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Abstract Neuronal networks generating hindlimb locomotion are located in the spinal cord. The

mechanisms underlying spinal rhythmogenesis are unknown but network activity and

interconnectivity of excitatory interneurons likely play prominent roles. Here, we investigate

interconnectivity within the Shox2 interneuron population, a subset of which has been suggested to

be involved in locomotor rhythm generation, using paired recordings in isolated spinal cords or

slices from transgenic mice. Sparse unidirectional connections consistent with chemical synaptic

transmission and prominent bidirectional connections mediated by electrical synapses were present

within distinct subsets of Shox2 interneurons. Moreover, bidirectional electrical connections were

preferentially found between functionally-related Shox2 interneurons. Though prevalent in neonatal

mice, electrical coupling began to decline in incidence and strength in mice ~ 3 weeks of age.

Overall, our data suggest that gap junctional coupling promotes synchronization of Shox2

interneurons, and may be implicated in locomotor rhythmicity in developing mice.

DOI: https://doi.org/10.7554/eLife.42519.001

Introduction
Central pattern generators (CPGs) are neural networks that can generate and control the rhythm

and pattern of muscle activation, even in the absence of supraspinal input and sensory feedback.

Such networks underlie many repetitive motor behaviors in vertebrates including chewing, breath-

ing, and walking. Among these, the CPG controlling hindlimb locomotion is intrinsic to the spinal

cord (Grillner, 2006; Kiehn, 2016), and consists of rhythm-generating neurons and neurons partici-

pating in pattern formation. Although several constituent classes of locomotor CPG neurons have

been identified based on transcription factor expression, most function as patterning neurons

involved in left-right or flexor-extensor coordination (Garcia-Campmany et al., 2010; McLean and

Dougherty, 2015; Rybak et al., 2015; Kiehn, 2016; Ziskind-Conhaim and Hochman, 2017).

Rhythm-generating neurons have been more elusive as no single genetically identifiable population

has been shown to be solely responsible for the rhythm.

Rhythm-generating neurons are excitatory, ipsilaterally-projecting, and mutually connected neu-

rons (Buchanan and Grillner, 1987; Bracci et al., 1996; Kjaerulff and Kiehn, 1996; Kjaerulff and

Kiehn, 1997; Li et al., 2006; Li et al., 2009; Hägglund et al., 2010; Hägglund et al., 2013). Two

glutamatergic, ipsilaterally-projecting interneuronal populations have been identified as containing

candidate rhythm-generating neurons. These neurons are identified by developmental expression of

either the transcription factor Shox2 or Hb9 (Hinckley et al., 2005; Wilson et al., 2005;

Dougherty et al., 2013; Caldeira et al., 2017). Both Shox2 and Hb9 interneurons (INs) express

many of the hallmark features of rhythm-generating neurons (Brownstone and Wilson, 2008;

Kiehn, 2016). Shox2 INs are located in the intermediate zone throughout the rostral-caudal extent

of the spinal cord and Hb9 INs are in the ventromedial region, restricted to segments T13-L3
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(Hinckley et al., 2005; Wilson et al., 2005). Shox2 INs can be further subdivided into two groups

based on the expression of Chx10, the marker of V2a INs. Genetic manipulation experiments sug-

gest that Shox2+ non-V2a (Chx10-) INs are part of the locomotor rhythm generator, while Shox2+

V2a (Chx10+) INs belong to the locomotor circuitry but are not directly involved in rhythm genera-

tion (Dougherty et al., 2013).

A key feature of rhythm-generating neurons is their ability to convert descending signals from

hindbrain into a rhythmic output, which is transmitted to the circuit. The precise mechanisms by

which this occurs in mammalian locomotor CPGs have been poorly described due to the difficulty in

targeting specific populations of rhythm-generating neurons. Regardless of mechanism

(Brownstone and Wilson, 2008; Brocard et al., 2010; Harris-Warrick, 2010; Kiehn, 2016), connec-

tions between these neurons would be necessary to generate a synchronized rhythmic population

activity. Therefore, neuronal connectivity is likely to play a significant role in locomotor rhythm

generation.

In vertebrates, the majority of neuronal connectivity is mediated by chemical synapses but electri-

cal synapses are also prevalent in neonatal rodent spinal cord (Chang et al., 1999; Kiehn and

Tresch, 2002; Hinckley and Ziskind-Conhaim, 2006; Bautista et al., 2012). Functional evidence of

gap junctional coupling has been extensively reported in neonatal rodent spinal cord and brainstem

preparations with a decline as the animal matures (Chang et al., 1999; Kiehn and Tresch, 2002;

Mentis et al., 2002; Hinckley and Ziskind-Conhaim, 2006; Lee et al., 2005; Bautista et al., 2012);

however connexin proteins can be detected in the adult spinal cord (Rash et al., 1996; Chang et al.,

1999; Nagy et al., 2004; Rash et al., 2000; Personius et al., 2007; Marina et al., 2008;

Bautista et al., 2012). Electrical transmission via gap junctions contributes to rhythmic oscillations

and neuronal synchrony in many CPGs (Marder and Calabrese, 1996; Rekling et al., 2000;

Brownstone and Wilson, 2008). Gap junctions can enhance synchronization and affect frequency of

rhythmic activity (Bou-Flores and Berger, 2001), suggesting an involvement in rhythm. Further,

blocking gap junctions eliminates most drug evoked locomotion (Tresch and Kiehn, 2000). This may

be due to a desynchronization of oscillating motor neurons (Kiehn et al., 2000) and/or a loss of cou-

pling between rhythm-generating interneurons (Hinckley and Ziskind-Conhaim, 2006).

Here, we investigate the connectivity properties of Shox2 interneurons (INs), a population shown

to participate in locomotor rhythm generation. Dual whole-cell patch clamp recordings were per-

formed to determine the degree of local connectivity among Shox2 neurons. Recordings were ini-

tially performed in dorsal horn-removed preparations and slices from neonatal mice (P0-5) as this is

when fictive locomotion is readily elicited in vitro and where function of transcription factor-defined

populations was first described. We found two types of interconnections between Shox2 INs: unidi-

rectional connections consistent with chemical synaptic transmission and bidirectional connections

mediated by electrical transmission. In more mature preparations, electrical connections between

Shox2 INs began to decline around the third postnatal week and could not be detected in adult.

Electrical coupling between Shox2 INs is preferential within identified subpopulations of Shox2 INs;

therefore allowing for the synchronization of functional populations, particularly in young mice.

