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Abstract. Breast cancer has been the leading cause of 
cancer-associated mortality in women worldwide. Perturbation 
of oncogene and tumor suppressor gene expression is gener-
ally considered as the fundamental cause of cancer initiation 
and progression. In the present study, three gene expression 
datasets containing information of breast cancer and adjacent 
normal tissues that were detected using traditional gene micro-
arrays were downloaded and batch effects were removed with 
R programming software. The differentially expressed genes 
between breast cancer and normal tissue groups were closely 
associated with cancer development pathways. Interestingly, 
five pathways, including ‘extracellular matrix-receptor inter-
action’, ‘peroxisome proliferator-activated receptors signaling 
pathway’, ‘propanoate metabolism’, ‘pyruvate metabolism’ 
and ‘regulation of lipolysis in adipocytes’, were thoroughly 
connected by 10 genes. Patients with upregulation of six of 
these hub genes (acetyl-CoA carboxylase β, acyl-CoA dehydro-
genase medium chain, adiponectin, C1Q and collagen domain 
containing, acyl-CoA synthetase short chain family member 2, 
phosphoenolpyruvate carboxykinase 1 and perilipin 1) exhib-
ited improved breast cancer prognosis. Additionally, breast 
cancer‑specific network analysis identified several gene‑gene 
interaction modules. These gene clusters had strong interac-
tions according to the scoring in the whole network, which 
may be important to the development of breast cancer. In 
conclusion, the present study may improve the understanding 
of the mechanisms of breast cancer and provide several valu-
able prognosis and treatment signatures.

Introduction

Breast cancer is one of the most common types of malignant 
tumor in women worldwide (1). With >2 million new cases 

diagnosed in 2018 worldwide, the incidence rate of breast 
cancer is increasing year by year (2). According to the statis-
tics of 2014, China accounts for 12.2% of newly diagnosed 
cases and 9.6% of deaths worldwide (3). The survival time 
of breast cancer has been prolonged with the development 
of early detection and modern treatment technology (4). At 
present, the prognosis of breast cancer is mainly evaluated by 
clinicopathological characteristics, including as age, tumor 
size, lymph node metastasis and histological grade (5). Breast 
cancer is a highly heterogeneous tumor at the molecular level. 
Based on the expression levels of estrogen receptor (ER), 
progesterone receptor, HER2 and Ki-67 protein, breast cancer 
is classified into Luminal A, Luminal B, HER2 overexpression 
and Basal-like types (6-8). The genetic heterogeneity of breast 
cancer leads to different therapeutic effects and prognosis of 
patients with the same pathological type and clinical stage 
under identical clinical treatment (9,10). Therefore, large-scale 
genomic studies on the pathogenesis and prognosis of breast 
cancer have become a hotspot (11). Screening genes for early 
diagnosis, genotyping and prognosis of breast cancer by gene 
chip technology is of great significance for guiding individual-
ized treatment and improving prognosis (12).

Breast cancer is a multigenic disease with a multifactorial 
etiology, and the occurrence of breast cancer is a compli-
cated multistep process (13,14), in which numerous signaling 
pathways are altered to some extent. Her-2, as an important 
prognostic factor of breast cancer, is vital for the Ras signaling 
pathway (15). McGlynn et al (16) used immunohistochem-
istry to detect the activation of MAPK pathway and revealed 
the patients had lower activation of MAPK pathway after 
receiving more effective chemotherapy and endocrine therapy. 
Wnt signaling pathway, involved in the development of early 
embryonic mammary gland, leads to the occurrence of breast 
cancer when abnormally activated (17). Shao et al (18) found 
that blocking the expression of β-catenin in Wnt signaling 
pathway could induce apoptosis of breast cancer cells. 
Although much progress has been made in this area, the 
molecular pathogenesis of breast cancer remains not fully 
understood. The majority of studies use only one set of mRNA 
expression chip data from either experimental studies (19) or 
databases (20) to perform analysis of breast cancer, which may 
have an impact on the analysis results. The present study inte-
grated data from multiple chip platforms and eliminated batch 
effect for preprocessing by using various function packages 
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of R. In addition, pathway and biological target analysis was 
performed, and may identify areas for the prevention, clinical 
treatment and prognosis of breast cancer.

