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Somatic driver mutation prevalence in 1844
prostate cancers identifies ZNRF3 loss as a
predictor of metastatic relapse

Michael Fraser'23® Julie Livingstone 4567 Jeffrey L. Wrana 89 Antonio Finelli"210,
Housheng Hansen He'®™ Theodorus van der Kwast® 1213, Alexandre R. Zlotta28°2,
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Driver gene mutations that are more prevalent in metastatic, castration-resistant prostate
cancer (mCRPC) than localized disease represent candidate prognostic biomarkers. We
analyze 1,844 localized (1,289) or mCRPC (555) tumors and quantify the prevalence of
113 somatic driver single nucleotide variants (SNVs), copy number aberrations (CNAs), and
structural variants (SVs) in each state. One-third are significantly more prevalent in mCRPC
than expected while a quarter are less prevalent. Mutations in AR and its enhancer are more
prevalent in mCRPC, as are those in TP53, MYC, ZNRF3 and PRKDC. ZNRF3 loss is associated
with decreased ZNRF3 mRNA abundance, WNT, cell cycle & PRC1/2 activity, and genomic
instability. ZNRF3 loss, RNA downregulation and hypermethylation are prognostic of
metastasis and overall survival, independent of clinical and pathologic indices. These data
demonstrate a strategy for identifying biomarkers of localized cancer aggression, with ZNRF3
loss as a predictor of metastasis in prostate cancer.
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hile the vast majority of prostate cancers are organ-

confined at diagnosis!, a significant proportion of

these tumors relapse following surgery or radiation
therapy®3. This necessitates salvage therapy to prevent or limit
the development of distant metastases®. For example, up to 20%
of men with intermediate-grade prostate cancer will experience
biochemical relapse within three years of definitive local
therapy>®, which portends an aggressive clinical course. There is
therefore a clear need to improve on current risk-stratification
guidelines, which rely on three clinical prognostic factors (i.e.
Gleason/ISUP grade, pre-treatment serum concentration of
prostate-specific antigen (PSA), and clinical T category).

Many somatic mutations have been proposed to predict relapse
of localized prostate cancer’-!4, However, the majority of these
studies focus on weak surrogates of disease-specific mortality (e.g.
biochemical relapse; BCR). Moreover, while genome-wide ana-
lysis offers an unbiased approach to biomarker discovery, dis-
covering, characterizing, and validating these biomarkers is
limited by the high false discovery rate that results from simul-
taneous testing of multiple mutations for association with clinical
outcome. Mutations associated with the lethal disease are evolu-
tionarily selected for localized tumors!®. This suggests that
mutations that are highly prevalent in lethal metastatic,
castration-resistant prostate cancer (nCRPC) but rare in loca-
lized disease may be prognostic biomarkers that reflect the ele-
vated risk of occult metastatic disease. While there are some data
comparing the prevalence of driver mutation prevalence in
localized disease vs. mCRPC!%17, a comprehensive analysis of the
clinical impact of this differential is lacking.

To address these gaps, we quantify the prevalence of 113
mutation types in 72 established prostate cancer driver genes or
recurrently mutated genomic regions”-18 in 1844 patients with
either localized prostate cancer or mCRPC. We identify the dif-
ferential prevalence of seventy-three established driver mutations,
including mutations in the androgen receptor and its enhancer
region. Amongst these differentially prevalent driver mutations,
twenty-four are present in at least 5% of localized cancers and
four are significantly associated with metastatic relapse of loca-
lized disease, including genomic gains in MYC and CCNDI. In
addition, genomic loss of the WNT pathway inhibitor ZNRF3 is
associated with WNT pathway activity and predicts biochemical
and metastatic relapse and overall survival in localized prostate
cancer. These results demonstrate a method of identifying can-
didate prognostic genomic biomarkers by comparing primary
and metastatic disease and establish ZNRF3 loss as a predictor of
aggressive localized prostate cancer.

Results

Molecular drivers of localized and metastatic prostate cancer.
We collected somatic SNV, CNA, and SV calls from eleven DNA
sequencing studies of prostate cancer comprising 1844 patients
(1289 localized, 555 metastatic; Fig. S1 and S2 and Supplementary
Data 1)7-11-1>18-22 We curated a list of 113 mutation types—31
CNAs, 43 coding SNVs, 6 non-coding SNVs and 33 SVs—from
those identified as either putative drivers or recurrently mutated
in two large whole-genome sequencing studies of prostate
cancer’18. These encompassed 72 individual genes or genomic
loci (Supplementary Data 2).

