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Abstract

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment
development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the
degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as
infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism
for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology
between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of
the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before
considering the potential synergy between the two conditions. In particular, the discussion will focus on
neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell
recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping
pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate
neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T.
gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible
interplay could influence treatment strategies.
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Background
Traumatic brain injury (TBI) is a leading cause of mor-
bidity and mortality worldwide, yet there have been no
successful phase III TBI clinical trials to date [1–3]. To
develop effective TBI interventions, it is imperative that
we understand the underlying mechanisms that drive

negative outcomes, as well as the factors that can modify
TBI pathophysiology [4, 5]. For example, neuroinflam-
mation is recognized as a key secondary injury mechan-
ism in TBI, and initial studies indicate that the presence
of concurrent immune stressors can alter the aftermath
of TBI [6–9]. However, despite the important implica-
tions of this phenomenon in understanding TBI hetero-
geneity and optimizing interventions, it remains an
understudied topic [10].
One possible mechanism that can contribute to neuro-

inflammation is an underlying infection. Toxoplasma
gondii is a parasite that infects approximately one-third

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: sandy.shultz@monash.edu
1Department of Neuroscience, Monash University, 6th Floor, The Alfred
Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia
2Department of Medicine, The University of Melbourne, Parkville, VIC,
Australia
Full list of author information is available at the end of the article

Baker et al. Journal of Neuroinflammation          (2020) 17:222 
https://doi.org/10.1186/s12974-020-01885-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-020-01885-3&domain=pdf
http://orcid.org/0000-0002-2525-8775
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sandy.shultz@monash.edu


of the world’s population [11]. In other words, many
people who sustain a TBI are likely already infected with
T. gondii at the time of injury. T. gondii has a tropism
for brain tissue in intermediate hosts such as rodents
and humans, and through the development of cysts,
chronic life-long infection ensues [11]. Notably, there is
significant overlap between the pathophysiology of T.
gondii and TBI, including the activation of similar neu-
roinflammatory pathways [12, 13]. Considering the
prevalence and pathophysiological similarities of TBI
and T. gondii, it is important to consider the potential
impact of T. gondii infection on TBI outcomes and ap-
propriate intervention strategies. However, to our know-
ledge, the effect of T. gondii on TBI outcomes has never
been studied. Therefore, this review will highlight the
clinical problems, neuroinflammatory pathways, and
functional consequences of TBI and T. gondii separately,
before discussing the potential synergistic effects of T.
gondii infection in individuals who have sustained a TBI.
We conclude by emphasizing the need for further
research into this relationship and provide suggestions
for future studies.

Traumatic brain injury
Clinical problem of TBI
TBI is a key contributor to the global burden of disease
[2, 14]. Reported incidence rates per country markedly
vary depending on case definition, and are influenced by
a lack of diagnosis, reporting, and medical attention be-
ing sought for mild TBI individuals [15–17]. Globally,
estimates of annual incidence range from 47.3 to 1322/
100,000 depending on region, with most estimates
throughout the Western world being placed around
250–350/100,000 [2, 18]. This equates to between 10
and 27 million new cases of TBI each year worldwide;
however, this is believed to be an underestimation [15].
Furthermore, since 1990, there has been an increase of
77% in the absolute number of disability-adjusted life-
years as a result of TBI [19]. This emphasizes not only
the lasting impact of a TBI but also the extent to which
this global health burden continues to grow. Addition-
ally, TBI is associated with the development of neuro-
logical and mental disorders such as post-traumatic
epilepsy (PTE) [20], major depressive disorder [21], and
schizophrenia [22], while also being a risk factor for neu-
rodegenerative diseases including Alzheimer’s disease
(AD) [23] and Parkinson’s disease [24].
Despite promising pre-clinical and phase II clinical tri-

als in TBI, to date, no phase III clinical trial has identi-
fied a therapy that improves TBI recovery [1, 3]. This
reflects not only the barrier posed by the heterogenous
nature of TBI pathophysiology and presentation but also
the juxtaposition of variability seen within preclinical
and clinical study designs. In a clinical setting, TBI varies

in injury mechanism and severity, as well as pre-injury
vulnerabilities such as age, sex, and genetic factors [4].
Pre-injury vulnerabilities, or even the presence of other
concurrent factors such as infection, may alter TBI
pathophysiology and outcomes [5, 10, 25–27]. On the
other hand, preclinical animal models, which ultimately
provide the foundation for clinical trials, are highly
homogenous as they typically utilize isolated TBI plat-
forms that often fail to incorporate the heterogeneity of
the clinical population [4]. This discrepancy demon-
strates the necessity to expeditiously study TBI patho-
physiology, the clinical factors that modify it, and
develop implementable intervention strategies.

TBI pathophysiology
Primary mechanisms
The neurological damage associated with TBI may result
from a range of pathophysiological mechanisms. ‘Pri-
mary injury’ is the result of direct mechanical forces,
most commonly resulting from falls, motor vehicle acci-
dents, assaults, and war zone injuries [2, 18, 28]. These
direct forces can lead to the rapid onset of largely irre-
versible mechanical disruptions to brain tissue. Such dis-
ruptions may include direct cell death, torn or stretched
axons, and damage to the blood-brain barrier (BBB), all
of which are considered to be hallmarks of TBI [29–31].
As a result of the mechanical insult, neurons can sus-

tain damage that leads to ionic flux and inappropriate
depolarization [32]. For example, neurons become
depolarized resulting in an influx of calcium to the pre-
synaptic cell, causing a large release of the excitatory
neurotransmitter glutamate, into the synaptic cleft [33].
This release has been shown through microdialysis stud-
ies in both humans and rodents to occur in a force-
dependent manner, within minutes of sustaining a TBI
[34–36]. Glutamate then acts on α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid and N-methyl-D-as-
partate receptors on the post-synaptic neuron, leading to
increased calcium entry [33]. Increased intracellular
calcium can further lead to intermediate early gene acti-
vation, disruption of mitochondrial production of adeno-
sine triphosphate (ATP), activation of proteases and
kinases, and increased production of reactive oxygen
species (ROS) [37]. Increased extracellular glutamate can
result in decreased expression of glutamate (GLT)-1 or
excitatory amino acid transporter-2 transporters on
astrocytes [38]. This can cause glutamate to remain in
the synaptic cleft resulting in excitotoxicity, which can
then lead to further cell death, neuronal injury, and
dysfunction of surviving neurons [33].