Materials and methods

Gene expression profiles. Gene expression profiles were 
selected from the Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/geo) using the following 
criteria: i) The samples were breast cancer and normal 
tissues from Homo sapiens; ii) gene expression levels were 
detected using the Affymetrix Human Genome U133 Plus 
2.0 Array (GEO ref. no. GPL570; Thermo Fisher Scientific, 
Inc.). A total of three datasets (accession nos. GSE29431 (21), 
GSE42568 (22) and GSE61304 (23,24)) were downloaded. 
The sample characteristics of the three datasets are shown in 
Table I.

Gene expression preprocessing. To remove the effect 
induced by biological replicates within a specific dataset 
and to correct the batch effect among different datasets, 
intra- and inter-group normalization were performed using 
R Bioconductor (version 3.6; http://www.bioconductor.org), 
Affymetrix microarray analysis (25) and surrogate variable 
analysis (sva) packages (26), respectively. The affy R package 
was applied to each specific dataset for normalization followed 
by background correction using a robust multi-array (RMA) 
method (27) and log2-transformation. The sva package was 
designed for the removal of batch effects and other unwanted 
variation in high-throughput experiments, such as the 
experimental conditions, through identifying and estimating 
surrogate variables for unknown sources, removing known 
batch effects using the ComBat function of sva package (28) 
or removing batch effects with known control probes. In the 
present study, the sva package was used to remove all potential 
batch effects among the three datasets. Probe IDs were then 
annotated to gene symbols according to GPL570 annotation 
information. The expression values of genes annotated by 
more than one probe ID were summarized.

Differential expression analysis. The expression datasets 
were combined, and the expression matrix consisting of 216 
breast cancer tissue samples and 33 normal tissue samples 
was obtained. The differentially expressed genes (DEGs) 
in breast cancer samples compared with normal tissue 
samples were then identified using the R Bioconductor 
limma package (version 3.4.0; https://bioconductor.
org/packages/release/bioc/html/limma.html) (29) with the 
thresholds of fold change >2 (upregulated) or <0.5 (down-
regulated) and false discovery rate <0.05.

Enrichment analysis. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways potentially involved in breast 
cancer initiation and progression were identified using the R 
Bioconductor clusterProfiler package (version 3.10) (30) with 
a threshold of P<0.05. Additionally, the associations between 
significantly enriched pathways and expression profile altera-
tions of the genes in these pathways were explored using the 
R Bioconductor enrichplot package (version 1.4; https://github.
com/GuangchuangYu/enrichplot). Gene Ontology (GO) 

enrichment analysis of differentially expressed genes in breast 
cancer was performed through the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID; http://david.
ncifcrf.gov/). The Biological Processes (BP) terms were 
obtained, and the final result was visualized by the enrichMap 
function in Cytoscape software.

Construction of disease‑specific network. The breast 
cancer‑specific network containing the interactions among 
the DEGs was constructed using the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) database 
(version 11.0; https://string-db.org). Scores between 0 and 1 
were assigned to the interaction pairs deposited in STRING 
according to their methods, such as bioinformatics prediction, 
high-throughput gene microarray and immunoprecipitation. In 
the present study, only interacting pairs with combined scores 
>0.4 were considered as reliable. Additionally, to highlight the 
network modules that represented stronger interactions among 
genes from the whole network, module analysis was applied to 
the breast cancer‑specific network via the enrichmentMap and 
MCODE plug-in for Cytoscape software (version 3.5.1) (31).

Evaluation of the association between hub genes and breast 
cancer prognosis. Prognosis is an important indicator to assess 
drug effectiveness and relations between gene expression and 
disease progression. In the present study, the Kaplan-Meier 
plotter database (www.kmplot.com), which contains the 
genome‑wide gene expression profiles of >5,000 breast cancer 
samples, was used to evaluate associations between hub genes 
and breast cancer prognosis. The samples were classified 
into two groups according to the upper quartile expression 
value of a specific gene, and overall survival (OS) differences 
between the high expression and the low expression group 
were explored using the log-rank test. P<0.05 was considered 
to indicate a statistically significant difference.