The most common mutation in localized prostate cancers was
loss of NKX3-1, in 644/1279 cases (50.4%; Fig. 1 and
Supplementary Data 3). Other mutations present in at least
20% of localized cancers were ERG SVs (78/201 cases; 38.8%),
PTEN SVs (45/201 cases; 22.4%), MYC gains (267/1279 cases;
20.9%), and CDHI losses (256/1279 cases; 20.0%). The most
common mutation in mCRPC was gain of the androgen receptor

(AR), which occurred in 395/555 cases (71.2%; Fig. 1 and
Supplementary Data 3). Consistent with the higher rate of
mutation reported in mCRPC relative to localized diseasel®, 25
genes were mutated in at least 20% of mCRPC cases, compared
with only 4 in localized prostate cancer (Fig. 1 and Supplementary
Data 3).

The proportion of localized prostate cancer and mCRPC cases
harboring each driver mutation is shown in Fig. 2A. To assess
which mutations are more prevalent in each disease state, we first
evaluated the difference in these proportions (‘observed A
proportion’). Because of the differences in mutational burden
between localized disease and mCRPC!322, we also derived an
expected A proportion based on 100,000 samples of the binomial
distribution, per driver gene mutation, per sample, weighted by
mutational burden and gene size, in each tumor sample (Fig. 2B;
see “Methods”). Finally, we computed the difference between
observed A proportion and expected A proportion, yielding an
adjusted A proportion which indicates whether a driver mutation
is prevalent in mCRPC more than expected (adjusted A
proportion > 0) or less than expected (adjusted A proportion <
0), based on background global mutation burden.

Overall, 37.2% of driver gene mutations (42/113) were
significantly more prevalent than expected in mCRPC (g <0.05,
adjusted Fisher’s Exact test; Fig. 2C and Supplementary
Data 3)21:23. By comparison, 27.4% (31/113) were significantly
less prevalent. Driver mutations more prevalent in mCRPC may
either provide a selective advantage to metastasis when localized or
may result from adaptation to metastatic niches and response to
therapy. The largest adjusted A proportion was for genomic gain of
the AR locus (gene body or enhancer), which was present in 395/
555 (71.2%, 95% CI: 67.4-74.9) mCRPCs but only 2/1279 (0.16%;
95% CI: 0-0.37) localized cancers (adjusted A proportion = 0.609,
95% CI: 0.587-0.632, ¢ =2.35 x 107>, adjusted Fisher’s Exact test;
Fig. 2C). SNVs in AR were less common overall and were
not observed in localized disease (76/555 vs. 0/1204; adjusted
A proportion = 0.128, 95% CL 0.113-0.144, g=2.35x1077>,
adjusted Fisher’s Exact test). CNAs in BRCA2 were frequently
observed and significantly more prevalent in mCRPC than
expected (219/555 vs. 72/1279; adjusted A proportion = 0.232,
95% CI: 0.212-0.251, g = 2.35 x 107>, adjusted Fisher’s Exact test),
consistent with reports showing that germline and somatic
aberrations in BRCA2 are more prevalent in mCRPC than
localized disease?#2>. CNAs and SNVs in TP53 were both
significantly more prevalent in mCRPC (SNV: 205/555 vs. 49/
1204; adjusted A proportion = 0.305, 95% CI: 0.284-0.332,
q=235x107> CNA: 336/555 vs. 156/1279; adjusted A propor-
tion = 0426, 95% CI: 0.403-0448, q=235x1075, adjusted
Fisher’s Exact test). Similarly, SVs affecting TP53 were more
prevalent in metastatic disease (adjusted A proportiongy = 0.074,
95% CI: 0.044-0.104, q=0.060, adjusted Fisher’s Exact test).
While this did not reach our pre-set statistical significance
threshold, it is important to note the lower power to detect
differences in SV prevalence, relative to other mutational classes.
Consistent with previous reports!®26, SPOP SNVs were less
prevalent in mCRPC!® (32/555 vs. 103/1204; adjusted A propor-
tion = —0.051, 95% CI: —0.061-0.041; g =2.35x 1075, adjusted
Fisher’s Exact test).