Secondary mechanisms
Within minutes to days after the primary insult, a myr-
iad of secondary pathological pathways begins. These
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include neuroinflammation, excitotoxicity, oxidative
stress, apoptotic cell death, and further BBB disrup-
tion, among others [12, 31, 33, 39, 40]. One of the
most common and influential processes to occur is
neuroinflammation [12, 41].
Damaged and dying cells release cellular debris includ-

ing alarmins such as ATP, ROS, and high-mobility group
box 1 (HMGB1) [12]. Alarmins are recognized by pat-
tern recognition receptors (PRRs) on glial and immune
cells, including toll-like receptors (TLRs) and purinergic
receptors [42]. For example, microglia, which act as the
primary resident immune cells in the central nervous
system (CNS), have been demonstrated to be activated
via TLRs (e.g., TLR4) in Sprague-Dawley rats following
fluid percussion injury [43]. Microglial activation leads
to expression of myeloid differentiation primary re-
sponse protein 88 (MyD88), nuclear factor κ-light-chain-
enhancer of activated B cells (NF-κB) activation, and
downstream cascades of immune signaling [44, 45]. This
includes release of pro-inflammatory cytokines and che-
mokines such as interleukin (IL)-1β, IL-6, IL-12, tumor
necrosis factor-α (TNFα), CC chemokine ligand (CCL)2,
CXC chemokine ligand (CXCL)8 and CXCL9, as well as
release of oxidative metabolites including nitric oxide
(NO) and ROS [12, 46, 47]. Moreover, both alarmins and
NF-κB activation have been shown to lead to increased
expression of the nucleotide-binding oligomerization
domain-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome in rodents, causing secretion of
the pro-inflammatory cytokines IL-1β and IL-18 [48, 49].
As the released inflammatory mediators bind receptors on
‘surveillant’ microglia and trigger their activation, a self-
propagating cycle begins, leading to tissue damage, neuro-
toxic effects, and dysregulated microglial activation [46,
50–52]. Furthermore, both experimental and clinical stud-
ies have demonstrated that microglia activation can persist
for months to years depending on the severity and
recurrence of TBI, meaning that tissue repair can be
chronically hindered [53–58]. It should be noted that,
depending on phenotype, microglia can also aid in phago-
cytosis and remyelination, as well as in the release of anti-
inflammatory mediators such as IL-10, transforming
growth factor-β and insulin-like growth factor-1; all of
which provide benefit following TBI [50, 59].
Astrocytes are also important in neuroinflammation.

Following TBI, astrocytes respond via reactive astroglio-
sis, a transformation that includes gene expression
changes and cell hypertrophy to establish a glial scar; the
latter of which is thought to be beneficial by isolating
the damaged tissue and preventing further cell loss [60,
61]. Similar to microglia, PRRs on astrocytes can be acti-
vated by alarmins such as HMGB1 [62]. For example,
activation of TLR4 can signal MyD88-dependent and
-independent pathways, and NF-κB activation [63].

Downstream release of IL-1β, IL-6, TNF-α, CCL5,
CXCL1, CXCL2, CXCL10, granulocyte-macrophage
colony-stimulating factor (GM-CSF), and NO may
henceforth occur as demonstrated by both preclinical
and clinical studies [60, 64–66]. These inflammatory me-
diators coupled with those released by microglia, such as
IL-1β, stimulate further cytokine secretion through NF-
κB-dependent mechanisms, and may therefore play a
role in excitotoxicity [67]. However, the level of reactive
astrogliosis is heterogenous and depends on the nature
and severity of the TBI [68].
Pro-inflammatory mediators can contribute to BBB per-

meability and breakdown, and facilitate the infiltration of
peripheral immune cells [31, 69, 70]. For example, IL-1β,
CXCL8 and CCL2 are key mediators in neutrophil and
monocyte/macrophage migration into the injured brain
parenchyma [71]. As such, it has been demonstrated with
a controlled cortical impact (CCI) that within 24 h of the
primary injury, levels of circulating neutrophils increase,
and these cells are the first wave of peripheral immune
cells to be found within the injury site [72]. Once in the
brain parenchyma, neutrophils can become activated by
inflammatory mediators and chemokines such as IL-1β,
TNFα, CXCL1, CXCL2, and CXCL8 [73]. Alternatively,
neutrophils may interact and become activated via cell-
cell contact with astrocytes, leading to increased expres-
sion of IL-1β, IL-6, TNFα, and CXCL2 [74]. Neutrophils
additionally release ROS which contributes to secondary
injury [75, 76], and can reciprocally activate microglia,
causing a synergistic activation cascade [73]. After this ini-
tial wave, murine studies have shown that macrophages
become the predominant infiltrating leukocyte and con-
tribute to the production of inflammatory cytokines such
as TNFα upon activation [77–79]. Macrophages and other
monocytes do, however, also have beneficial neurological
properties, such as removal of debris through phagocytosis
and assisting remyelination [59].
T cell infiltration into the injury site is facilitated by BBB