Results

Unidirectional connections between spinal Shox2 INs are sparse
One feature common to populations of rhythm-generating neurons is mutual excitatory connections

between them, which are thought to play a role in rhythmogenesis (Rekling et al., 2000; Li et al.,

2006). Therefore, we sought to investigate the interconnectivity between Shox2 INs. We performed

whole cell paired recordings from identified Shox2 INs in cords isolated from Shox2::Cre; Rosa26-lsl-

tdTomato mice at P0-5. Proof of principle connectivity has previously been shown for a small number

of Shox2 IN pairs (Dougherty et al., 2013); however, here, we investigated local Shox2 interconnec-

tivity in detail. Shox2 INs in close proximity were visually identified and targeted based on fluores-

cence. Initial recordings were performed in the lumbar region of the dorsal horn-removed

preparation (84 pairs), as previously (Dougherty et al., 2013); however, the majority of the record-

ings were done in transverse spinal slices from lumbar cord (155 pairs). Recording from neurons in

the slice preparation enables more direct comparison with recordings from more mature animals,

which must be performed in spinal slices for visualization, oxygen penetration, and viability. Shox2
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INs are primarily short-projecting, so local Shox2 IN connectivity is expected to be largely preserved

in the slice preparation (Dougherty et al., 2013).

Connectivity was tested by injecting current to evoke five action potentials in ‘Shox2 IN 1’ and

averaging the response of ‘Shox2 IN 2’ in 50 trials (Figure 1A). The protocol was then reversed to

measure the response of ‘Shox2 IN 1’ to action potentials evoked in ‘Shox2 IN 2’ (Figure 1B). Con-

sistent with previous findings (Dougherty et al., 2013), a small number of Shox2 IN pairs were con-

nected unidirectionally, such that action potentials evoked by current injections in one Shox2 IN

resulted in EPSCs and EPSPs in the other Shox2 IN (Figure 1Ai and Aii) but not when the protocol

was reversed (Figure 1Bi and Bii). Unidirectional connections between Shox2 INs were sparse (n = 4

of 239 pairs, two in slices, two in dorsal horn removed). This is likely to be an underestimate due to

the proximity of the neurons selected for recordings and due to axon and dendritic loss in slicing.

Although the connectivity was evident in the average of 50 sweeps, all unidirectional pairs

showed high rates of synaptic failures (Figure 1C and D). This was obvious upon inspection of indi-

vidual sweeps where postsynaptic responses were not always generated in response to each of the

five presynaptic action potentials. In fact, in one postsynaptic neuron, evoked responses were seen

in less than 10% of the sweeps. Therefore, for subsequent analysis only sweeps containing a postsyn-

aptic response to the first presynaptic action potential were averaged. At a holding potential of �60

mV, the mean latency between the peak of the first presynaptic spikes and the peak of the first

EPSC was 5.0 ± 2.4 ms (n = 3). The mean peak amplitude of the corresponding EPSC was

�10.6 ± 3.9 pA. The delay between the peak of the first presynaptic spikes and the onset of the first

EPSP was on average 2.0 ± 2.1 ms (n = 3). The mean peak amplitude of the corresponding EPSP was

1.4 ± 0.6 mV. The latency and unidirectional nature of these pairs was consistent with chemical syn-

aptic transmission.

Synaptic failures in response to stimulation of single cells have been observed at other CNS syn-

apses (Bolshakov and Siegelbaum, 1995; Stevens and Wang, 1995; Rekling et al., 2000). It is pos-

sible that these chemical connections are not monosynaptic. However, regardless of whether the

connections are monosynaptic or disynaptic, it suggests that Shox2 INs may be conditionally recur-

rently connected. In order to determine if failures were due to immature silent synapses

(Kerchner and Nicoll, 2008) or low vesicle release probabilities, subsets of non-connected pairs

were tested at positive holding potentials (Liao et al., 1995; Li and Zhuo, 1998; Baba et al., 2000;

Yasaka et al., 2009), in serotonin (Li and Zhuo, 1998), or increased extracellular Ca2+ (i.e.

Chuhma and Ohmori, 1998; Moore et al., 2015). When the postsynaptic Shox2 IN was switched

into voltage clamp mode and depolarized to +40 mV to remove the Mg2+ block of the NMDA

receptors, no additional connections were revealed (n = 0 of 22 pairs, data not shown). Connections

were not more likely in 10 mM serotonin (5-HT, n = 0 of 15 pairs) or a high Ca2+ (5 mM) solution

(n = 0 of 4 pairs), data not shown. Taken together, unidirectional connections were evident in a small

population of Shox2 INs, and properties of these connections are consistent with being mediated by

chemical transmission.

Bidirectional connections are present in a large proportion of Shox2 IN
pairs
Using the same protocols described above, we also observed bidirectional coupling between Shox2

INs with a higher incidence than unidirectional connections (n = 59 of 239 pairs, 51 of 155 in slices

and 8 of 84 in dorsal horn-removed preparations). Specifically, action potentials evoked by current

injection in one Shox2 IN produced EPSCs and EPSPs in the other Shox2 IN and vice versa

(Figure 2A and B). Unlike unidirectional connections, a postsynaptic response was present for every

action potential in every sweep (Figure 2C and D). The mean latency (average of 50 sweeps) for the

postjunctional current, measured peak to peak, was 0.6 ± 0.5 ms (n = 26), which was significantly

shorter than that measured in unidirectionally connected pairs (Figure 2E, Mann Whitney,

p=0.0058), and likely too short to be mediated by chemical synaptic transmission. The mean peak

amplitude of the corresponding postjunctional current was �11.1 ± 9.4 pA (n = 26), which was not

statistically different (Mann Whitney, p=0.54) from that measured in unidirectional pairs (�10.6 ± 3.9

pA). In current clamp, it was evident that the postsynaptic EPSPs began prior to the peaks of the

presynaptic action potentials, which was in stark contrast with the postsynaptic EPSPs observed in

pairs that were connected unidirectionally (Figure 2F). In fact, in bidirectionally-connected pairs,

depolarization started �8.5 ± 1.5 ms (n = 15) before the action potential peak, corresponding to the
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Figure 1. Unidirectional connections are present between Shox2 INs in neonatal mouse spinal cords. (A and B)

Examples of recordings from a pair of Shox2 INs that are unidirectionally connected. (Ai and Bi) Cartoon of

stimulation and recording direction for 2 Shox2 INs. (Ai and ii) Current was injected in order to evoke five action

potentials in Shox2 IN 1 (black). EPSCs (Ai) or EPSPs (Aii) were evident in Shox2 IN 2 (red) when recorded in

voltage clamp or current clamp mode, respectively. Black arrows indicate direction of connectivity tested. (Bi and

Bii) When the protocol was reversed and action potentials were evoked by current injections into Shox2 IN 2 (red),

there was a lack of response in Shox2 IN 1 (black). All data shown in (A and B) were the average of 50 trials. (C and

D) Examples of individual trials from two unidirectionally connected pairs demonstrating that postsynaptic

responses did not occur for each presynaptic action potential. The voltage clamp recordings showing EPSCs in (C)

and the current clamp recordings showing EPSPs in (D) are from Shox2 IN 2 in (A and B). In both (C and D), red

arrows indicate action potential peaks in the presynaptic Shox2 IN.