Cell culture, RNA extraction and reverse transcription‑quan‑
titative PCR (RT‑qPCR). The normal breast epithelial 
(MCF10A) and breast cancer (MDA-MB-231) cells used in 
the present study were purchased from the American Type 
Culture Collection. The cells were cultured at a density of 
2x104 cells/cm2 in 100-mm tissue culture dishes (Corning 
Inc.) with DMEM medium (Solarbio Science & Technology 
Co., Ltd.) containing 10% (v/v) FBS and 100 mg/ml 

Table I. Sample characteristics of the three gene expression 
datasets used in the present study.

 Characteristic
 -------------------------------------------------------------------
 Sample Tumor tissue, Breast normal
GEO ID size, n n (case) tissue, n (control)

GSE29431   66   54 12
GSE42568 121 104 17
GSE61304   62   58   4

GEO, Gene Expression Omnibus.
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penicillin‑streptomycin (all Gibco; Thermo Fisher Scientific, 
Inc.) at 37˚C in a humidified incubator with 5% CO2. All cells 
were passaged once after reaching confluence with 0.25% 
trypsin-EDTA solution (Sigma-Aldrich; Merck KGaA).

Total RNA was extracted from MCF10A and MDA-MB-231 
cells using TRIzol® reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol. A 
NanoDrop‑1000 spectrophotometer (Thermo Fisher Scientific, 
Inc.) was used to quantify RNA by measuring the optical 
density, and the purity was assessed by determining the 
OD260/OD280 ratio and samples with a ratio between 1.9 and 
2.0 were considered to be pure. The RNA samples were reverse 
transcribed to cDNA using SuperScript™ IV First-Strand 
Synthesis System (Invitrogen; Thermo Fisher Scientific, Inc.), 
with the temperature protocol of 25˚C for 10 min, 42˚C for 
50 min, 70˚C for 15 min, and 4˚C for cooling. The cDNA 
samples were diluted in diethyl pyrocarbonate-treated water at 
a ratio of 1:5. qPCR was then performed using a LightCycler 
480 SYBR Green I master kit (Roche Applied Science) for 
38 cycles of 95˚C for 30 sec, 58˚C for 50 sec, and 72˚C for 
1 min. β-actin was used as an endogenous control gene, and 
all primers used are listed in Table II. All samples were run in 
triplicate on the ABI 7900HT Real-Time PCR system (Applied 
Biosystems; Thermo Fisher Scientific, Inc.). Calculation 
of relative expression levels was performed using the 2-ΔΔq 
method (32).

Statistical analysis. The data for survival analysis was 
downloaded from The Cancer Genome Atlas (TCGA) 
dataset (www.cancergenome.nih.gov). The survival analysis 
and Kaplan-Meier curves plotting were conducted by using 
survival and survminer packages in R language. All data are 
expressed as the mean ± standard deviation unless otherwise 
indicated. There were five samples per group included in order 

to obtain the statistical results. Comparisons between multiple 
groups were evaluated using one-way ANOVA, followed by 
Tukey's honestly significant difference test in GraphPad Prism 
version 5.0 software (GraphPad Software, Inc.). P<0.05 was 
considered to indicate a statistically significant difference.

Results

DEGs. The expression value distributions before and after 
correcting the batch effect for the combined datasets are 
presented in Fig. 1A-D, respectively. The density plot of the 
gene expression distribution (Fig. 1A and C) indicated that 
the differences in expression value between breast cancer 
and normal tissue samples were magnified by batch effect 
correction. Additionally, the quantile-quantile (Q-Q) plots 
(Fig. 1B and D) revealed that the distance between dots and the 
normal distribution line became closer after the batch effect 
was removed. Therefore, the gene expression datasets after 
normalization should have been reliable for the subsequent 
analysis. Differential expression analysis identified a total of 
1,110 DEGs (335 upregulated and 775 downregulated) in breast 
cancer samples compared with normal tissue samples. The 
mean expression values of those genes in the control and tumor 
samples across the three datasets are shown in Table SI.