Candidate genomic biomarkers of aggressive localized prostate
cancer. Relapse of localized prostate cancer following curative-
intent therapy is due, at least in part, to the presence of occult
metastatic disease at initial presentation. We hypothesized that
mutations prevalent in mCRPC than localized disease might be
prognostic for relapse of localized prostate cancer. From the list of
73 mutations with significantly different prevalence in mCRPC
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Fig. 1 Frequency distribution of genes affected by driver mutations in prostate cancer. The full cohort (n =1844) was split into localized (n =1289) and
metastatic (n =555) disease. Estimated proportion of patients in each cohort harboring each of 113 specific driver mutations. X-axis indicates the gene or
genomic locus affected. Bar color indicates the type of driver mutation affecting that gene. Several genes are affected by multiple mutation types (e.g. TP53,
PTEN, and others). Bars show the proportion of patients harboring the indicated mutation. Error bars represent 95% confidence intervals. Centre of the
error bars represent the observed proportion. Source data are provided as a Source Data file.

vs. localized disease (42 with increased prevalence, 31 with lower
prevalence), we identified 24 that occurred in at least 5% of all
localized cancers evaluated (Supplementary Data 4). These 24
driver mutations comprised 16 CNAs, 6 SVs, and 2 SNVs. We
then used univariable Cox proportional hazards modeling to
assess whether any of these 24 mutations are associated with
metastatic relapse of localized disease. Using patient outcome
data from the CPCG study (n = 376), 4 of the 24 driver mutations
were both more prevalent in mCRPC and associated with sig-
nificantly higher risk of metastatic relapse (g<0.05; Table S1):
MYC, CCNDI1, and PRKDC gain & ZNRF3 loss. Three other
mutations—losses of CDK12, ETV5, and TP53—were associated
with metastatic relapse but did not reach our pre-determined
level of statistical significance (g < 0.05). PTEN and RBI loss were

not prognostic of metastatic relapse (although PTEN loss was
associated with biochemical relapse in the CPCG cohort;
p=0.035, log-rank test). In a multivariable Cox proportional
hazards model including all seven driver CNAs with g < 0.25,
ZNRF3 loss, MYC gain, CCNDI gain, and CDKI2 loss remained
significantly associated with risk of metastatic relapse (Fig. S3).
To confirm these associations with adverse outcome, we
employed two independent validation cohorts: TCGA PRAD!
and MSKCC?7 localized prostate cancer cohorts. In TCGA, MYC
and CCNDI gains as well as ZNRF3 losses were prognostic for
progression-free survival (Table S2); on multivariable analysis,
only ZNRF3 remained prognostic (Table S2). Similarly, these
CNAs were also prognostic for poor outcomes in the MSKCC
cohort (Tables S3, S4). Taken together, these data support the
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Fig. 2 Prevalence of driver gene mutations in localized and metastatic prostate cancer. A The proportion of tumors harboring each driver mutation in
localized prostate cancer or mCRPC (‘Observed A Proportion’), as described. Dot size indicates —logjo g-value; dot color indicates driver mutation type.
Specific genes of interest are labeled. B Comparison of driver gene mutation prevalence in localized disease and mCRPC. Differences in proportion of
localized and metastatic cases harboring each driver mutation ("Observed A Proportion’) were subtracted from the difference in proportions resulting from
100,000 simulations, per gene, per sample, where the probability of observing a mutation in a given sample was weighted by the global mutational burden
(i.e. SNVs per Mb or PGA) in that sample (‘"Expected A Proportion’) to generate the Adjusted A Proportion. A two-sided p-value was calculated as the
proportion of simulated proportions that were as extreme or more extreme than the observed A proportion. g-values were then derived using the False
Discovery Rate method. C Positive adjusted A proportion indicates higher than expected prevalence in mCRPC, while negative adjusted A proportion
indicates lower than expected prevalence. Mutations are ordered from top to bottom by adjusted A proportion, as shown by the height of each bar. Error
bars represent 95% confidence intervals; centre of the error bars represents the adjusted A proportion. Statistical significance was tested using adjusted
Fisher's Exact tests with correction for multiple testing using the False Discovery Rate method. Mutations with g-value < 0.05 (red line) were considered
statistically significant. Source data are provided as a Source Data file.
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utility of this approach to prognostic biomarker discovery. MYC,
CCND1, and PRKDC have previously been linked to adverse
clinical outcomes in prostate cancer?$-31, and thus serve as
positive controls. ZNRF3 loss has been reported in five mCRPC
patients!822 (two monoallelic and three biallelic) and several
studies have observed losses in the region containing ZNRF3
(chr22q12)719:27:32.33 To the best of our knowledge, however,
ZNRF3 loss has not previously been explicitly reported as a
recurrent CNA in localized prostate cancer or associated with
adverse clinical outcomes in localized disease.