DOI: https://doi.org/10.7554/eLife.42519.002
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Figure 2. Bidirectional connections are present between Shox2 INs in neonatal spinal cord. (A and B) Examples of

recordings from a pair of bidirectionally connected Shox2 INs. (Ai and Bi) Cartoon corresponding to colors of

traces in (A and B). (Ai and Aii) Current injections into Shox2 IN 1 evoked five action potentials (gray). Excitatory

postsynaptic currents (Ai) or potentials (Aii) resulted in Shox2 IN 2 (blue) in voltage clamp or current clamp mode.

Reversal of the protocol, current injection in Shox2 IN 2 (blue) also resulted in excitatory currents (Bi) or potentials

(Bii) in Shox2 IN 1. All data in A and B were averages of 50 trials. (C and D) Examples of individual trials between

bidirectionally connected pairs recorded in voltage clamp (C) and current clamp (D). Gray arrows signify the peaks

of the presynaptic action potentials. Note the lack of failures and that responses appear nearly identical in each

sweep. (Ei) Action potentials evoked in presynaptic unidirectionally (black) and bidirectionally (gray) connected

pairs and examples of single postsynaptic currents (red, unidirectional; blue, bidirectional). Dotted lines highlight

the beginning of the depolarization and action potential peak in the presynaptic cells, in order to visualize latency

differences in the postsynaptic cells. (Eii) Mean latency of the EPSC peak, referenced to the peak of the evoked

action potential between unidirectionally connected pairs (red) and bidirectionally connected pairs (blue). (Fi)

Similar to Ei but current clamp recordings showing single EPSPs in postsynaptic unidirectional (red) and

bidirectional (blue) Shox2 IN pairs in relation to the action potentials in their respective presynaptic Shox2 INs

(black and gray). Dotted lines correspond to the start of the depolarization and the peak of the action potential in

the presynaptic neurons to highlight the differences in the latency between the two types of connections. (Fii)

Figure 2 continued on next page
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subthreshold depolarization in the current-injected cell. In the unidirectional pairs, the EPSPs began

2.0 ± 2.1 ms (n = 3) after the action potential peak (Mann Whitney, p=0.0092). The mean peak ampli-

tude of the first EPSPs measured in bidirectionally connected pairs was 1.2 ± 1.0 mV (n = 21), which

was not different (Mann Whitney, p=0.54) from that in unidirectional pairs (1.4 ± 0.6 mV). Given the

bidirectional nature and short latency of this response, we hypothesized that bidirectional connec-

tions were mediated by electrical transmission.

Bidirectionally-connected Shox2 IN pairs are electrically coupled
To further test electrical coupling, long (1 s) hyperpolarizing and depolarizing current pulses were

injected into Shox2 INs sequentially, while the response was recorded from the other Shox2 IN (non-

injected IN). In all Shox2 pairs with bidirectional connections, injection of hyperpolarizing current in

one neuron resulted in hyperpolarizing membrane potential in the noninjected IN. Similarly, depola-

rizing current injected in one Shox2 IN resulted in depolarization of the other. In many cases, action

potentials in the presynaptic neuron produced corresponding spikelets in the non-injected cell

(Figure 3A and B). Summation of spikelets to generate action potentials was not observed in any of

the recorded pairs. Coupling coefficients were also calculated as the response voltage amplitude in

the non-injected neuron divided by the voltage amplitude in the injected neuron at the current step

prior to rheobase (Figure 3C). Coupling coefficients widely varied, ranging from 2% to 31% with a

mean of 13 ± 8% (n = 33), similar to that reported in Hb9 INs (Hinckley and Ziskind-Conhaim,

2006). Transfer of current in both directions strongly suggested that these Shox2 INs were con-

nected electrically. This is in contrast to unidirectional pairs, in which subthreshold current injections

to either of the two recorded neurons had no effect on the other neuron (Figure 3D and E).

One possible contributor to the likelihood of a Shox2 IN pair being unidirectional or bidirectional

is distance. All somata of Shox2 IN pairs recorded in this study were in close proximity. The average

distance between electrically coupled Shox2 INs measured as the distance between the tips of the

two recording electrodes was 40 ± 19 mm (n = 37) and 56 ± 20 mm (n = 8) in slices and dorsal horn-

removed preparations, respectively. The distances between connected pairs were significantly differ-

ent in the two preparations but neither was significantly different from the distances between non-

connected pairs (49 ± 14 mm, n = 15 in slices; 62 ± 31 mm, n = 7 in dorsal horn removed; two-way

ANOVA, Mann-Whitney posthoc, p=0.22 for connected compared to non-connected, p=0.0302 for

slices compared to dorsal horn removed connected, p=0.44 for slices compared to dorsal horn in

non-connected; Figure 3F). Distances between unidirectional pairs (slices: 25 mm and 48 mm, dorsal

horn removed: 32 mm and 65 mm) fell within the range of both electrically connected and non-con-

nected pairs. However, the proximity of the recordings and the way in which we targeted the neu-

rons may have biased our sample toward Shox2 INs more likely to be electrically connected since

Shox2 INs were chosen for recordings by the presence of clear processes from one Shox2 IN passing

in close proximity to the soma of another Shox2 IN, particularly in pairs recorded in spinal slices. It is

expected that distance between neurons will be a factor in the type of connection, with incidence of

electrical coupling decreasing at greater distances. However, between Shox2 INs in close proximity,

there were no differences in the distances between the observed unidirectional and bidirectional

pairs.

Figure 2 continued

Mean EPSP latency, peak of presynaptic action potential to start of postsynaptic depolarization, is shown for the

unidirectional (red) and bidirectional (blue) Shox2 IN pairs. The depolarization in bidirectional pairs precedes the

presynaptic action potential, resulting in a negative latency value. ** indicates p<0.01. Error bars represent SD.

DOI: https://doi.org/10.7554/eLife.42519.003

The following source data is available for figure 2:

Source data 1. Mean latency of EPSC source data for Figure 2Eii.

DOI: https://doi.org/10.7554/eLife.42519.004

Source data 2. Mean latency of EPSP source data for Figure 2Fii.