Significantly enriched KEGG pathways. As shown in Fig. 2A, 
22 KEGG pathways were enriched with the DEGs identified 
following the batch effect correction. The top five KEGG 
pathways included ‘focal adhesion’, ‘cAMP signaling pathway’, 
‘peroxisome proliferator-activated receptors (PPAR) signaling 
pathway’, ‘relaxin signaling pathway’, and ‘extracellular matrix 
(ECM)-receptor interaction’. The intersecting KEGG pathways 
were visualized according to overlapping gene sets. As shown 
in Fig. 2B, five KEGG pathways were connected by 10 genes, 

Table II. Primer sequences for quantitative PCR.

Gene Primer sequence (5'‑3') Product length, bp Temperature, ˚C

ACACB F: CAAGCCGATCACCAAGAGTAAA 79 59
 R: CCCTGAGTTATCAGAGGCTGG
ACADM F: ACAGGGGTTCAGACTGCTATT 240 58
 R: TCCTCCGTTGGTTATCCACAT
ACDC F: TGCTGGGAGCTGTTCTACTG 248 59
 R: TACTCCGGTTTCACCGATGTC
ACSS2 F: AAAGGAGCAACTACCAACATCTG 159 59
 R: GCTGAACTGACACACTTGGAC
PCK1 F: AAAACGGCCTGAACCTCTCG 98 60
 R: ACACAGCTCAGCGTTATTCTC
PLIN1 F: TGTGCAATGCCTATGAGAAGG 154 59
 R: AGGGCGGGGATCTTTTCCT
β-actin F: AGCGAGCATCCCCCAAAGTT 285 60
 R: GGGCACGAAGGCTCATCATT

ACACB, acetyl-CoA carboxylase β; ACADM, acyl-CoA dehydrogenase medium chain; ACDC, adiponectin, C1Q and collagen domain 
containing; ACSS2, acyl-CoA synthetase short chain family member 2; PCK1, phosphoenolpyruvate carboxykinase 1; PLIN1, perilipin 1; F, 
forward; R, reverse.
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including CD36, enoyl-CoA hydratase and 3-hydroxyacyl CoA 
dehydrogenase (EHHADH), acyl-CoA dehydrogenase medium 
chain (ACADM), malic enzyme 1 (ME1), phosphoenolpyruvate 
carboxykinase 1 (PCK1), fatty acid binding protein 4 (FABP4), 
perilipin 1 (PLIN1), acyl-CoA synthetase short chain family 
member 2 (ACSS2), lactate dehydrogenase B (LDHB) and 
acetyl-CoA carboxylase β (ACACB). These 10 genes were 
considered to be hub genes, and all of them were downregulated 
(shown as green nodes) in breast cancer samples. The core of 
the intersected KEGG pathways was the ‘PPAR signaling 
pathway’. Additionally, the majority of the genes contained in 
‘propanoate metabolism’ (9/10), ‘pyruvate metabolism’ (11/12) 
and ‘regulation of lipolysis in adipocytes’ (13/15) were down-
regulated (shown as green nodes) in breast cancer samples, 
whereas more upregulated (red nodes) genes were contained in 
the ‘ECM-receptor interaction pathway’ (7/19).

Gene Ontology (GO) is another important gene functions 
analysis method that could intuitively uncover biological 
processes, molecular functions and cellular component terms 
closely associated with a list of genes. A total of four GO term 

clusters were identified by GO enrichment analysis combined 
with crosstalk analysis. The clusters were mainly associated 
with biological process regulation, substance metabolism, cell 
cycle and response to stimulus (Fig. 2C).