ZNRF3 genomic loss is associated with gene expression and
clinical features. We next focused on the functional and clinical
implication of ZNRF3 loss. ZNRF3 loss was identified in 166/555
metastases (29.9%; 95% CI: 26.1-33.7) and 122/1279 localized
cancers (9.54%; 95% CI: 7.93-11.1; adjusted A proportion = 0.10,
95% CI: 0.086-0.113, q=2.35x 107>, adjusted Fisher’s Exact
test). While ZNRF3 loss was present in ~10% of localized cancers
overall, this CNA was enriched in aggressive disease. In CPC-
GENE, 25% of patients (9/36) who relapsed metastatically har-
bored ZNRF3 loss while only 5.2% of patients (18/341) who did
not harbor it (OR=5.98, 95% CI: 2.45-14.6; p=3.29 X 1074,
Fisher’s Exact test; Fig. S4A). Similarly, in the TCGA cohort,
ZNRF3 loss was identified in 11.9% (58/489) of patients; of the
91/489 patients with disease progression, 20/91 (22.0%) harbored
ZNRF3 loss while only 9.55% of patients who did not progress
harbored this CNA (OR=2.67, 95% CIL. 1.47-4.85;
p=1.64x 1073, Fisher's Exact test; Fig. S4B). ZNRF3 loss was
also associated with higher grade tumors in both CPCG and
TCGA (Fig. S4C). Thus, ZNRF3 loss appears to identify a subtype
of localized prostate cancer associated with aggressive clinical
outcomes.

ZNRF3 loss was prognostic for BCR and metastatic relapse on
univariable Cox proportional hazards analysis in CPCG
(HRpcr = 2.18, 95% CI: 1.31-3.64, p=2.87 x 1073, Wald test;
HRyprs = 4.57, 95% CI: 2.12-9.84, p=1.03 x 10~% Wald test;
Fig. 3A, B). These effects remained significant after controlling for
standard clinical prognostic variables (i.e. pre-treatment PSA,
diagnostic ISUP grade group, and clinical T category) in
multivariable Cox proportional hazards modeling (HRpcr = 1.77,
95% CI: 1.05-3.00, p=0.034, Wald test; Npcgr=126/376;
HRygrs = 3.01, 95% CI: 1.35-6.74, p=7.32x 1073, Wald test;
Nmers = 36/376; Fig. 3C, D; univariable Cox models for all
clinical prognostic factors are shown in Table S5).

To validate the transcriptomic impact of ZNRF3 genomic loss,
we assessed ZNRF3 RNA abundance in 208 CPCG tumors with
matched RNA abundance and CNA data. ZNRF3 RNA
abundance spans a limited range across tumor specimens (mean
log, RNA abundance = 6.63, range: 6.09-7.47; Fig. S5). Tumors
harboring a genomic loss in ZNRF3 had significantly lower
ZNRF3 RNA abundance than ZNRF3 neutral tumors (mean log,
RNA abundance difference = 0.163, 95% CI: 0.132-0.195,
p=0.021, Mann-Whitney U test; Fig. S5). This association
validated in TCGA (mean log, RNA abundance difference =
0.450, 95% CI: 0.303-0.596, p = 4.06 x 109, Mann-Whitney U
test; Fig. S5) and Taylor/MSKCC cohorts (mean log, RNA
abundance difference = 0.075, 95% CI: 0.070-0.079,
p=113x10"2, Mann-Whitney U test; Fig. S5). Only four
patients in the Gerhauser cohort with ZNRF3 loss had available
RNA abundance data, but there was a trend toward decreased
ZNRF3 RNA abundance relative to ZNRF3 neutral patients
(mean log, RNA abundance difference = 1.37, 95% CI: —1.42 to
4.16, p =0.11, Mann-Whitney U test; Fig. S5).