disruption and regulatory T cell depletion [79–81]. Once
at the injury site, T cells have been shown to become acti-
vated to produce T-helper 1 cytokines, such as TNFα and
IFNγ, in mice following CCI [82]. Furthermore, the release
of IFNγ signals the upregulation of major histocompatibil-
ity complex class II protein in microglia (priming the
microglia), the release of chemokines and oxidative
metabolites, and the further release of pro-inflammatory
cytokines [83–85]. However, it has been demonstrated
that T lymphopenia occurs after CCI in C57BL/6 mice,
potentially as a result of injury-related thymic atrophy and
deficits in T cell maturation [79]. These changes may be
coupled with alterations in other immune cell functions as
well as lymphoid organs, thereby characterizing peripheral
immunosuppression in the acute, sub-acute and even
chronic stages post-injury [79, 86].
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Functional consequences of TBI
Following a TBI, cognitive, motor, and emotional abnor-
malities have been demonstrated in both human and
murine studies; however, depending on the nature of the
TBI, these consequences may be transient or long-
lasting [87–91]. Neuroinflammation likely contributes to
these deficits, although more research is required to de-
termine the precise mechanisms [92–94]. For example,
NLRP3 inflammasome activation has been associated
with poor spatial memory in rodents, and elevated
serum levels of IL-1β and IL-18 are correlated with in-
creased cognitive impairment in humans [48, 95, 96].
TBI and the later development of neurofibrillary tangles
and amyloid-β plaque deposition has also been impli-
cated in the presentation of cognitive deficits in both
pre-clinical and clinical studies [97–100]. The mecha-
nisms underlying these cognitive impairments are not
fully understood; however, synaptic dysfunction as a
result of the amyloid-β and tau may be a mechanistic
link [101]. Post-injury neuroinflammation has also been
linked to motor deficits through association with periph-
eral cell recruitment including T cell infiltration and
microglia activation in murine models [80, 102]. In
addition, prolonged anxiety-like behavior as a result of
TBI has been reported in both rodents and humans [93,
103–105]. Moreover, increases in anxiety-like behavior
have been associated with imbalances of gamma-amino
butyric acid (GABA) and a loss of GABAergic interneu-
rons in the basolateral amygdala [106].
PTE is linked to neuroinflammation and evidence

suggests it may be the underlying mechanism of seizures
and epilepsy development [20, 107]. For example,
murine studies have demonstrated that IL-6, TNFα, and
HMGB1 have pro-ictogenic effects, and potentially act
through glutamatergic pathways to promote neuronal
hyperexcitability [107–111]. In addition, Il-1β may
modulate neuronal hyperexcitability through calcium,
glutamatergic, and GABAergic pathways, and the effect
of IL-1β on BBB breakdown and neutrophil recruitment
may promote epileptogenesis [112, 113]. TLR4 may also
play a role in seizure development as TLR4 mutant mice
have demonstrated seizure resistance [111].

Toxoplasma gondii
Clinical problem of T. gondii
Given that the immune system has evolved to combat
pathogens, it is unsurprising that infection, especially in
neuronal tissue, could affect TBI outcomes. The direct
interaction between infection and TBI would most likely
occur in response to common human infections that act
chronically and have a tropism for brain tissue. T. gondii
is the perfect pathogen in this regard. First discovered in
1908, T. gondii is a globally distributed single-celled
intracellular parasite that can infect most vertebrates,

including humans [114]. Infection often occurs via con-
taminated food and water, first leading to an acute infec-
tion that spreads around the body [11]. T. gondii then
differentiates into a slow growing encysting stage that
cannot be cleared by the immune system and resides in
a latent form in muscle and the CNS [11]. Prevalence of
T. gondii infection (based on immunoglobulin G anti-
bodies) considerably varies between age groups and geo-
graphical regions [115, 116]. Children often present with
lower rates of infection; however, estimates of seropreva-
lence in adults range between 5 and 25% in North
America, Western Europe, and East Asia, and upwards
of 20% elsewhere [115–126]. Moreover, countries such
as Brazil and Indonesia typically reported adult sero-
prevalence above 60% [115, 124, 127]. Historically, T.
gondii infections have been of great focus in pregnant
and immunocompromised populations due to the risk of
congenital toxoplasmosis and toxoplasmic encephalitis,
respectively [114]. Congenital toxoplasmosis occurs sec-
ondarily to maternal infection during or just prior to
pregnancy, and can result in a stillborn child, miscar-
riage, or potential visual or cognitive impairments for
the child [128]. Furthermore, in immunocompromised
individuals, toxoplasmic encephalitis can result from a
lack of lymphocyte recruitment to be able to control
parasite replication [129]. This condition is characterized
by severe neurological symptoms including seizures,
edema, and necrosis of brain tissue [130–132]. In im-
munocompetent individuals, the infection is typically
latent and presents asymptomatically [114]. However, it
should be noted that, although immunocompetent indi-
viduals appear asymptomatic, chronic infection has been
associated with subtle cognitive and behavioral changes
[133]. These observations have therefore led to a grow-
ing field of research in recent years investigating the
potential relationship between T. gondii infection and
neurological disorders [134, 135].
To date, no cure exists for T. gondii infections [136,

137]. This reflects not only the ability of T. gondii to
evade the immune system and establish a latent infection
but also the heterogeneity of T. gondii strains in the clin-
ical population [138]. Strains noticeably differ in viru-
lence, clinical outcomes, and prevalence between regions
[139, 140]. In North America and Europe, approximately
90% of reported samples can be classified into one of
three intercontinental clonal lineages (types I, II, and III)
which exhibit approximately 1–2% differences at the
nucleotide level [141, 142]. Although these lineages are
prevalent worldwide [142–144], regional clonal lineages
such as Africa 1 and Chinese 1 are also common in
Africa and Asia, respectively [145, 146]. Moreover, a
great deal of diversity has arisen in South America as a
result of atypical and recombinant strains, and as such
clonal lineage prevalence is low [140]. In humans, type II
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strains (e.g., typified by the isolates Prugniaud and
ME49) are strongly associated with infection irrespective
of clinical presentation; however, differences in virulence
have been suggested due to associations of type I and
type III strains with cerebral and pulmonary toxoplas-
mosis, respectively [139]. The vast diversity between
strains exemplifies the need to study T. gondii virulence
effectors, how clinical outcomes vary between strains,
and increase awareness of prevention strategies in
regions with high T. gondii seroprevalence.

