopamine levels follows an inverted U-shaped function [65]. The nucleus accumbens D2R NAc 
cells can control the online selection of risky options and decision-period activity in these cells causally drives risk-preference [66]. If 
the brains of individuals have fewer or less functional D2 receptors, their dopamine release is poorly regulated and disproportionately 
at high amounts. Excessive accumulation of dopamine signals the brain that the rewards requiring more time are simply not worth 
waiting for and makes the individuals become much heavier discounters of the delayed rewards [67]. The discounters tend to shift 
their preferences toward the immediate rewards with more impulsiveness and behave themselves impulsively with little foresight 
[68]. In addition, the hypothalamus stimulates the pituitary gland to secrete endorphins (END), which can provoke harm-avoidance 
behaviors in the body. As pointed out by Bill Bryson, “When you exercise vigorously, the pituitary gland squirts endorphins into your 
bloodstream.” Endorphins are known to induce feelings of euphoria and stimulate the mind, which is considered a reward by the brain 
for successfully avoiding danger. To prevent the reduction of these rewards, the pituitary gland may release a continuous flow of 
endorphins. During moments of mental flow required for survival, the surge of endorphins may significantly amplify the level of 
behavioral excitation, resulting in an increased propensity towards impulsive actions to experience a momentary pleasure. For 
instance, this may motivate an organism to continue high-intensity exercise or engage in risk-taking behaviors. Furthermore, the 
activation of 5-hydroxytryptamine secreted by the raphe nuclei in the upper pons and midbrain inhibits behaviors such as violence, 
anger, risk-taking, and aggression. The neurophysiological basis of decision-making for risk-taking behavior is briefly depicted in 
Fig. 18. 

Behavioral responses are controlled by the somatic nervous system, which is under the regulation of the central nervous system. 
The PFC plays a crucial role in decision-making by transmitting signals to the cerebellar cortex, which is responsible for planning and 
programming movements. Nerve fibers from the cerebellar cortex then project to the cortical motor area via the pons, dentate nucleus, 

Fig. 17. Optimization process for original DTR model.  

Table 15 
Parameter values of optimal DTR model.  

Parameter Value Parameter Value Parameter Value 

criterion ‘squared_error’ max_leaf_nodes None min_samples_split 2 
max_depth None min_impurity_decrease 0.0 random_state 1 
max_features None min_samples_leaf 1 splitter “best"  
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and ventral lateral nucleus of the thalamus. The motor area, in turn, sends instructions to the pyramidal system, which innervates the 
skeletal muscles through the corticobulbar tract and the corticospinal tract to execute behavioral movements. The conduction pathway 
of the pyramidal system is illustrated in Fig. 19. Additionally, the substantia nigra in the extrapyramidal system secretes dopamine to 
the striatum, which drives motor coordination. Furthermore, dopamine can be converted to norepinephrine, which enhances somatic 
performance during stress and movement. 