ZNRF3 RNA abundance was inversely associated with ISUP
grade in four of five independent cohorts of localized prostate

cancer cohorts (Fig. S6). Likewise, in CPCG, ZNRF3 RNA
abundance was inversely associated with risk of BCR on
multivariable analysis controlling for clinical ISUP grade, pre-
treatment PSA, and clinical T-category (Npcr = 46/205; HRpcr =
0.22, 95% CI: 0.06-0.86, p = 0.030, Wald test; Fig. S7A). ZNRF3
RNA abundance was not significantly associated with metastatic
relapse on multivariable analysis, potentially due to a lack of
statistical power resulting from the low event rate in this
intermediate risk cohort (Nygrs = 16/205 patients; HRyprs =
0.20, p=0.18, Wald test). ZNRF3 RNA abundance remained
inversely associated with BCR risk after controlling for ZNRF3
loss in multivariable Cox proportional hazards analysis (HRpcr =
0.21, 95% CI: 0.05-0.78, p=0.02, Wald test; Npcgr = 46/205;
Fig. S7B).

We validated this association between ZNRF3 RNA and risk of
adverse clinical outcome in three independent cohorts: TCGA,
EOPC, and a high risk/high-volume intermediate risk cohort
(LTRI?**), in which low ZNRF3 RNA abundance was associated
with a significantly higher risk of PFS, BCR, and metastatic
relapse (Fig. S8). In the LTRI cohort, 18/18 patients with low
ZNRF3 RNA abundance experienced metastatic relapse within 7
years following surgery, compared with only 2/29 patients with
high ZNRF3 RNA abundance (p=4.16 x 10711, Fisher’s Exact
test; Fig. S8D). ZNRF3 RNA was not related to the risk of disease
progression in the Taylor/MSKCC cohort. Taken together, these
data demonstrate that genomic loss or low RNA abundance of
ZNRF3 preferentially occur in aggressive localized prostate
cancer, independent of standard clinical prognostic factors.

ZNRF3 loss predicts poor outcome localized prostate cancer.
We recently developed a six-feature clinico-genomic signature
that predicts biochemical relapse in men with localized prostate
cancer’. To assess whether ZNRF3 genomic loss adds indepen-
dent prognostic value to these features, we stratified the CPCG
cohort based on both signature features and ZNRF3 loss. Overall,
298/379 (78.6%) CPCG cases had informative data for the six
features in the signature (MYC gain, ATM SNVs, TCERGLI
hypomethylation, ACTL6B hypermethylation, chr7:61 Mbp inter-
chromosomal translocations, and clinical T category). On mul-
tivariable analysis, both the Fraser signature and ZNRF3
remained prognostic of BCR and metastasis, after controlling for
ISUP grade group, PSA, and clinical T category (HRpcr = 1.77,
95% CL 1.06-2.98, p=0.030, Wald test; Npcgr= 126/375;
HRpprs =2.86, 95% CI: 1.29-6.34, p=0.019, Wald test;
NMETS =36/375; Table S6)

In the CPCG cohort, ZNRF3 genomic loss was associated with
a significantly higher percentage of the genome altered by a CNA
(Mean Adjusted PGA: 6.96%, 95% CI: 6.27-7.66 vs. 11.1%, 95%
CL: 7.66-14.5, p = 4.57 x 1073, Mann-Whitney U test; Fig. S9A),
and this validated in the TCGA (Mean Adjusted PGA: 13.2%,
95% CI: 11.5-15.0 vs. 30.0%, 95% CI: 24.0-36.1, p = 2.11 x 1010,
Mann-Whitney U test; Fig. S9B) and Taylor/MSKCC cohorts
(Mean Adjusted PGA: 27.8%, 95% CI: 14.2-41.4 vs. 9.45%, 95%
CIL: 7.51-11.4, p = 6.40 x 10~%, Mann-Whitney U test; Fig. S9C).
Despite this, ZNRF3 genomic loss remained prognostic of
metastatic relapse in the CPCG cohort after correcting for
adjusted PGA, PSA, ISUP grade, clinical T category, and
intraductal carcinoma of the prostate/cribriform architecture
(IDC-P/CA)—an established negative prognostic factor3>3° in
multivariable Cox proportional hazards models (HRygrs = 3.53,
95% CI: 1.47-8.47, p=4.72 x 1073, Wald test; Nygrs = 30/326;
Table 1). In contrast, ZNRF3 loss was not prognostic of BCR after
correcting for these clinical and pathologic prognostic features
(HRpcr = 149, 95% CI: 0.83-2.67, p =0.180, Wald test; Npcr =
106/326). These results support the hypothesis that ZNRF3 loss is
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Fig. 3 ZNRF3 genomic loss is an independent prognostic factor for aggressive localized prostate cancer. Biochemical relapse-free rate (A) and