T. gondii pathophysiology
Acute stage
T. gondii is an obligate intracellular parasite, meaning
that it must invade host cells to survive and proliferate
[11]. To move through tissue, T. gondii uses a unique

form of cellular locomotion called ‘gliding motility,’
where it then recognizes cognate host cells and initiates
a molecular program to invade [147]. Upon invasion, T.
gondii creates a vacuole around itself (i.e., a parasito-
phorous vacuole), thereby separating itself from the host
cell cytoplasm [147]. T. gondii has a complex life cycle
whereby sexual reproduction can only take place in Feli-
dae family members such as domestic cats (Fig. 1) [11].
From Felidae members, encysted forms of the parasite
known as oocysts are shed in fecal matter and can per-
sist in soil for more than a year [11, 148]. Furthermore,
oocysts are infectious to a wide variety of vertebrates,
including humans, and are transmitted when consuming
contaminated food and water sources [11, 114]. Upon
ingestion, oocysts release sporozoite forms which infect
intestinal tissue, differentiate into acute tachyzoite forms,

Fig. 1 Life cycle of T. gondii and routes to the human. a T. gondii sexually reproduces in cats where oocysts are shed in feces. b, c Once
sporulated, the oocysts become infectious and can be transmitted to rodents or birds via contaminated food or water sources. d In these hosts,
T. gondii bradyzoites develop in the brain, skeletal muscle and heart, among other tissues, which are transmitted back to the cat if consumed. e
Infection of a human can occur via consumption of meat containing bradyzoites or contaminated food, water, or contact with cat litter. Figure
created with BioRender.com
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and then spread throughout the body [11].. T. gondii can
therefore continue a pattern of invasion, replication and
egress within a range of cells, causing tissue damage and
toxoplasmosis [147]. Clinical symptoms of acute infec-
tion often present as mild flu-like symptoms in people
with mature and healthy immune systems, but always re-
sult in a chronic infection [149]. The beginning of this
chronic stage is characterized by the differentiation of
tachyzoites into slower growing bradyzoite forms which
develop a glycoprotein-rich wall around the vacuole
boundary while living within cells of muscles, organs,
and the CNS [150]. Infected vertebrates (e.g., rodents
and birds) may therefore contribute to the transmission
back to Felidae members; however, incidental infection,
such as in humans and livestock, commonly occurs.
T. gondii is a highly successful parasite due to its abil-

ity to manipulate host cells, skew the immune system,
suppress clearance, and even cause the hypermigration
of monocytes which can permit cellular dissemination
from the site of infection to the whole body [151–155].
T. gondii does this by secreting parasite proteins into the
host cell cytoplasm and nucleus, which interfere with
several cellular pathways [156–160]. Despite the efforts
of the immune system to defend the host, T. gondii mi-
grates to the relatively immune-privileged CNS. To
achieve this, it has been proposed that T. gondii crosses
the BBB via one, or a combination of, three mechanisms;
hijacking monocytes in a Trojan horse-like manner,
transcellular migration, and paracellular migration [161–
164]. Once in the brain parenchyma, murine models
have revealed that several TLRs recognize T. gondii
[165]. TLR2 and TLR4 have been linked to glycosylpho-
sphatidylinositol detection and TLR2 in particular is
considered essential for host resistance [166, 167]. More-
over, some evidence suggests that TLR2 regulates TNFα
and CCL2 production by macrophages and neutrophils,
respectively [167, 168]. TLR11 is a key T. gondii sensor
in rodents, and is able to recognize T. gondii profilin-like
protein within endolysosomes, thereby leading to the
recruitment of MyD88 and downstream initiation of
immune signaling cascades [44, 169, 170]. However, it is
important to note that TLR11 is a non-functional gene
in humans, and as such the mechanisms of T. gondii
detection by the human immune system are not fully
understood [165]. Nonetheless, in murine models,
MyD88 recruitment has been demonstrated to permit
production of IL-12 which aids host defence [171]. IL-12
is predominantly produced by non-infected dendritic
cells (DCs) during T. gondii infection [172], thereby
promoting T-helper 1 responses and subsequent upregu-
lation of IL-2, IL-10, TNFα, and IFNγ [173].
IFNγ is a major effector molecule that acts as a key

regulator in host resistance against T. gondii, and to
date, at least three IFNγ-mediated protective

mechanisms have been identified [165, 174]. IFNγ
enhances the ability of human macrophages to kill T.
gondii [175]. IFNγ also suppresses the growth of T.
gondii via degradation of tryptophan, through activation
of indoleamine 2,3-dioxygenase which converts trypto-
phan into N-formylkyurenine [176, 177]. As T. gondii is
a tryptophan auxotroph, cell starvation occurs. IFNγ also
leads to free radical production and oxidative stress as a
result [165].
The invasion of T. gondii in the brain additionally leads

to rapid expression of chemoattractants such as CCL5,
CXCL9, and CXCL10, by astrocytes and microglia [178].
These chemoattractants recruit CD8+ and CD4+ T cells
that produce IFNγ [179, 180]. Astrocytic expression of IL-
1β, IL-6, TNFα, and GM-CSF is also increased upon T.
gondii infection of the CNS [181]. Upregulation of numer-
ous other inflammatory cytokines including IL-2, IL-4, IL-
10, and IL-12 have been noted through rodent studies in
the CNS during acute T. gondii infection [182].

Chronic stage
Once in the CNS, tachyzoites differentiate into encysted
bradyzoites which are resistant to immune clearance,
resulting in life-long chronic infection [183]. These cysts
are predominantly found intracellularly in the grey mat-
ter, with T. gondii residing in cell processes [184, 185].
Like in tachyzoite stages, it is highly likely that brady-
zoites also manipulate their host cell, although this is far
less well understood [186, 187]. One remarkable aspect
during infection of the brain is that T. gondii seems to
also ‘inject’ parasite proteins into neurons that it does
not infect [184, 185]. While it is not understood what
role this has during infection, one possible result of this
could be a more widespread immunological modulation
of tissue, which could have significant consequences.
In the chronic stage of T. gondii infection, it has been

demonstrated that microglia populations remain in a
more ‘pro-inflammatory’ state [188]. This is coupled
with levels of numerous inflammatory mediators, such
as IL-6, TNFα, IFNγ, and GM-CSF remaining above
control levels despite showing a decrease from the acute
stage [188]. Furthermore, markers of T cell differenti-
ation and exhaustion are simultaneously expressed,
which indicates that IFNγ-mediated inflammatory
responses are chronically limited to potentially assist
parasite survival [188].
In addition to an inflammatory response, T. gondii in-