During the stress response, the PFC is also closely linked to the amygdala in the limbic system. The amygdala, which links the brain 
stem and spinal cord in a downward direction, plays an essential role in emotional regulation. The psychophysiological mechanism of 
risk-taking propensity is depicted in Fig. 20. The intermediolateral nucleus in the grey matter of the spinal cord is the low-level center 
of the sympathetic nervous system. The preganglionic fibers originate from the lateral horn of grey matter, and exit the spinal nerve 
through the intervertebral foramen. They then enter the ganglion of the sympathetic trunk via white communicating branches. After 
some preganglionic fibers re-permute within the ganglia, their postganglionic fibers leave the sympathetic trunk and return to the 
spinal nerve via grey communicating branches. From there, they are distributed to various effectors such as blood vessels, sweat 
glands, and the arrector pili muscle of the limbs and body wall. The preganglionic fibers innervate the adrenal medulla to release 
acetylcholine (Ach) at the presynaptic cholinergic neuron ending. Ach then binds to M3 receptors on the surface of hyaline cells in 
exocrine sweat glands, activating chloride channels in the cell membrane and calcium channels on the luminal surface. This creates a 
negative potential difference that attracts sodium ions, ultimately leading to psychogenic sweat secretion. The sweat ducts within the 
skin can be regarded as a set of variable resistors connected in parallel, with each having a conductivity related to the proportion of 
sweat in the duct. The increased sweat secretion leads to decreased resistance, causing fluctuations in the SC [69]. When sweat fills the 
duct and overflows, the SC rapidly rises, followed by a return to normal levels within seconds as the sweat is reabsorbed or evaporates. 
Another portion of the preganglionic fibers is then distributed with arterial plexus to various effectors, including the heart and glands, 
after the intra-neural re-permutation. The preganglionic fibers also innervate the adrenal medulla to release adrenaline and 
noradrenaline (NA). The NA can strongly activate α receptors, leading to blood vessel constriction. It also stimulates β receptors, 
enhancing myocardial contraction and increasing cardiac ejection. Both of these effects can raise coronary blood pressure and decrease 
IBI. Additionally, the excitation of the sympathetic nervous system can also cause changes in SKT, along with SC and HRV. The 
evaporation of sweat can remove heat, which in turn reduces the SKT. Studies have shown an inverse association between SKT, 
especially in distal regions, and ambulatory blood pressure [70]. 

The psychophysiological mechanisms underlying consciously unsafe behavior provide a valuable explanation for the experimental 
results from a neurobiological perspective. The role of dopamine in reward prediction and endorphins in inducing euphoria may 
significantly influence the decision-making of risk-taking behavior. The study by Jun Kitazono et, al [71]. revealed that the network 
cores with strong bidirectional connections were rather concentrated in the iso-cortical regions and thalamic regions, supporting this 

Fig. 18. Neurophysiological basis of decision-making on risk-taking behavior.  
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inference. However, further verification through controlled experiments is required to confirm the role of dopamine and endorphins in 
inducing risk-taking behavior, as well as to explore the potential influence of other neurotransmitters and hormones. Stronger 
task-belief is associated with better perception and better discriminability of believed-relevant features [72], which is a critical factor 
in behaviors that could lead to unsafe outcomes. It can be used as an indicator for personality trait selection, safety literacy devel-
opment, and safety performance assessment in the safety management of the construction industry. 

The propensity for risk-taking can trigger a physiological stress response through the activation of the sympathetic nervous system, 
which can alter levels of Ach and NA and then impact SC, HRV, and SKT. However, genetic and medical factors may contribute to 
variations in these substances among individuals, raising questions about how to quantify the relationship between changes in their 
levels and physiological indicators during risk-taking decision-making. Understanding the impact of these variations on behavioral 
prediction is also an important area for an investigation to improve the generalizability and accuracy of identifying unsafe behavior. 

5.3. Performance evaluation of UBP prediction models 

The R2 is a commonly used metric to assess the adequacy of regression models. The MLR model achieved an R2 greater than 0.9 on 
both the original and expanded samples, and even reached 0.997 on the prediction samples, indicating a reliable and well-fitted model. 
However, the DTR model showed an R2 of 0.819 on the validation set, which represents a difference of 0.181 compared to the 1.00 
achieved on the train set. This difference suggests the possibility of slight overfitting which was fortunately not significant. Despite this, 
the DTR model still demonstrated an R2 of 0.86 on the test set, indicating a satisfactory level of goodness of fit. 

In addition to R2，there are several other metrics used to evaluate regression performance: mean squared error (MSE), mean 
absolute error (MAE), and explained variance score (EVS). Table 16 shows the values of these metrics for both the MLR and DTR 
models on the test set. Both MSE and MAE are less than 0.5, indicating that the models have small prediction errors for features’ values. 
Specifically, the MLR model presents lower MSE and MAE, indicating higher prediction accuracy compared to the DTR model. All EVS 
values exceeded 0.8, indicating that the variations could be mostly explained by the regression relationship between output and input 

Fig. 19. Conduction path of the pyramidal system.  
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Fig. 20. Psychophysiological mechanism of risk-taking propensity.  