DOI: https://doi.org/10.7554/eLife.42519.005
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Bidirectional connections may be mediated entirely by gap junctional
coupling
Mixed electrical and chemical synapses have been implicated in various systems. As we have identi-

fied infrequent presumptive chemical connections between Shox2 INs, we wanted to further investi-

gate whether electrically coupled Shox2 INs showed an additional chemical component. Ionotropic

glutamatergic transmission was blocked by bath application of CNQX (10 mM) and CPP (10 mM) or

APV (10 mM), AMPA receptor and NMDA receptor antagonists, respectively (Figure 4A). The pres-

ence of antagonists did not change the amplitude of first EPSPs (average of 50 sweeps) in electrically

Figure 3. Bidirectional connectivity is due to electrical coupling. (A and B) Examples of recordings from a pair of

bidirectionally connected Shox2 INs. In (A), responses of Shox2 IN 1 (gray) and Shox2 IN 2 (blue) to 1 s long

hyperpolarizing and depolarizing current steps injected into Shox2 IN one are shown. In (B), the protocol was

reversed and responses to current steps in Shox2 IN2 are shown. As typical in bidirectionally connected Shox2 INs,

both hyperpolarizing and depolarizing responses were evident in the non-injected cell. Additionally, spikelets in

the non-injected neuron corresponded to action potentials generated in the neuron receiving the current steps.

Darker shading corresponds to increasing current steps. (C) Coupling coefficients were highly variable with a mean

of 13%, indicated by the green line. (D and E) Examples of recordings from a pair of unidirectionally connected

Shox2 INs. In (D), 1 s long current steps were injected into Shox2 IN one while responses of Shox2 IN 1 (black) and

Shox2 IN 2 (red) were recorded in current clamp mode. In (E), the same protocol was performed but current was

injected into Shox2 IN 2. Darker shading corresponds to increasing current steps. (F) Distance between recorded

neurons was not significantly different by connection type but connected cells were significantly closer together in

slices than in dorsal horn-removed preparations. Empty bars for dorsal horn-removed preparations (dhr), filled bars

for slices (s), unidirectional (red), bidirectional (blue), or not connected (gray) pairs, mean ±SD.

DOI: https://doi.org/10.7554/eLife.42519.006

The following source data is available for figure 3:

Source data 1. Coupling coefficients in neonates source data for Figure 3C.

DOI: https://doi.org/10.7554/eLife.42519.007

Source data 2. Distance between recorded neurons source data for Figure 3F.

DOI: https://doi.org/10.7554/eLife.42519.008
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coupled Shox2 INs (Figure 4B, control: 1.4 ± 1.2 mV, antagonists: 1.3 ± 1.1 mV, n = 5 pairs, paired

t-test, p=0.41). Similar to the first EPSP, the fifth EPSP was not significantly different in the CNQX

and APV/CPP (control: 3.3 ± 2.6 mV, antagonists: 2.7 ± 2.1 mV, n = 5 pairs, paired t-test, p=0.12).

We further determined the contribution of electrical coupling using a gap junction blocker, carbe-

noxolone (100 mM). Following 30 min of application, carbenoxolone decreased the first EPSP of

each sweep in the non-injected Shox2 IN to just 19 ± 2% of control (Figure 4C and D, control:

1.9 ± 1.1 mV, carbenoxolone: 0.3 ± 0.2 mV, n = 5 pairs, paired t-test, p=0.0242). Similar to the first

EPSP, the fifth EPSP was significantly reduced in carbenoxolone (control: 5.2 ± 3.2 mV, carbenoxo-

lone: 1.0 ± 0.7 mV, n = 5 pairs, paired t-test, p=0.0234). In most cases the small remaining EPSPs

did not shift in latency indicating that the remaining EPSPs were likely to be electrically, rather than

chemically mediated. Altogether, this suggests that bidirectional connections are likely exclusively

mediated by electrical synapses.

Electrical synapses between Shox2 INs act as low-pass filters
Gap junctions are often thought of as low-pass filters (Galarreta and Hestrin, 1999; Gibson et al.,

2005; Rekling et al., 2000; Hinckley and Ziskind-Conhaim, 2006). Locomotor-related cellular oscil-

lations are typically low frequency and therefore are likely to be partly transferred through gap

100pA

25ms

20mV

2mV

control CNQX+APV

E
P

S
P

 a
m

p
lit

u
d

e
 (

m
V

)

0

1

2

3

4

100pA

25ms

20mV

2mV

control carbenoxolone

E
P

S
P

 a
m

p
lit

u
d

e
 (

m
V

)

0

1

2

3

4 *

DC

BA

Figure 4. Electrical coupling between Shox2 INs does not have a chemical component. (A) Examples of

recordings from a bidirectionally connected pair of Shox2 INs. Averaged recordings prior to (gray) and after the

addition AMPA receptor and NMDA receptor antagonists, CNQX and APV or CPP (teal). Current injections into

Shox2 IN 1 (bottom) elicited action potentials in the stimulated/presynaptic neuron (middle) and depolarizations in

Shox2 IN2 (top). (B) There was no significant change to the amplitude of the first EPSP when fast glutamatergic

transmission was blocked. (C) Examples of recordings from a bidirectional connected pair of Shox2 INs prior to

(gray) and after the addition of gap junctional blocker, carbenoxolone (yellow). Traces are in the same order as in

(A). (D) Bar graphs showed the amplitude of the first EPSP in the postsynaptic Shox2 IN in response to the first of

five action potentials evoked in the presynaptic neuron. Carbenoxolone efficiently decreased the EPSPs in the

responding Shox2 IN. * indicates p<0.05. Error bars represent SD.

DOI: https://doi.org/10.7554/eLife.42519.009

The following source data is available for figure 4:

Source data 1. EPSP amplitude pre- and post-glutamatergic antagonist source data for Figure 4B.

DOI: https://doi.org/10.7554/eLife.42519.010

Source data 2. EPSP amplitude pre- and post-carbenoxolone source data for Figure 4D.

DOI: https://doi.org/10.7554/eLife.42519.011
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junctions. In order to test the strength of electrical coupling between Shox2 INs as a function of fre-

quency, we next injected subthreshold sinusoidal currents at frequencies of 0.2, 1, 2, 5, 10, and 20

Hz while monitoring the changes in membrane potentials both in the injected Shox2 IN and the elec-

trically connected Shox2 IN (Figure 5A). We then measured both the coupling coefficient

(Figure 5B) and the phase lag (Figure 5C) that occurred between the injected neuron and the non-

injected neuron and found that as the frequency of the injected current increased, the coupling coef-

ficient decreased and the phase lag increased. As frequencies of drug evoked locomotion in neona-

tal mice range from approximately 0.2–0.8 Hz in isolated spinal cord preparations (Talpalar and

Kiehn, 2010), this should place locomotor frequencies within a range where high coupling between

Shox2 INs would occur. We reasoned that if electrical coupling played an important role in generat-

ing and promoting the rhythm in Shox2 INs, blocking gap junctions with carbenoxolone would have

an effect on the frequency of locomotion. In order to test this, we recorded from a flexor-related

(lumbar L2 or L3) and an extensor-related (L5) ventral root in isolated spinal cord preparations during

locomotor-like activity evoked by NMDA and 5-HT (Figure 6A). Here, we saw that after 40 min of

adding carbenoxolone (100 mM) to the bath, locomotor frequency was significantly reduced (control:

0.39 ± 0.09 Hz, carbenoxolone: 0.19 ± 0.03 Hz, n = 6 cords, paired t-test, p=0.0009; Figure 6B and

C). Although electrical connections between motor neurons (Tresch and Kiehn, 2000), Hb9 INs

(Hinckley and Ziskind-Conhaim, 2006), or other CPG INs (Zhong et al., 2010) are likely to contrib-

ute as well and carbenoxolone may have non-specific effects on the network (Rekling et al., 2000;

Vessey et al., 2004; Tovar et al., 2009; Connors, 2012), this suggests that electrical coupling

between Shox2 INs could act as a mechanism to promote locomotor rhythmicity.