fection causes several neurochemical changes including
glutamate and dopamine dysregulation [189, 190]. Dur-
ing chronic infection with T. gondii, the astrocytic
glutamate transporter GLT-1 is reportedly reduced in
the forebrain over time, leading to increases in extracel-
lular glutamate and excitotoxicity [189]. Interestingly,
the T. gondii genome contains aromatic amino acid
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hydroxylase (AAH) genes (AAH1 and AAH2) that
encode the levodopa protein (precursor to dopamine),
suggesting direct modulation by the parasite [191]. How-
ever, the impact of T. gondii on global dopamine levels
remains controversial, with both increases and decreases
reported [192–196].
Ultimately, T. gondii infection leads to alterations in

brain structure and function [197]. Of importance, som-
atosensory regions have been noted to contain lesions,
and loss of fiber coherence and density [198]. Reductions
in dendritic complexity and length have also been
observed, as well as a loss of synaptic complexity [189,
196, 198]. Chronic T. gondii infection has further been
linked to microcirculatory dysfunction and reduced
angiogenesis in the brain [199], which may contribute to
neurodegenerative processes.

Functional consequences of T. gondii infection
As it has been shown and now well accepted that T. gon-
dii influences the mammalian brain and is associated
with some brain disorders [134], to appreciate whether
T. gondii could contribute to TBI, it is important that
we review what is already known about the effect this
parasite has on the brain. In 1979, it was discovered that
T. gondii infection in rodents caused changes in learning
[134]. Since then, murine models have provided insight
into the multitude of behavioral alterations that may
occur in response to this infection [200]. These include
changes in memory and learning, locomotion, anxiety,
depression-like behaviors, social behavior, and predator
aversion [134]. However, in humans, studies into T. gon-
dii infection-based changes are limited to epidemio-
logical and serological studies, and as such, are primarily
retrospective and associative [135, 201].
Memory and learning changes have received little at-

tention in the literature compared to other behavioral
modalities, and the murine studies that have been con-
ducted report inconsistent results [202, 203]. These incon-
sistencies may be attributed to differences in parasite
strain, cyst burden, behavioral paradigm, rodent species,
sex, and post-infection time of testing [204–207]. For ex-
ample, it has been demonstrated that female BALB/c mice
infected with the ME49 strain of T. gondii, but not the
Prugniaud strain, exhibit impaired spatial working mem-
ory at 2 months post-infection [205]. Overall though, the
limited literature points toward spatial learning, working
memory, and short-term memory being impaired in
murine models due to T. gondii infection [203–205, 208].
Similarly, there is mixed literature regarding changes

in anxiety and depression associated with T. gondii in-
fection and controversy exists as a result. Overall, most
published literature indicates that T. gondii infected ro-
dents have increased anxiety in both the acute and
chronic stages of infection [209–212]. One study,

however, found that infected rats displayed decreased
anxiety [213]. Associative clinical studies have linked T.
gondii infection to depression [214, 215]; however, only
some studies have shown T. gondii infection to induce
depression-like behavior in rodents [210, 216]. More-
over, Bay-Richter and Petersen [212] suggest that
depressive-like behavior is only affected in genetically
vulnerable T. gondii rodents. Taken together, post-
infection time of testing and gene-environment interac-
tions are important factors that influence the response
to infection, and these should be considered in study
design and analysis [212].
Social behavior and the link between T. gondii and

neuropsychiatric disorders have been of great interest
over the last several years. In particular, the association
between chronic T. gondii infection and schizophrenia
has been growing in the literature [217, 218]. Sociability
with novel mice is impaired in mice chronically infected
with T. gondii, which may reflect this potential link
between T. gondii and schizophrenia [211].
There is also mixed evidence suggesting an association

between chronic T. gondii infection and neurological
conditions such as epilepsy and AD. A previous compre-
hensive systems analysis found that T. gondii infection
modified pathways involved in epilepsy and neurodegen-
erative diseases [219], and a recent meta-analysis con-
cluded that T. gondii infection is a risk factor for AD
[220]. There is also preclinical evidence suggesting that
T. gondii infection promotes the development of epilepsy
and AD in rodents [208, 221, 222]. On the other hand, a
case-controlled study involving 99 epilepsy patients and
99 patients without epilepsy found no association
between T. gondii infection and epilepsy [223]. It has
been noted that both hyperphosphorylated tau as well as
amyloid-β plaques (i.e., pathologies implicated in
epilepsy and AD [224]) can be induced in murine
models following chronic T. gondii infection [221]. In
contrast, phagocytosis of amyloid-β has also been dem-
onstrated to be enhanced in chronic T. gondii infection,
indicating a modulatory role of recruited immune cells
[225]. These differing conclusions may again be due to
differences in the murine models and human studies, as
well as the post-infection time of analysis. However,
these conflicting results highlight the need to expand the
field of T. gondii research, as well as implement multiple
models or endpoints into study designs.

The pathophysiological links between TBI and T.
gondii
Given the overlapping neuroinflammatory processes of
TBI and T. gondii and the known effects that chronic
infection can have on the function of the brain (Fig. 2),
it is possible that an individual who sustains a TBI while
chronically infected with T. gondii will present with
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Fig. 2 (See legend on next page.)
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exacerbated neuroinflammation. Also, the large indiscrimin-
ate release of glutamate after TBI, coupled with the increased
extracellular glutamate in chronic T. gondii infection, could
result in further excitotoxicity and downstream inflammation
and phosphorylation of tau [189, 226, 227].
Subclinical neuroinflammation that occurs in a