Associations between hub gene expression and breast 
cancer OS. In the present study, genes shared by at least two 
pathways were considered to serve potential roles in breast 
cancer development and considered to be hub genes. The 
association between the expression levels of the10 genes 
and the survival rate of breast cancer was investigated by 
Kaplan-Meier survival analysis. The results indicated that 
increased expression levels of ACACB, ACADM, adiponectin, 
C1Q and collagen domain containing (ACDC), ACSS2, PCK1 
and PLIN1 were significantly associated with improved breast 
cancer prognosis (Fig. 3), which illustrates their potential 
as tumor suppressor genes. Tables SII and SIII illustrate the 
associations between these hub genes and common breast 
cancer clinicopathologic features, including age, sex, ethnicity 
and survival status in addition to Tumor-Node-Metastasis 

Figure 1. The density and QQ plots for evaluating the effect of the intergroup normalization method on overall expression (A) The density plot before batch 
effect removal. (B) The QQ plot before batch effect removal. (C) The density plot after batch effect removal. (D) The QQ plot after batch effect removal. N 
represented the gene numbers covered by gene microarray. The red line represented breast cancer samples, and the black line represents paracancer samples.
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(TNM) stage (33). RT-qPCR was performed to validate the 
expression levels of ACACB, ACADM, ACDC, ACSS2, PCK1 
and PLIN1 in breast cancer MDA-MB-231 and normal breast 
epithelial MCF10A cell lines. As shown in Fig. 4, the results 
revealed that the expression levels of the six hub genes were all 
downregulated in the MDA-MB-231 cells compared with in 
the MCF10A cells. Among them, the differences for ACACB, 
ACSS2, PCK1 and PLIN1 were all significant.

Subsequently, the prognosis values of the six hub genes 
were validated based on the TCGA-BRCA dataset (Fig. S1). 
In addition, Kaplan-Meier analysis for those six hub genes in 
triple-negative breast cancer (TNBC) samples indicated the 
same impact of genes ACACB, ACADM and ACSS2, whose 
increased expression significantly associated with worse 
TNBC prognosis, on TNBC prognosis (Fig. S2).

Breast cancer‑specific network. Among the 1,110 DEGs that 
were identified, a total of 4,937 interaction pairs were identi-
fied by the STRING database with a threshold of combined 
score >0.4. Additionally, module analysis was further applied 
to the whole network for network interpretability by using 

the MCODE plug-in in Cytoscape. As a result, a total of four 
modules were obtained by MCODE, which represented the 
sub-networks, as presented in Fig. 5 with green and red nodes 
representing downregulated and upregulated genes in breast 
cancer, respectively.

Discussion

Breast cancer is associated with alterations in a number 
of growth factors and hormone-regulated signaling path-
ways (34). Clinical data demonstrated that the breast 
epithelial cells in high estrogen concentration would 
increase the risk of breast cancer (35). The expression of 
vascular endothelial growth factor (VEGF) is enhanced 
under hypoxic conditions inside the tumor, and the neovas-
cular wall promotes the metastasis of tumor cells (36). 
Poor prognosis of different subtypes is the result of 
alterations in distinct signaling pathways or transcriptional 
programs (37). The luminal A subtype has the longest 
disease-free survival, due to the low mutation rate of TP53 
and sensitivity to endocrine therapy (3). The prognosis of 

Figure 2. Functional enrichment analysis of differentially expressed genes. (A) Significantly enriched KEGG pathways. Circle size and color indicate the 
gene number contained in a specific pathway and their significance, respectively. (B) Associations among KEGG pathways represented by their shared genes. 
Larger pathway node size indicates more genes contained in the pathway, and color gradient from green to red indicates downregulation to upregulation of the 
corresponding gene. (C) Crosstalk analysis of significantly enriched Gene Ontology terms. Two nodes are connected if there are any shared genes between 
them, and a thicker line represents more shared genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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the luminal B subtype is worse than that of the luminal A 
type, which may be associated with the positive expression 
of Her-2 receptor and the high expression of Ki67 (38). The 
poor prognosis of Her-2 subtype is due to the upregulation 
of epidermal growth factor receptor, which promotes the 
proliferation and metastasis of cancer cells (38). The high 
mutation rate of TP53 and overexpression of EGFR in 