Figure 5. Electrical synapses between Shox2 INs act as low-pass filters. (A) Membrane oscillations in Shox2 IN 1

(gray) and Shox2 IN 2 (blue) resulting from subthreshold sinusoidal current injections (±20 pA) to Shox2 IN 1 at 2

Hz and 10 Hz frequencies. All traces are averages of 10 sweeps. (B) Coupling coefficients normalized to value at 2

Hz to demonstrate frequency-dependence. Coupling strength decreased with increasing frequency of injected

current (0.2 Hz; n = 3; 1 Hz, n = 5; 2 Hz, n = 13; 5 Hz, n = 12; 10 Hz, n = 8; and 20 Hz, n = 7) Error bars represent

SD. (C) Phase lag is frequency dependent. As the frequency of the injected current increased, phase lag increased

(0.2 Hz, n = 2; 1 Hz, n = 5; 2 Hz, n = 13; 5 Hz, n = 12; 10 Hz, n = 9; and 20 Hz, n = 7).

DOI: https://doi.org/10.7554/eLife.42519.012

The following source data is available for figure 5:

Source data 1. Coupling coefficient source data for Figure 5B.

DOI: https://doi.org/10.7554/eLife.42519.013

Source data 2. Phase lag source data for Figure 5C.

DOI: https://doi.org/10.7554/eLife.42519.014
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Shox2 electrical coupling between Shox2 INs declines in incidence and
strength with age
Electrical transmission has been shown to be prevalent during early postnatal period, but often

decreases as the animal matures. Although there is structural evidence for maintained connexin

expression in the adult spinal cord (Rash et al., 1996; Chang et al., 1999; Nagy et al., 2004;

Rash et al., 2000; Personius et al., 2007; Marina et al., 2008; Bautista et al., 2012), electrophysio-

logical evidence has yet to be demonstrated. Electrical coupling persists at least to P11 in spinal

interneurons expressing Hb9 (Hinckley and Ziskind-Conhaim, 2006). Consequently, we wanted to

ask whether electrical transmission in Shox2 INs continued in later stages or is limited to early post-

natal mice. Whole cell paired recordings were performed in slices from older mice categorized into

three age groups: P13-P17, P23-P35, and adult (>P55). Similar to neonates, electrical coupling was

present in 30% of Shox2 IN pairs (n = 8/27) in the P13-17 group (Figure 7A and B). Electrical cou-

pling of Shox2 IN pairs dropped off in incidence to 10% in P23-35 mice (n = 4/41) and was not

detected in adult (n = 0/22). The proportions of electrically connected Shox2 INs were significantly

different between age groups (chi-square test, p=0.008). Of the pairs that were coupled, the mean

electrical coupling coefficient was determined to be 13 ± 11% (n = 8) in the P13-17 mice and 5 ± 2%

(n = 3) in P23-35 mice (Figure 7C). Although not statistically different (Kruskal-Wallis, p=0.19), there

were few connections detected in the P23-35 group due to the lower incidence rate. The amplitude

of EPSPs measured in the postjunctional Shox2 IN in response to the evoked action potentials in the

prejunctional Shox2 INs decreased in the P23-35 mice (mean = 0.2 ± 0.1 mV, n = 4) compared to the

P0-5 (mean = 1.2 ± 1.0 mV, n = 21) and P13-17 groups (mean = 1.2 ± 1.2 mV, n = 7, Kruskal-Wallis,

p=0.0114, Dunn’s Multiple Comparison post-hoc test, P23-35 vs. P0-5, p<0.01,and P23-35 vs. P13-

17, p<0.05, Figure 7D). However, the EPSPs in the neonatal group were not significantly different

from those measured in the P13-17 group (Dunn’s Multiple Comparison post-hoc test, p>0.05).

Overall, this suggests that a reduction in the electrical transmission between Shox2 INs, both in the

number of connections and the amplitude of response in the non-injected cell, begins by the third

postnatal week.

Preferential connections exist within different functional groups of
Shox2 INs
Shox2 INs can be divided into two populations based on the expression of the transcription factor

Chx10 (Shox2+ V2a INs and Shox2+ non-V2a INs). Genetic manipulation experiments have attributed

different functions to Shox2+ V2a and Shox2+ non-V2a INs. Shox2+ non-V2a INs are involved in loco-

motor rhythm generation and Shox2+ V2a INs are important for stabilizing motor bursts, likely by

Figure 6. Blocking gap junctions with carbenoxolone decreases locomotor frequency. (A) Extracellular recordings

from ventral roots at lumbar level 2 (L2)-flexor dominant root- and level 5 (L5)-extensor dominant root- on the right

(r) and on the left (l) side of the spinal cord after application of NMDA (7 mM) and serotonin (8 mM). Alternation in

ventral root bursts was present between the flexor and extensor root as well as between the right side and the left

side of the spinal cord. (B) Addition of carbenoxolone (100 mM) decreased the frequency of locomotion (analyzed

after 40 min of wash in) with little to no change in the pattern of locomotion. (C) Quantification of locomotor

frequency shows that it is significantly reduced by the addition of carbenoxolone. *** indicates p<0.005. Error bar

represents SD.

DOI: https://doi.org/10.7554/eLife.42519.015
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providing input to motoneurons (Dougherty et al., 2013). Therefore, we next asked whether inter-

connections between Shox2 INs are related to functional groupings. For these experiments, we used

Shox2::Cre; Chx10::eGFP; Rosa26-lsl-tdTomato mice in order to distinguish Shox2+ non-V2a INs (red

only) from Shox2+ V2a INs (red and green). We then performed paired recordings from 2 Shox2+

non-V2a INs, 2 Shox2+ V2a INs, or 1 Shox2+ non-V2a IN and 1 Shox2+ V2a IN (Figure 8). When pairs

of Shox2+ non-V2a INs were targeted for the recording, 33% were electrically coupled (n = 6 of 18

pairs). Similarly, when pairs of Shox2+ V2a INs were targeted, 38% were electrical connected (n = 5

of 13 pairs). However, when mixed pairs of Shox2+ non-V2a INs with Shox2+ V2a INs were recorded,

we were not able to detect any connections (n = 0 of 12 pairs). Altogether this suggests gap junc-

tional interconnectivity is preferential within functional groupings of Shox2 INs.