chronic T. gondii infection could be exacerbated by a
TBI due to an increased population of activated micro-
glia and astrocytes. Similar to increases in astrogliosis
and activated microglial populations following repeated
mild TBIs [228], it is possible a TBI sustained during a
chronic T. gondii infection may act as a ‘second hit’
given that T. gondii can elicit a ‘pro-inflammatory’
microglial population [188]. In other words, after the
insult, primed microglia could excessively produce pro-
inflammatory cytokines such as IL-1β, IL-6, IL-12,
TNFα, and IFNγ [229], and additional ‘surveillant’
microglia and astrocytes may become activated to
produce additional inflammatory mediators. These
cascades would result in a greater proportion of astro-
gliosis and activated microglia compared to TBI individ-
uals without T. gondii. Moreover, the proposed excessive
inflammatory mediators secreted acutely after TBI may
activate the sympathetic nervous system (SNS) and
hypothalamic-pituitary-adrenal (HPA) axis, resulting in
an exacerbated systemic inflammatory response [230,
231]. Negative feedback via the SNS and HPA axis could
therefore be triggered, leading to increased peripheral
immune cell and lymphoid organ dysfunction, and more
pronounced immunosuppression compared to TBI indi-
viduals without infection [232]. As immunosuppression
can result from TBI [79], it is also plausible that individ-
uals may exhibit symptoms of toxoplasmic encephalitis
given that control of chronic T. gondii infection requires
continual immune cell infiltration [129, 233]. In other
words, individuals may be vulnerable to tachyzoite
proliferation and subsequent increased neuroinflamma-
tory sequelae sub-acutely or chronically post-injury. An

individual may, for example, present with increased
necrotic cell death and lesional volume due to increased
inflammatory-related cell damage. This could have fur-
ther long-term consequences of exacerbated functional
deficits.
With regards to glutamate and excitotoxicity, murine

studies have also suggested a T. gondii-induced reduc-
tion of astrocytic GLT-1, which is likely to exacerbate
TBI-induced excitotoxic effects if a chronic infection
were to precede a TBI [33, 189]. This could further dys-
regulate GLT-1 post-TBI, thereby contributing to in-
creased excitotoxicity and neuronal damage or death
[234]. The temporal profile of elevated glutamate may
additionally be altered if the insults occur together, given
that in humans, severe TBI alone can result in elevated
glutamate that can persist for days or weeks in some
brain structures [235, 236].
The changes to the brain’s structure and function, includ-

ing alterations to dendrites, synapses, and microvasculature
as a result of chronic T. gondii [197], together with the
widespread injury to axons, neurons, and cerebrovascula-
ture induced by the mechanical insult of the TBI may cause
an increased lesion volume if the conditions occur concur-
rently [237]. The increased level of ROS, NO, and oxidative
stress as a result of TBI, compounded with increased NO
in chronic T. gondii infection, may additionally trigger pro-
fuse neuronal death [238, 239]. As ROS facilitates BBB per-
meability and breakdown [69, 240], excessive ROS in
combination with increased pro-inflammatory cytokines
could escalate BBB breakdown and peripheral cell recruit-
ment, dysregulate ionic flux across the barrier, and increase
lesion volume [240, 241]. Furthermore, as amyloid-β accu-
mulation and hyperphosphorylated tau have been impli-
cated in both T. gondii and TBI separately [221, 242], when
the conditions occur simultaneously, an amplification of
these products could occur, further exacerbating oxidative
stress and associated damage, and accelerating neurodegen-
erative changes [243, 244].

(See figure on previous page.)
Fig. 2 Neuroimmunological processes of chronic T. gondii infection and TBI, including the hypothesized synergy between conditions. a Chronic T.
gondii brain. After migration into brain parenchyma, T. gondii profilin is detected by non-infected dendritic cells. This leads to production of IL-12
which activates lymphocytes to secrete IFNγ mediating host resistance. Infected and IFNγ-primed dendritic cells prime T cells and trigger
production of IFNγ. IFNγ then activates astrocytes, leading to secretion of pro-inflammatory cytokines such as IL-1β, IL-6, and GM-CSF. GM-CSF
can prime microglia, leading to the production of TNF-α, IL-6, and ROS. IFNγ and TNFα further activate macrophages, leading to secretion of pro-
inflammatory cytokines and ROS, thereby further inhibiting T. gondii replication in macrophages. However, T. gondii preferentially infects neurons,
and once inside, bradyzoites develop to avoid clearance. b TBI. Immediately following injury, damaged pericytes and parenchyma release
alarmins such as ATP and ROS. These signaling molecules activate microglia and astrocytes to promote release of inflammatory cytokines and
ROS. Leukocyte recruitment to the injury site begins with neutrophil infiltration, followed by macrophages and T cells. In response to cellular
debris, T cells and macrophages produce additional pro-inflammatory cytokines. c Chronic T. gondii + TBI Brain. If an individual harboring a
chronic T. gondii infection were to sustain a TBI, the neuroinflammatory profile may be exacerbated. A greater population of ‘pro-inflammatory’
and ‘anti-inflammatory’ microglia, as well as activated astrocytes, may be present not only at the onset of injury but also post-TBI. Increased
populations of these cells may result in an increase of the relative abundance of inflammatory mediators post-TBI. Increased numbers of activated
neutrophils, T cell, and macrophages may additionally be present, with the potential for these cells to further produce inflammatory mediators.
Additionally, hyperphosphorylated tau and amyloid-β may accumulate more readily, potentially accelerating the neurodegenerative process.
Figure created with BioRender.com
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In terms of behavioral outcomes, as mentioned previ-
ously, T. gondii infection alone has been shown to in-
duce subtle deficits in cognitive functioning, motor
functioning, and social behavior [134, 211]. Adding to
this, T. gondii infection has been associated with in-
creased anxiety and depression [211, 212]. Coupled with
a TBI, which is causal to similar impairments, an exacer-
bation of deficits in functional outcomes could occur.
For example, given the links between T. gondii and TBI
with epilepsy [20, 245], it is possible that epileptogenesis
could occur more readily as a result of exacerbated IL-
1β production, glutamatergic and GABAergic pathways.
Moreover, T. gondii infection could lead to temporal
changes in deficits that occur with TBI, such that deficits
occur over a long-term scale rather than transiently.
This would mean worse functional outcomes after TBI
in individuals chronically infected with T. gondii com-
pared to those without infection, and supplementary re-
habilitation may be necessary. Additionally, the possible
cumulative effect may result in lifelong functional defi-
cits as a result of increased structural damage. Together,
T. gondii and TBI may also accelerate neurodegeneration
given that both are independently implicated in the pro-
duction of neuroinflammation, hyperphosphorylated tau
and amyloid-β plaques, as well as alterations to gluta-
matergic and GABAergic pathways [106, 189, 221, 242].
Therefore, individuals may be at an increased risk of
developing chronic neurological conditions such as PTE
and AD, among others [20, 23, 208].
The potential for synergism between T. gondii and