metastatic relapse-free rate (B; mRFR) in CPCG patients with tumor specimens with (blue) or without (red) genomic loss of ZNRF3. Two-sided p-values
generated from a Wald test. C, D Forest plots of multivariable Cox proportional hazards analyses of ZNRF3 CNA status with clinical prognostic factors for
biochemical relapse (€) and metastatic relapse (D). Error bars indicate 95% confidence interval of the reported hazard ratio. Source data are provided as a

Source Data file.

an independent predictor of metastatic relapse in localized
prostate cancer.

ZNRF3 loss occurred in the context of a relatively large region
of genomic loss on chromosome 22ql12.1 (median deletion:
6.0 Mbp, range: 1.01-35.1 Mbp) and the smallest number of genes
co-deleted with ZNRF3 was 10 (median co-deleted genes = 90),
covering 1.31 Mbp. All 417 genes on chromosome 22 were co-
deleted with ZNRF3 in at least one patient. Of these, 29 (5.3%)
were significantly associated with metastatic relapse in CPCG
(g <0.01, Wald test; Table S7). Of these 29 genes co-deleted with
ZNRF3 and associated with metastasis, 9/29 also showed a
significant reduction in RNA abundance in cases with genomic
loss in this region (g <0.05, Mann-Whitney U test), and thus
represent likely candidate drivers of the aggressive phenotype

associated with this deletion. To further refine this gene list and
help to identify the driver of aggression in this region, we next
determined the association between RNA abundance of these 9
genes and adverse clinical outcomes in four independent cohorts
(CPCG, TCGA, EOPC, and LTRI) using univariable Cox
proportional hazards models (Table S8). The only gene with
RNA abundance significantly associated with adverse outcome
across all four cohorts (g <0.05) was ZNRF3. These data are thus
consistent with the hypothesis that ZNRF3 loss drives clinical
aggression of localized prostate cancer.

Molecular Hallmarks of ZNRF3 genomic loss. To further
understand the functional correlates of ZNRF3 in prostate

6 | (2021)12:6248 | https://doi.org/10.1038/s41467-021-26489-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Table 1 Multivariable Cox proportional hazards model of ZNRF3 loss on metastatic relapse, corrected for clinical prognostic
factors, adjusted PGA, and IDC-P/CA.
Variable Level N Hazard Ratio 95% Confidence Interval p-Value
ZNRF3 Loss

Neutral 298 - - -

Loss 28 3.53 1.47-8.47 4.72E-03
PSA Continuous 326 1.05 0.96-1.14 0.31
Gleason Score

343 54 - - -

3+4 190 4.29 0.53-34.6 0.17

443 73 9.62 1.15-80.3 0.036

444 and above 9 533 0.31-93.0 0.25
Clinical T Category

cT1 157 - - -

cT2a/b 160 1.63 0.68-3.94 0.27

cT2c 9 247 0.29-21.4 0.41
Adjusted PGA Continuous 326 1.09 0.47-2.53 0.84
IDC-P/CA

Absent 222 - - -

Present 104 1.58 0.67 - 3.57 0.27
The prognostic impact of ZNRF3 loss was evaluated using a multivariable Cox Proportional Hazards model, with pre-treatment PSA, Gleason Score, Clinical T-Category, adjusted PGA (i.e. PGA with
chromosome 22 excluded), and IDC-P/CA as co-variates. p-values calculated from a Wald test. Source data are provided as a Source Data file.