Discussion
Our present study explored interconnectivity within the Shox2 IN population, part of which has been

proposed to contribute to locomotor rhythm generation. Two types of connections between Shox2
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Figure 7. Electrical coupling between Shox2 INs is age-dependent. (A) Example of bidirectional electrical

coupling detected between Shox2 INs in a P13 mouse. Hyperpolarizing and depolarizing current steps injected

into either Shox2 IN 1 (left) or Shox2 IN 2 (right) resulted in hyperpolarizations and depolarizations in both

neurons. Shading of lines is to better visualize separate sweeps of differing injected currents. Spikelets were

observed in the connected Shox2 INs corresponding to action potentials generated in the IN depolarized by

injected current. (B) Pie charts indicate the incidence of connectivity between Shox2 INs detected in P0-P5, P13-

P17, and P23-P35 age groups. Darker colors in each represent bidirectional connections. Lighter wedges in P0-P5

and P23-P35 represent unidirectional connections. (C) Strength of coupling coefficient in bidirectionally connected

Shox2 INs from different age groups as the mice mature. (D) Amplitude of the EPSP in the postsynaptic Shox2 IN

in response to the first of five action potentials evoked in the presynaptic neuron in different age groups. *

indicates p<0.05 and ** indicates p<0.01. Error bars represent SD.

DOI: https://doi.org/10.7554/eLife.42519.016

The following source data is available for figure 7:

Source data 1. Coupling coefficients by age group source data for Figure 7C.

DOI: https://doi.org/10.7554/eLife.42519.017

Source data 2. EPSP amplitudes by age group source data for Figure 7D.

DOI: https://doi.org/10.7554/eLife.42519.018
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INs were identified in neonatal mice. Unidirectional connections, consistent with chemical synapses,

were found at a very low incidence rate. Far more common were bidirectional connections mediated

by gap junctions. Functional gap junctional coupling between Shox2 interneurons continued into

more mature mice that are capable of weight supported stepping but began to decrease in inci-

dence and strength around the third postnatal week and was not detectable in adult. Electrical cou-

pling was preferential within functional groupings of Shox2 INs as separated by the presence or

absence of the transcription factor Chx10. Thus, gap junctional coupling provides a potential mecha-

nism for synchronous activation of rhythm-generating neurons, particularly in young animals.

Shox2 INs are interconnected by electrical synapses
We found that nearly a third of Shox2 INs were electrically coupled and a very small percentage of

Shox2 INs were chemically coupled. Gap junctional connections are most likely to occur between

nearby neurons as connexin 36 has been shown to be located on somata and proximal dendrites

(Rash et al., 2001; Marina et al., 2008; Bautista et al., 2012). Here, the somata of Shox2 INs in

paired recordings were typically within ~65 mm of each other and those with processes running

between them were preferentially chosen for recordings. The way in which the pairs were targeted

likely contributes to the relatively high degree of electrical coupling which was not seen in previous

paired recordings where processes were not traced (Dougherty et al., 2013). Consequently, by test-

ing local interneurons, we are likely biasing our sample towards a higher degree of electrical connec-

tivity. In contrast, it is possible that the low incidence of chemically-mediated connections detected

between Shox2 INs is an underestimate since we restricted our sampling to local interneurons and

slicing disrupts axonal projections and dendrites. Sparse recurrent connections within excitatory

populations can support locomotor rhythm generation in computational models of rodent central

pattern generators (Zhong et al., 2012; Shevtsova et al., 2015; Bui and Brownstone, 2015;

Shevtsova and Rybak, 2016; Ausborn et al., 2018) and are thought to underlie rhythm generation

in other networks (Grillner, 2003; Li et al., 2006; Kozlov et al., 2007), and this is even more robust

when both electrical and reciprocal synapses are present (Asghar et al., 2005; Li et al., 2009;

Hull et al., 2015). Here, similar to rhythmogenic respiratory neurons in the pre-Bötzinger complex,

none of the chemically coupled rhythmogenic Shox2 neurons were electrically coupled and vice

versa (Rekling et al., 2000). Although it is possible that the remaining potential seen in carbenoxo-

lone is due to mixed chemical synapse, carbenoxolone does not completely block gap junctions
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Figure 8. Connectivity between Shox2 INs depends on function. (A) Examples of recordings from a pair of Shox2+

non-V2a INs. Average of 50 responses of Shox2 IN 1 and Shox2 IN 2 to 5 action potentials evoked with current

steps applied to the other IN. Action potential peaks are indicated with arrows. Pie graphs show the proportion of

Shox2+ non-V2a pairs found to be bidirectionally connected (white) and not connected (gray). (B) Example

recordings from a pair of Shox2+ V2a INs, as in (A). (C) Example recordings from a mixed pair consisting of one

Shox2+ non-V2a INs and one Shox2+ V2a INs, displayed as in (A).

DOI: https://doi.org/10.7554/eLife.42519.019
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(Kiehn and Tresch, 2002). Further, the time courses of the remaining potentials match with those

mediated by gap junctions and do not appear to have a synaptic delay. Although we did not detect

any pairs that were both electrically and chemically connected, we do not think that one connection

necessarily precludes the other. Chemical connections were found at too low of an incidence to rule

out the possibility that some electrically coupled neurons are also chemically connected.

We also observed a high failure rate in synaptic transmission in chemically-mediated Shox2 IN

connections. This would be expected if the connections are not monosynaptic and we cannot rule

out this possibility. Nevertheless, synaptic failures in unitary connections have been described in

other regions of the central nervous system (Bolshakov and Siegelbaum, 1995; Stevens and Wang,

1995; Rekling et al., 2000) and high failure rates are linked to an enhanced propensity for long-

term potentiation (Marina et al., 2008; Bolshakov and Siegelbaum, 1995). Thus, modifying synap-

tic fidelity between Shox2 neurons, monosynaptically or disynaptically connected, should be possible

based on development, activity dependent mechanisms, or neuromodulatory control

(Bolshakov and Siegelbaum, 1995; Chang et al., 1999; Chang et al., 1999; Mentis et al., 2002;

O’Brien, 2014; Marder et al., 2017). These possibilities are not mutually exclusive and raise inter-

esting mechanisms to explore in terms of rhythm generation and dynamic circuit connectivity of the

locomotor network.