TBI is further complicated by factors such as biological
sex and age, as both are known to modify neuroinflam-
matory and recovery pathways. For example, murine
studies have demonstrated a divergent response up to 7
days post-injury, with more robust microglial activation,
astrogliosis, and cell loss in young adult males compared
to young adult females after a moderate to severe CCI
[246, 247]. Therefore, when coupled with a chronic T.
gondii infection, young adult males that have sustained a
TBI may have worse outcomes compared to their female
counterparts. Though, it should be noted that
although preclinical studies often report better out-
comes in females, the findings are mixed in human
studies [248, 249]. Regarding the impact of age, pre-
clinical studies show that aged rodents have exacer-
bated microglial activation and pro-inflammatory
cytokines coupled with increased functional deficits
post-injury compared to young-adult rodents [250–
252]. Given that T. gondii seroprevalence increases
with age, elderly individuals may be at an increased
risk of experiencing the two conditions concurrently
and may experience worse outcomes post-injury
compared to younger TBI individuals with chronic T.
gondii infection [120].

Future directions
This review has highlighted numerous areas of patho-
logical overlap between T. gondii and TBI, which in the-
ory could exacerbate the functional consequences of
these conditions. With that said, to the best of our
knowledge, no literature examining the overlap between
T. gondii and TBI exists, and a great deal of future re-
search is still required. First and foremost, studies must
be done to comprehensively characterize if and how T.
gondii infection modifies the aftermath of TBI. Animal
models will be invaluable to assist in characterizing the
hypothesized synergism between T. gondii and TBI, and
validated rodent models of TBI and T. gondii infection
exist already [4, 134, 253]. Animal models additionally
allow for highly controlled study designs to assist initial
delineation of mechanisms for a given sex or age. Large
studies of clinical TBI populations should also be con-
ducted in parallel to complement preclinical data. For
example, T. gondii infection could be screened when
TBI patients present to Emergency Departments, thus
allowing for analyses of pathophysiological and outcome
differences between TBI patients with and without T.
gondii. Indeed, it is still not known how many latent T.
gondii parasites are found in any tissue type in human
let alone the brain. Current tests can only determine ex-
posure by immunoglobulin G antibody response and are
not informative about where latent forms reside in the
human body. This is an important consideration and
something that needs to be determined as we would
only expect synergy of T. gondii and TBI if there were
sufficient levels of parasites in the brain to exacerbate
inflammation. Taken together, these studies are impera-
tive in our understanding of how TBI and T. gondii
interact, and provide a foundation to develop and
optimize appropriate treatments for TBI patients with
and without T. gondii to improve outcomes.
There are several existing drug candidates that could

target overlapping mechanisms in T. gondii and TBI to
minimize secondary injury. For example, the NLRP3 in-
hibitor MCC950, which has been demonstrated in several
preclinical TBI studies to decrease neuroinflammation
and improve cognitive and motor deficits, may prove effi-
cacious when the conditions appear concomitantly [48,
49, 254]. MCC950 has additionally been demonstrated to
decrease IL-1β secretion upon monocyte infection with T.
gondii [255]; however, there is an absence of research per-
taining to this inhibitor in in vivo chronic infection
models. The IL-1 receptor antagonist, Anakinra, is an-
other potential drug intervention in this context, and has
already demonstrated safety and tolerability in human TBI
trials [256]. Experimental studies have reported that Ana-
kinra is beneficial in mice with a combined TBI and tibial
fracture [257]. This injury combination results in exacer-
bated neuroinflammation compared to an isolated TBI
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[258], and may bear similarities to what would occur in a
combined TBI and T. gondii setting.
The α2-adrenergic agonist Guanabenz may be another

suitable drug candidate in the context of TBI combined
with T. gondii, given its ability to downregulate inflam-
matory responses via elevation of eukaryotic initiation
factor 2 alpha subunit (eIF2α) phosphorylation [259,
260]. Moreover, Guanabenz has been shown to be effect-
ive in reducing inflammation and cyst burden during the
chronic stage of T. gondii [259, 261], as well as reduce
endoplasmic reticulum (ER) stress and hence reduce
neuronal loss post-TBI [262, 263]. Guanabenz may also
be beneficial by decreasing sympathetic hyperactivity
[264]. The eIF2α dephosphorylation inhibitor, Salubrinal,
has additionally shown benefit in both T. gondii and TBI
studies independently [265, 266]. In chronic T. gondii in-
fection, Salubrinal has been demonstrated to inhibit the
reactivation of bradyzoites [265]; and through TBI stud-
ies, it was established to suppress ER stress, as well as
autophagy and apoptosis pathways, thereby reducing
morphological and functional deficits post-injury [266].
Though Salubrinal does not target the overlapping neu-
roinflammatory pathways directly, it may still prove
beneficial in reducing cell death acutely after injury, and
bradyzoite reactivation if immunosuppression were to
occur.
However, it is important to consider the possibility

that these treatments may prove detrimental in those
with a T. gondii infection, given that certain inflamma-
tory processes are also necessary to control parasite rep-
lication. In other words, if an individual with a chronic
T. gondii infection were to receive a neuroinflammatory-
based drug candidate post-TBI, T. gondii tachyzoite
replication may reactivate, resulting in uncontrollable
parasite proliferation, exacerbated cell death, and clinical
symptoms of toxoplasmosis. This therefore would have
the opposite effect to what was intended. Hence, it
would be beneficial to additionally investigate neuroin-
flammatory drug candidates with standard treatment
strategies for reactivated toxoplasmosis, such as
pyrimethamine-sulfadiazine therapy [267]. This particu-
larly highlights the importance of future research investi-
gating TBI coupled with T. gondii infection, in both the
preclinical and clinical setting.
It would also be of interest to examine the incidence