TNBC (tri-negative breast cancer) subtype results in lower 
tumor differentiation and poorest prognosis (39). In the past 
decade, gene microarray and immunohistochemistry tech-
niques have been applied to explore the molecular typing 
and prognosis prediction of breast cancer. The 21-gene 
Oncotype (40), 70-gene MammaPrint signature (41) and 
76‑gene expression profile (42) have high ability to predict 

Figure 4. Expression levels of hub genes (ACACB, ACADM, ACDC, ACSS2, PCK1 and PLIN1) in normal and tumor cell lines were evaluated using RT-qPCR. 
The expression levels were measured and normalized to β-actin. The gene expression levels of MDA-MB-231 cells were compared with those of MCF10A 
cells. The data are presented as the mean ± SD, n=3. *P<0.05; **P<0.01, as indicated. ACACB, acetyl-CoA carboxylase β; ACADM, acyl-CoA dehydrogenase 
medium chain; ACDC, adiponectin, C1Q and collagen domain containing; ACSS2, acyl-CoA synthetase short chain family member 2; PCK1, phosphoenol-
pyruvate carboxykinase 1; PLIN1, perilipin 1; RT-qPCR, real-time-quantitative PCR.

Figure 3. Kaplan‑Meier survival curves of samples in the Kaplan‑Meier plotter database stratified by expression values of ACACB, ACADM, ACDC, ACSS2, 
PCK1 and PLIN1. HR, hazard ratio; ACACB, acetyl-CoA carboxylase β; ACADM, acyl-CoA dehydrogenase medium chain; ACDC, adiponectin, C1Q and 
collagen domain containing; ACSS2, acyl-CoA synthetase short chain family member 2; PCK1, phosphoenolpyruvate carboxykinase 1; PLIN1, perilipin 1.
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the prognosis of patients with breast cancer. Combined with 
traditional pathological types and clinical data they provide 
useful guidance for clinical treatment. Since currently the 
gene expression profiles that are available from different 
databases have their own limitations, such as samples from 
patients that were limited to one clinic or geographical 
region, or errors may occur between different platforms, 
research on prognostic genes for breast cancer is continuing 
in order to identify more accurate and widely applicable 
prognostic genes.

In the present study, the results of the analysis of breast 
cancer from 249 samples, including 216 tumor and 33 normal 
tissue samples, were described. The present study differed 
from previously reported gene expression profiles, and their 

data were presented from different microarray platforms, for 
example 48/70 genes in a study by Hartmann et al (41) were 
identified on the Affymetrix U133a array while 38/76 genes 
in a study by Wang et al (42) were identified on the Agilent 
array. The data from the three datasets included in the present 
study were all obtained from the same microarray platform 
(Affymetrix U133a array) and R bioconductor was used 
to eliminate the batch effect. KEGG pathway enrichment 
analysis of DEGs in breast cancer revealed that ‘focal adhe-
sion pathway’, ‘PPAR signaling pathway’, ‘ECM-receptor 
interaction’, ‘regulation of lipolysis in adipocytes’, ‘pyruvate 
metabolism’ and ‘propanoate metabolism pathway’ were 
significantly enriched. Focal adhesion kinase is a central 
regulator of focal adhesion, influencing cell proliferation and 

Figure 5. Module analysis of breast cancer‑specific network. (Breast cancer‑specific network modules obtained through MCODE analysis of the whole network, 
namely the subnetworks. Panels A, B, C and D represented the subnetworks respectively. Red and green nodes indicate upregulation and downregulation in 
breast cancer samples, respectively.
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migration (43,44). Focal adhesions serve as mechanical links 
to the ECM and signaling center of cell communication, and 
have been implicated in tumor invasion (45). The findings of 
the present study were consistent with research that suggests 
early tumor cell migration and invasion of neighboring tissues 
are mediated by focal adhesion signaling (46). PPARs are 
nuclear hormone receptors that are activated by fatty acids 
and their derivatives (47). The findings also indicated that 
the PPAR signaling pathway may be an important predictor 
of breast cancer response to neoadjuvant chemotherapy (48). 
Adipocytes are a major component of breast tissue. Obesity is 
associated with increased recurrence and reduced survival of 
breast cancer. Increasing evidence suggests that obesity leads 
to larger breast tumor size, high risk of distant metastasis and 
increased mortality (49,50). Breast tumor cells exposed to 
adipocyte-conditioned media or in coculture with adipocytes 
exhibit the ability to alter proliferation, migration and inva-
sion (51-53). Similar effects have also been observed in 3-D 
cultures and xenograft models (53,54). The enrichment anal-
ysis results provided genes that may be involved in lipolysis in 
adipocytes on tumor cells and may lead to the development of 
novel cancer control strategies.