Table 16 
Regression metrics of prediction models.  

Metrics MSE MAE EVS 

MLR 0.009 0.0830 0.9969 
DTR 0.4042 0.4785 0.8685  

Fig. 21. Performance of prediction models.  
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features. However, the slightly lower EVS for the DTR model suggests that although it fits most values of features relatively well, it may 
not fit the distribution of features exactly enough, which can lead to deviations between predicted and true values. This deviation is 
more evident when comparing the predicted and true values in Fig. 21, where it is clear that the MLR model’s prediction values follow 
the fluctuation trend of the true observation values more closely. Overall, the MLR model has a slightly better prediction performance 
compared to the DTR model. 

However, the MLR model may be slightly less effective when it comes to outlier handling. In this study, the confounding factors 
outside of risky situations were minimized as much as possible to precisely capture the psychophysiological characteristics of risk- 
taking propensity during the experiment. In a real-world environment, however, these confounding factors potentially cause 
extreme changes in physiological signals, leading to abnormal values. The MLR model may be highly responsive to such outliers, as it 
relies on linear correlations among variables [73]. Consequently, the MLR model may be better suited for workers in calmer work-
places, while the DTR model, which is less sensitive to outliers [74], may perform better perform unsafe behaviors in a noisy 
environment. 

5.4. Application of unsafe behavior prediction model 

The prediction models for unsafe behavior provide valuable insights for the development of a physiological monitoring and 
warning system, which could significantly improve construction safety management. The schematic diagram of the monitoring system 
is presented in Fig. 22. 

The workers’ physiological signals, such as EDA, HRV, SKT, and RESP, are monitored using smart wearable physiological sensors 
built into their helmets or workwear. The sensors transmit real-time physiological data to a cloud-based synchronization platform that 
is integrated with the prediction models. In case the UBP score of a worker surpassed exceeds a predetermined threshold value (e.g., 2), 
the cloud platform will activate the alarm system and send out warnings to alert the worker. Noteworthy is that the thresholds are 
supposed to be dynamically adjusted to account for any potential changes in the work environment. Additionally, the data should also 
be transmitted to a supervision system to enable managers to keep track of workers’ safety performance and implement further safety 
management measures. 

The integration of a physiological monitoring system can serve as a valuable tool in rectifying the motivations of unsafe behaviors 
and has the potential to revolutionize safety training methods. This technology can be utilized to evaluate workers’ UBP in near- 
realistic high-risk situations created by VR technology. Using the UBP score, targeted interventions can be implemented to enhance 
the safety literacy of workers. The application of the physiological monitoring system, combined with the developed prediction models 
of unsafe behaviors, holds significant promise in preventing and reducing occupational injuries and accidents caused by human factors 
in the construction industry. 

5.5. Analysis of experimental limitations 

The developed prediction models are mainly applicable to young construction workers, in view that the subjects in the experiment 
were the postgraduates whose mean age was slightly lower than that of workers actively working on the construction site. However, it 
was revealed that older subjects (mean 65 years old) had a significantly lower electrodermal response (EDR) than younger subjects 
(mean 24 years old) in the operational condition, indicating a tendency for lower arousal levels and faster adaptation [75]. Despite the 
age difference, the subjects in this experiment were still relatively representative as they possessed engineering expertise and 
internship experience. In addition, we have endeavored to simulate a platform for working at height, such as a light roof, in which the 
subjects would be inclined to engage in unsafe behaviors. The experimental simulations might be slightly different from a real con-
struction site environment. For future research, it would be worthwhile to explore the use of virtual reality technology to create a more 