cancers, we determined global RNA abundance patterns related
to ZNRF3. To maximize the likelihood of identifying functionally
important correlations, we looked for associations with ZNRF3
loss in both the CPCG and TCGA cohorts. Using the Molecular
Signatures Database (MSigDB; http://software.broadinstitute.org/
gsea/msigdb/annotate.jsp), we identified 140 genes with a
Spearman’s p > 0.4 in both cohorts (Supplementary Data 5). Of
these, five were located on chromosome 22, and were therefore
excluded from the downstream analyses. The remaining 135
genes were enriched for genes downregulated in metastatic
prostate cancer®” (13/135; g = 2.2 x 107, Hypergeometric test)
and for genes involved in positive regulation of canonical WNT
signaling (GO: 0060070; 9/140, q = 7.57 x 10~4, Hypergeometric
test); genes implicated in WNT signaling with significantly dif-
ferent RNA abundance in both CPCG and TCGA cases harboring
ZNRF3 loss are shown in Table S9. These data suggest that
ZNRF3 downregulation in localized prostate cancer may activate
WNT signaling, an established driver of mCRPC!6-21,

Multiple ZNRF3 features are associated with adverse outcomes
in localized prostate cancer. The vast majority of ZNRF3 losses are
monoallelic. In TCGA, for example, 7/65 (10.8%) ZNRF3 losses are
biallelic, while across both mCRPC cohorts, 7/157 (4.5%) ZNRF3
losses are biallelic. As such, other mechanisms—including epigenetic
silencing—may contribute to the downregulation of ZNRF3 RNA
observed in aggressive localized disease. We therefore analyzed global
DNA methylation patterns in localized prostate cancers. In both the
CPCG?8 and TCGA cohorts, the CpG most significantly differentially
methylated between patients with and without elevated ZNRF3 RNA
was located in the ZNRF3 5’ promoter region (probe ID: cg11986861;
Fig. 4A and S11A, B). Methylation of this CpG was increased by 1.4-
fold and 1.7-fold in CPCG and TCGA cases with low ZNRF3 RNA
abundance, respectively, and was inversely correlated with ZNRF3
RNA abundance (CPCG: p=-041, p=3.19x10"% Fig. 4B;
TCGA: p = —0.50, p = 1.12 x 1073; Fig. S11C). Despite the loss of
one ZNREF3 allele, this CpG was also significantly hypermethylated in
tumors with ZNRF3 loss (CPCG: p=9.16x10"3 TCGA:
p =248 x 1073, Mann-Whitney U test; Fig. 4C, D). ZNRF3 hyper-
methylation was associated with increased risk of metastatic relapse
in CPCG (HR: 2.18, 95% CI: 1.06-4.05; p = 3.47 x 102 Wald test)
and of shorter progression-free survival in TCGA (HR: 2.19, 95% CI:

1.45-3.31; p = 1.83 x 104 Wald test). ZNRF3 RNA abundance was
significantly lower in tumors harboring one or more ZNRF3 altera-
tion (i.e. monoallelic loss, low RNA abundance, and/or hyper-
methylation; p=5.42 x 10734, one-way ANOVA; Fig. S11D) and
those tumors harboring >1 alteration had significantly lower ZNRF3
RNA abundance than those harboring only a single alteration
(p=1.78x 1073, Tukey post-hoc test). In both the CPCG and
TCGA cohorts, patients whose tumor genomes harbored more than
one ZNRF3-associated feature were at significantly higher risk of
adverse outcomes than those whose genomes harbored one or fewer
(Fig. 4E, F).

ZNRF3 loss is associated with activation of cell cycle progres-
sion and PRC1/2 pathways. We next assessed associations between
ZNRF3 loss and clinical, pathological, and genomic features in the
CPCG cohort (Fig. 5A). ZNRF3 genomic loss was not associated with
age at diagnosis (g =0.491, Mann-Whitney U test). Moreover,
ZNRF3 genomic loss was not associated with the presence of IDC/
CA, either across the full cohort (g =0.491, Fisher’s Exact test) or
when patients were stratified by ISUP grade group (to account for the
increased prevalence of IDC/CA in higher grade tumors340; ISUP
grade group 1: g>0.99; ISUP grade group 2: g = 0.43; ISUP grade
groups 3 and 4: q>0.99; Fisher’s Exact tests). IDC/CA was prog-
nostic of metastatic relapse on univariable analysis (HRyers = 2.14,
95% CI: 1.12-4.52, p = 0.046, Wald test), as previously reported*!-42,
However, on multivariable analysis including ZNRF3 loss, ISUP
grade, PSA, clinical T-category, and adjusted PGA (Nygrs = 30/326;
Fig. S10), IDC/CA was not prognostic. ZNRF3 loss was not sig-
nificantly associated with ETS fusion status (Supplementary Data 6),
chromothripsis (p = 0.208, Fisher’s Exact test), kataegis (g =0.298,
Fisher’s Exact test), global SNV burden (p = 0.376, Mann-Whitney
U test), or tumor hypoxia, measured either using a consensus RNA
abundance surrogate signature*3 (p = 0.518, Mann-Whitney U Test)
or by direct intratumoral oxygen measurements324* (p=0.550,
Mann-Whitney U Test). We observed a significant enrichment of
CNAs in APC (loss) or CTNNBI (gain) in tumors harboring ZNRF3
loss (APC Loss + ZNRF3 Loss: OR = 2.08, g = 1.06 x 10~4, Fisher’s
Exact testt CTNNBI Gain + ZNRF3 Losss OR=1.92,
q=2.50x 1073, Fisher’s Exact test; Either CNA + ZNRF3 Loss:
OR =224, =981 x 1077, Fisher’s Exact test). SNVs in either APC
or CTNNBI were not associated with ZNRF3 loss (APC: p = 0.843;
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CTNNBI: g=1, Fisher’s Exact tests). On multivariable analysis,
ZNRF3 and APC loss were independently prognostic of PES in
TCGA (Npps=91) and only ZNRF3 loss was independently prog-
nostic of metastatic relapse in CPCG (Nygrs = 36; Table S10).