A gene concept network was constructed and revealed 
that the five significant pathways, ‘PPAR signaling pathway’, 
‘ECM-receptor interaction’, ‘propanoate metabolism’, ‘pyru-
vate metabolism’, and ‘regulation of lipolysis in adipocytes’ 
identified from the KEGG analysis were linked by 10 
downregulated genes, including CD36, EHHADH, ACADM, 
ME1, PCK1, FABP4, PLIN1, ACSS2, LDHB and ACACB. 
Survival analysis demonstrated that the expression levels of 
ACACB, ACADM, ACDC, ACSS2, PCK1 and PLIN1 were 
significantly positively associated with the survival of patients 
with breast cancer. Notably, the low expression gene ACACB 
screened in the present study is also included in the 76-gene 
expression profile (42). ACC2, encoded by the ACACB gene, 
serves an important role in the oxidation of fatty acids (55). 
Low expression levels of ACACB indicate an increase in 
fatty acid oxidation (56). In a previous study that evaluated 
changes in expression of several selected genes, patients with 
high levels of ACACB had better prognosis following neoad-
juvant chemotherapy, and with the exception of ER-patients, 
ACACB adds independent prognostic value in multivariable 
models including all 24 genes in the 126 patients, as well as 
the ER+/HER2-patients (57). Inhibition of ACC2 reduces 
proliferation and de novo lipogenesis of tumor cells (58,59). 
In addition, inhibition of ACC2 rewires cancer metabolism 
and enables head and neck squamous cell carcinoma cells to 
survive inhibition of the Warburg effect by addition of cetux-
imab (60). The present analysis demonstrated that ACACB 
was downregulated in breast cancer and positively associated 
with survival time thus supported previous studies that inhibi-
tion of fatty acid synthesis may be a promising target to reduce 
drug resistance of tumor cells.

As presented in Fig. 2A, with the exception of various 
cancer-associated pathways, such as tyrosine metabolism, 
the Ras signaling pathway occurs multiple times. Ras is a 
small guanosine triphosphate-binding protein that serves an 
important role in signal transduction pathways that influence 
cellular proliferation, apoptosis, cytoskeletal organization 
and other important biological processes (61). Ras mutations 

lead to constitutive activation of the Ras signaling pathway in 
certain human cancer types (62). The majority of patients with 
colorectal cancer have codon 12 and 13 mutations of K-Ras, 
which occur in the early stage of the development of cancer (63). 
While Ras genes are not commonly mutated in human breast 
cancer, this signaling pathway can be activated by mutations 
within associated genes, including tyrosine kinase receptors, 
such as HER2, as well as kinases downstream of Ras, such 
as mitogen-activated protein kinase (MAPK) or extracellular 
regulated protein kinase (ERK) (64). Despite large genomic 
surveys such as The Cancer Genome Atlas demonstrating infre-
quent canonical mutations in this signaling pathway, several 
studies (65-67) support targeting the Ras/mitogen-activated 
protein kinase cell signaling pathway in breast cancer.

In the present study, by selecting samples and removing the 
batch effect of different datasets, pathway and biological target 
analysis was performed to obtain several candidate genes that 
may be involved in breast cancer progression and reoccur-
rence. Gene prognostic models can provide more accurate 
prognostic evaluation than clinicopathological indicators, and 
thus provide a more important reference value for the selec-
tion of individualized treatment options. However, since the 
dataset used did not provide information regarding the breast 
cancer types, the pathogenesis mechanism associated with the 
molecular characteristics of different cancer types requires 
further analysis.
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