Fig. 22. Schematic diagram of physiological monitoring system.  
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real scene of a construction site environment. 
The identification of unsafe behavior may be influenced by a variety of factors. Scholars have reported that there were significant 

differences in drivers’ eye movement in hazardous situations compared to safe situations [35,76]. The EEG was recognized to have a 
greater impact on emotion than other indicators [77]. To improve the accuracy and reliability of the prediction model, eye movements 
and EEG can be integrated into the model to identify and correct workers’ unsafe motivation timely and to have more adequate 
emergency response time. In additional, physical fatigue and environmental factors were not considered in the analysis restricted by 
the experiment cycle. However, as Yu Zhang [36] reported, the maximum EDR value of workers tends to increase with fatigue. It was 
also revealed by Jing Li [51] that accidents tended to increase when the minimum illumination level was below 10lx. Accordingly, the 
identification and early warning of unsafe behavior would be more reliable and effective if the fatigue and environmental changes 
were integrated into the experimental scenes. Moreover, the psychological mechanisms of unsafe behaviors warrant in-depth study 
from the perspective of personality traits, emotional states, and professional qualifications to prevent accidents by taking psychological 
intervention measures. Last but not least, more sophisticated and novel methods deserve to be employed to improve the accuracy and 
stability of model prediction, such as support vector machine and back propagation neural network. It is promising to achieve the 
automatic identification of the distraction, stress, and fatigue of construction workers, as well as the early warning of their unsafe 
behavior. 

6. Conclusion 

This study explored the psychological and physiological characteristics of consciously unsafe behaviors and how to predict such 
behaviors by utilizing those characteristics. The conclusions are mainly obtained as follows.  

(1) Unsafe behavior performance is strongly associated with TRP and HA. Accordingly, it is suggested that safety education and 
training programs focus on how to improve workers’ perceptions of task-related risks. And innovative means such as case video 
and virtual reality should be utilized to enhance workers’ safety literacy.  

(2) Some physiological indicators showed significant changes during consciously unsafe behaviors, with SC sharply increasing by 
about 4 μs, IBI rapidly decreasing by about 200 ms, and SKT reducing by around 0.4 ◦C instantly. The decision-making process 
of risk-taking behavior is mediated by various brain regions. The role of dopamine in reward prediction and endorphins in 
inducing euphoria may significantly influence the decision-making of risk-taking behavior. The risk-taking propensity induces 
the excitation of the sympathetic nervous system, resulting in a physiological stress response. Ach and NA are the essential 
substances responsible for the changes in the SC, HRV, and SKT in the stress response. The interaction pattern of neurotrans-
mitters and hormones in an organism may be a critical issue for the inherent mechanisms of unsafe behaviors to further promote 
occupational health and safety in the construction industry.  

(3) The MLR and DTR models both showed excellent predictive performance for unsafe behaviors, achieving MSE and MAE values 
of less than 0.5. These models can be integrated into a psychophysiological monitoring system to facilitate the detection and 
early warning of workers’ unsafe behaviors. However, each model has its own strengths in terms of accuracy and interpret-
ability. The choice of model should depend on the specific needs of the situation. With the aid of these models, it is promising for 
the automatic identification of risk-taking propensities and timely rectification of unsafe behaviors, ultimately preventing and 
reducing the occupational injuries and accidents caused by human factors in the construction industry. 
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Notation 

The following symbols are used in this paper 
t: Time during consciously unsafe behavior 
y1: Skin conductance during consciously unsafe behavior 
y2: Inter-beat interval during consciously unsafe behavior 
y3: Respiration rate during consciously unsafe behavior 
y4: Skin temperature during consciously unsafe behavior 
x1: Task-related risk perception of workers 
x2: Hazardous attitude of workers 
x3: Variation of skin conductance of workers 
x4: Variation of inter-beat interval of workers 
x5: Variation of skin temperature of workers 
y: Unsafe behavior performance score 
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