of TBI in individuals both with and without a pre-
existing T. gondii infection. With growing evidence that
T. gondii infection in and of itself may result in subtle
behavioral abnormalities, it could be the case that these
behaviors result in either increased or decreased risk of
sustaining a future TBI. For example, T. gondii infection
has been demonstrated to increase the risk of having a
traffic accident [268]. As motor accidents are a common
cause of TBI, these adults may consequently be at a

higher risk of sustaining a TBI [18]. T. gondii seroposi-
tivity has also been associated with increased aggression
and impulsivity in healthy adults [269]. These adults
may engage in more risk-taking behavior than T. gondii
seronegative individuals and additionally be at an in-
creased risk of sustaining a TBI. Furthermore, this would
align with a previous study demonstrating individuals
with intermittent explosive disorder (which is character-
ized by impulsive aggression) were more likely to have a
history of mild TBI [270].
As T. gondii seroprevalence increases with age, and

those above 75 years of age account for a significant pro-
portion of TBI-related hospitalizations and deaths, it
would also be important to consider the incidence of
TBI individuals with or without infection for this age
group [120, 271]. Importantly, as aging is associated with
immune system dysregulation as well as increased levels
of basal inflammation, future studies investigating the
effect of age on the hypothesized synergism of chronic
T. gondii infection with TBI are essential [272].
Although the focus of this paper has been in the con-

text of someone with chronic T. gondii experiencing a
TBI, it should also be considered that a history of TBI
may predispose individuals to worse outcomes upon a
later T. gondii infection. For example, TBI can increase
the proportion of activated microglia and neuroinflam-
mation chronically after post-injury [55]. T. gondii would
therefore be met upon migration to the brain paren-
chyma with a more robust neuroinflammatory response,
potentially leading to excessive cell death. Moreover, if
immunosuppression were to result from a TBI [79], and
an individual were to be later infected with T. gondii,
uncontrolled proliferation of tachyzoites may occur in
enterocytes and once migrated into the brain paren-
chyma, exacerbated activation of apoptotic pathways
may occur due to cell stress via tachyzoite proliferation,
and necrotic tissue may result [273].
More broadly, it would also be of significance to deter-

mine whether peripheral parasitic infections, such as
with enteric parasites, can alter TBI outcomes. Much
like with a chronic T. gondii infection, a significant pro-
portion of the clinical TBI population would be likely to
encounter an intestinal parasite at some point either be-
fore or after injury. Amplified microglial activation, pro-
inflammatory mediators, and functional deficits have
previously been demonstrated through peripheral lipo-
polysaccharide challenge post-TBI [6, 274–276]. Add-
itionally, as peripheral immunosuppression and brain-
gut axis dysregulation can eventuate in the aftermath of
a TBI, increased susceptibility to peripheral infection
and increased mortality rate can occur [274, 276, 277].
Therefore, it is reasonable to predict a similar pattern of
exacerbation would occur as a result of peripheral para-
sitic immunological stressors, among other types of
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peripheral infections. However, to date, this has been an
understudied topic, and this field of research requires
greater attention in future studies.
By the same token, it is important to consider how

other common neurologically involved parasitic infec-
tions may alter TBI pathophysiology and outcomes. For
example, Plasmodium falciparum has been attributed to
upward of half a million deaths annually, and can result
in cerebral malaria [278, 279]. Cytoadherence of parasit-
ized erythrocytes to the endothelium can initiate inflam-
matory pathways and may contribute to BBB disruption
[279]. Therefore, coupled with the BBB alterations that
are commonplace post-TBI, an exacerbated pro-
inflammatory response may occur alongside excessive
neurovascular damage and increased edema. As cerebral
malaria is a risk factor for epilepsy, it would also be of
importance to investigate whether a Plasmodium infec-
tion paired with a TBI could increase the incidence of
PTE [280, 281]. Additionally, members of the Trypano-
somatidae family warrant investigation as potential mod-
ifiers of TBI outcomes, particularly given that human
African trypanosomiasis presents with a late meningoen-
cephalitic stage [282]. African trypanosomes are capable
of crossing the BBB into the brain parenchyma and in-
creased expression of pro-inflammatory mediators, such
as TNFα, IFNγ, and CXCL10, is believed to assist para-
sitic invasion of the CNS [283, 284]. However, the
signaling pathways involved have not been extensively
studied. As circadian rhythm disturbances are commonly
reported post-TBI, another intriguing prospect for inter-
play between African trypanosomes and TBI would be
in regard to circadian rhythm alterations given that Afri-
can trypanosomes are notoriously known to reverse
sleep cycles [282, 285]. Chagas disease, which is also
known as American trypanosomiasis, is common in
Latin American stroke patients and can present with
highly varied neurological manifestations [286, 287].
However, as cardiac and digestive tissues are predomin-
antly infected, with cardiomyopathy being the main clin-
ical feature in the chronic stage, neuroinflammatory
events have not been well characterized for this disease
and the capacity to speculate about a potential overlap
with TBI pathophysiology is limited [288]. Ultimately,
the high prevalence and unique neuropathology of a T.
gondii infection, coupled with the shear lack of etio-
logical knowledge surrounding cerebral complications of
malaria and trypanosomiasis, further solidifies T. gondii
as the prime candidate to begin investigations between
parasitic infection and TBI.

Conclusions
In closing, TBI is a key contributor to the global burden of
disease but despite promising preclinical trials, to date no
effective treatments exist. This reflects the heterogeneity

of TBI pathophysiology and presentation, such as the
presence of infection. T. gondii chronically infects approxi-
mately one-third of the world’s population, which equates
to a significant proportion of individuals who sustain a
TBI being chronically infected with T. gondii at the time
of insult. As there are a myriad of neuroinflammatory
processes that are common to both conditions, exacer-
bated neuroinflammation, amplified functional deficits,
and accelerated neurodegenerative processes may occur in
TBI individuals who are confirmed with chronic T. gondii
infection. The interplay between T. gondii and TBI
however remains speculative and as such, further investi-
gations should be conducted to assist TBI treatment
development and future clinical practice.
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