Functional groups of Shox2 INs are preferentially connected
Using a triple transgenic strategy, we were able to distinguish between the two known functional

populations of Shox2 INs. Approximately 1/4 of the Shox2 IN population does not express Chx10

(Shox2+ non-V2a) and is thought to be part of the locomotor rhythm generator. The remaining

Shox2 INs (~3/4 of population) co-express the transcription factor Chx10 (Shox2 V2a IN) and are pro-

posed to belong to the pattern forming layer of the CPG, providing input to motoneurons

(Dougherty et al., 2013). Shox2 IN interconnections were preferential within each subpopulation

(Shox2+ non-V2a to Shox2+ non-V2a and Shox2+ V2a to Shox2+ V2a). Electrical connections have

previously been shown within the Chx10 population (not divided by Shox2 expression) in neonatal

(P1-4) mice and coupling incidence was found to be higher among neurons with the same firing

properties (Zhong et al., 2010). Shox2 INs (V2a and non-V2a) display the similar firing properties to

those reported in the Chx10 population (Dougherty and Kiehn, 2010; Zhong et al., 2010). There-

fore, these two populations cannot be simply split by electrophysiological signatures; however,

when considering subpopulations based on both molecular markers and firing properties, connectiv-

ity rates may be even higher. Similar separations by function have been previously seen both in

motor neurons, where only homonymous pools are electrically connected (Walton and Navarrete,

1991; Kandler and Katz, 1995), in Hb9 neurons, where GFP populations were only electrically con-

nected when they still contained Hb9 protein (Hinckley and Ziskind-Conhaim, 2006), and in

descending rhythm-generating interneurons in Xenopus, which are not electrically coupled with

other CPG neurons (Li et al., 2009), however, this is not always the case (Eisen and Marder, 1982;

Wilson et al., 2007; Chopek et al., 2018). It is also possible that the presence/absence or range in

strength of electrical coupling in Shox2 neurons is related to a further subdivision in transcription fac-

tor expression (i.e. Hayashi et al., 2018) or function (i.e. phasing relationship) of Shox2 INs. Alto-

gether, preferential interconnectivity within molecularly-defined subsets of Shox2 INs further

supports distinct functional roles of these populations.

Functional implications of interconnectivity between Shox2 INs
Gap junctional coupling is highly effective at promoting synchronization in neuronal activities

(Kiehn and Tresch, 2002; Personius et al., 2007; Wilson et al., 2007; Zhong et al., 2010) and has

been implicated in rhythm generation (Marder and Calabrese, 1996; Rekling et al., 2000;

Tresch and Kiehn, 2000; Bou-Flores and Berger, 2001; Sharifullina et al., 2008; Li et al., 2009;

Pierce et al., 2010). Additionally, gap junctional coupling allows subthreshold activities to contribute

to network function (Marder and Calabrese, 1996). Therefore, a network with prominent gap junc-

tional coupling would require less extrinsic drive to initiate synchronous rhythmic oscillations, and

this drive could be localized to a part of the population but evoked activity could spread through

the network. This would allow for a small number of active neurons to rapidly synchronize specific

Shox2 subpopulations. Further, the small number of neurons activated initially would not have to be
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the same neurons cycle to cycle, in order to result in synchronous activation of the population, as

has been recently shown in respiration (Carroll and Ramirez, 2013; Kam et al., 2013; Feldman and

Kam, 2015; Del Negro et al., 2018). In terms of locomotor network activity, blocking gap junctional

coupling with carbenoxolone decreased the frequency of drug evoked locomotion, consistent with

previous findings (Tresch and Kiehn, 2000; Falgairolle et al., 2017). This result is remarkably similar

to the effect of removing the population of Shox2 neurons from the network (Dougherty et al.,

2013). Thus, it is possible that electrical connections between functionally-related Shox2 INs syn-

chronize neuronal activity and may contribute to rhythmicity. These results should be cautiously

interpreted, however, as there are alternative explanations. Gap junctions have been demonstrated

between several interneuronal populations (Hinckley and Ziskind-Conhaim, 2006; Wilson et al.,

2007; Zhong et al., 2010) and between motor neurons (Walton and Navarrete, 1991;

Kandler and Katz, 1995; Rash et al., 1996; Chang et al., 1999; Tresch and Kiehn, 2000;

Mentis et al., 2002; Marina et al., 2008). Additionally, functional electrical coupling has been

reported between motor neurons and spinal excitatory interneurons in zebrafish (Bhatt et al., 2007;

Song et al., 2016) and mouse (Chopek et al., 2018). Lastly, carbenoxolone has been shown to have

several non-specific effects, including decreasing input resistance, voltage gated Ca2+ currents, and

AMPA receptor-mediated currents (Rekling et al., 2000; Vessey et al., 2004; Tovar et al., 2009),

which may also lead to similar effects.

Taken together, electrical coupling is prevalent in neonatal mice and preferential to functional

groups of Shox2 interneurons. In addition to synchronizing functional populations, it is possible that

this serves to promote rhythm generation and/or strengthen connections to downstream targets, i.e.

via Hebbian mechanisms (Walton and Navarrete, 1991). Our results demonstrate that electrical

coupling persists well through the transition to weight bearing stepping but could not be detected

in the adult. This suggests that electrical transmission can serve as one of the mechanisms to syn-

chronize rhythm-generating neurons during spinal circuit development, although this declines with

age. In adult animals, it is possible that there is a shift in the neuronal populations requiring synchro-

nization and that Shox2 neurons no longer play this role. We favor the possibility that as connectivity

structures mature, other neuronal properties develop that can support similar functions but through

different mechanisms. For example, sparse connectivity together with enhancement of intrinsic excit-

ability or neuromodulatory control (Husch et al., 2015) may be sufficient to maintain synchronization

and network function. Currently, this is speculative and requires direct experimental testing.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

Shox2::Cre PMID: 24267650

Genetic reagent
(M. musculus)

Rosa26-lsl-
tdTomato

Jackson
Laboratory

Stock #: 007909 PMID: 20023653

Genetic reagent
(M. musculus)

Chx10GFP Mutant Mouse
Regional
Resource Center

MMRRC Cat#:
011391-UCD

Now called
Vsx2-EGFP;
PMID: 14586460

Chemical
compound, drug

carbenoxolone
disodium salt

Sigma C4790

Chemical
compound, drug

5-HT, serotonin
creatinine sulfate
monohydrate

Sigma H7752

Chemical
compound, drug

NMDA, N-Methyl-
D-aspartic acid

Sigma M3262

Chemical
compound, drug

CNQX, 6-cyano-7-
nitroquinoxaline-2,3-
dione disodium salt

Tocris 1045

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

AP-5, 2-amino-5-
phosphopentanoic
acid

Tocris 1234

Chemical
compound, drug

CPP, 3-((R)�2-
Carboxypiperazin
-4-yl)-propyl-1-
phosphonic
acid

Tocris 2411

Experiments were performed using Shox2::Cre (Dougherty et al., 2013); Rosa26-flox-Stop-flox-

tdTomato (Ai9 from Jax Mice, #007909, Madisen et al., 2010) or in Shox2::Cre; Ai9; Chx10eGFP

(also called Vsx2-eGFP, MMRRC, 011391-UCD, Gong et al., 2003) transgenic mice. All experimental

procedures followed NIH guidelines and were approved by the Institutional Animal Care and Use

Committee at Drexel University.

Spinal cord preparations
Spinal cords were isolated as previously described (Dougherty and Kiehn, 2010). Briefly, neonatal

(P0-P5) mice were decapitated and eviscerated. Spinal cords were then removed in ice cold dissect-

ing solution containing in mM: 111 NaCl, 3 KCl, 11 glucose, 25 NaHCO3, 3.7 MgSO4, 1.1 KH2PO4,

and 0.25 CaCl2. For experiments in a dorsal horn-removed preparation, the dorsal lumbar region

(L2-L5) was subsequently removed from one side of the cord with a surgical knife in order to gain

access to the Shox2 INs. For slice experiments, lumbar spinal cord (L2-5) was sectioned transversely

(300–350 mm) with a vibrating microtome (Leica Microsystems). Dorsal horn-removed preparations

and slices were next transferred to room temperature (RT) artificial cerebrospinal fluid (ACSF)

recording solution containing in mM: 111 NaCl, 3 KCl, 11 glucose, 25 NaHCO3, 1.3 MgSO4, 1.1

KH2PO4, and 2.5 CaCl2. Cords and slices were incubated for at least 30 min prior to recordings. Dis-

secting and recording solutions were continuously aerated with 95%/5% CO2/O2. Slices from older

mice (P13-P17, P23-P35, and >P55) were obtained in a similar manner with the following differences.

Mice > P5 were anesthetized with a mixture of ketamine (150 mg/kg) and xylazine (10 mg/kg) prior

to decapitation. Cords were isolated in ice cold glycerol-based ACSF solution containing in mM: 3

KCl, 11 glucose, 25 NaHCO3, 1.3 MgSO4, 1.1 KH2PO4, 2.5 CaCl2, 222 glycerol. Following sectioning,

slices were transferred to ACSF at 37˚C for 30 min and then passively equilibrated to RT for another

30 min before recording.

Patch-clamp recordings
All recordings were performed at room temperature. Fluorescently labeled (tdTomato) Shox2 INs

were visualized with a 63X objective lens on a BX51WI scope (Olympus) using LED illumination (X-

cite). Patch electrodes were pulled to tip resistances of 5–8 MW using a multi-stage puller (Sutter

Instruments) and were filled with intracellular solution which contained in mM: 128 K-gluconate, 10

HEPES, 0.0001 CaCl2, one glucose, 4 NaCl, 5 ATP, and 0.3 GTP. In some experiments, biocytin (2

mg/ml, Sigma) was included in the patch electrode. Cells were targeted based on fluorescence and

using differential interference contrast (DIC) optics for pairwise whole-cell patch recordings. Record-

ings were made from pairs of neurons located in close proximity and those with processes appearing

to pass the soma of another cell were preferentially targeted. Data was collected with a Multiclamp

700B amplifier (Molecular Devices) and Clampex software (pClamp9, Molecular Devices). Signals

were digitized at 10 kHz and filtered at 6 kHz.

To test for connectivity between two patched Shox2 INs, a train of five short (10 ms) strong (100–

300 pA) current pulses (interstimulus interval of 20 ms), were applied to the Shox2 IN recorded with

electrode 1, ‘Shox2 IN 1’, while the resulting synaptic activity in the other Shox2 IN was recorded

with the other electrode, ‘Shox2 IN 2’. This was repeated for a total of 50 sweeps, with a start-to-

start interval of 2 s, for offline averaging. In current clamp, biased current was applied to ‘Shox2 IN

2’ so that its membrane potential was around �65 mV. In voltage clamp, ‘Shox2 IN 2’ was held at

�60 mV. The same protocol was then reversed and applied from ‘Shox2 IN 2’ to ‘Shox2 IN 1’. Any
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sweep in which a current pulse failed to produce an action potential in the injected cell was removed

prior to averaging which resulted in 25–50 sweeps being averaged for each test. Additionally, series

of hyperpolarizing and depolarizing steps were run sequentially to determine firing properties, mem-

brane properties, and electrical connectivity. Coupling coefficient (k) was calculated using the depo-

larizing current step prior to rheobase and defined as the ratio of the voltage response in the

postsynaptic cell to the presynaptic cell. Rheobase was defined as the lowest current step (in 5 pA

increments) that evoked an action potential in Shox2 INs. Not every protocol was run for all pairs of

neurons. For many of the pairs, either the voltage clamp or the current clamp protocol was run to

test for connections. Both were run in later recordings. The protocol to determine coupling coeffi-

cient was added partway through the study. In cases where one of the two cells was lost or record-

ing integrity declined, the protocol was not included in analyses. Data from dorsal horn-removed

experiments was included in the analysis of incidence, amplitude, and latency. Pharmacology, cou-

pling coefficients, and >P5 experiments were exclusively performed in slices. Following the paired

recording, an image of electrode position was captured. Distance between pairs was estimated by

measuring the distance between the tips of the electrodes from the image file. An image was not

collected for nine connected pairs and we began capturing images for non-connected pairs late in

the study. If there was no image, the pairs were not included in the distance analysis.

Ventral root recordings
Ventral root activity (signal band-pass filtered 10–1,000 Hz; gain 1000) was recorded from two lum-

bar (L) 2–5 ventral roots with tightly-fitting glass suction electrodes. The combination of N-Methyl-D-

aspartic acid (NMDA, 7 mM, Sigma) and serotonin creatinine sulfate monohydrate (5-HT, 8 mM,

Sigma) was bath applied to induce fictive locomotion.

Pharmacology
In some experiments, fast glutamatergic synaptic transmission was blocked with AMPA receptor

antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX, 10 mM, Tocris), and NMDA

receptor antagonist, 2-amino-5-phosphopentanoic acid (AP-5, 10 mM, Tocris) or 3-((R)�2-Carboxypi-

perazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mM, Tocris). In other experiments, the gap junction

blocker carbenoxolone (100 mM, Sigma) was applied.

Statistics
Statistical tests and post-hoc analyses used are stated for each experiment. All results are presented

as mean ±SD. Statistical significance was set at p<0.05.
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Hägglund M, Borgius L, Dougherty KJ, Kiehn O. 2010. Activation of groups of excitatory neurons in the
mammalian spinal cord or hindbrain evokes locomotion. Nature Neuroscience 13:246–252. DOI: https://doi.
org/10.1038/nn.2482, PMID: 20081850
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