To assess the potential functional role of ZNRF3 loss in
localized prostate cancer, we performed Gene Set Enrichment
Analysis (GSEA) in tumors with or without ZNRF3 loss. We
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initially focused on TCGA cases to capitalize on the larger
number of samples with RNA abundance data (n=493). GSEA
of Gene Ontology (GO) pathways revealed enrichment of cell
cycle progression gene sets in tumors harboring ZNRF3 loss
(Fig. 5B), which validated in two independent cohorts of both
localized and metastatic prostate cancer (Fig. S12A, B). Given the
enrichment of cell cycle progression gene sets in tumors
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Fig. 4 Aberrant methylation of ZNRF3 in aggressive localized prostate cancer. A The ZNRF3 5' promoter (probe cg11986861) is significantly
hypermethylated in localized prostate cancers harboring low ZNRF3 RNA abundance. Coordinates refer to the GRCh37 (hg19) human genome build. Blue
dots represent probes with statistically significant differential methylation (Q < 0.05). B ZNRF3 RNA abundance is inversely associated with methylation of
the ZNRF3 5’ promoter. Shaded area shows 95% confidence interval of the best fit line. Two-sided p-value generated from a permutation test. C, D ZNRF3
5' promoter methylation is significantly elevated in tumors harboring ZNRF3 allelic losses. p-values from a Mann-Whitney U test. CPCG: n = 286 patients;
TCGA: n =493 patients. Centre of box represents the median value. Lower and upper box hinges correspond to the first and third quartile. Whiskers
extend to the largest and smallest values no further than 1.5-times the Interquartile Range. E, F Patients whose tumors harbor >1 aberrant ZNRF3-
associated feature (i.e. monoallelic loss, low RNA abundance, 5 promoter hypermethylation) are at significantly higher risk of metastatic relapse

(E; CPCG) and disease progression (F; TCGA) than those patients with one or no features. p-values from a log-rank test. Colors indicate the number of

features present in the tumor. Source data are provided as a Source Data file.
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Fig. 5 Molecular and clinical correlates of ZNRF3 genomic loss. A Patients in the CPCG cohort ordered from left to right by percentage of the genome
altered by a copy number aberration (PGA). Patient age at diagnosis (years) is also shown. Blue bars correspond with patients harboring ZNRF3 genomic
loss. Heatmaps below show clinico-molecular features (ZNRF3 Loss, BCR at any time, BCR within 30 months of treatment, Metastasis, ETS Fusion status,
and IDC-P/CA histology; ‘present’ in blue, ‘absent’ in white, ‘not available’ in gray), clinical prognostic factors (Gleason Score, pre-treatment PSA, and
clinical T category), and treatment type (image-guided radiotherapy; IGRT, blue or radical prostatectomy; RP, orange); B Gene Set Enrichment Analysis of
TCGA tumors harboring ZNRF3 loss. Colors represent g-value gradient. C Metastatic relapse-free rate in CPCG patients, stratified by ZNRF3 genomic loss
and CCNDT genomic gain. p-value from a log-rank test (p = 7.48 x 10~23). Colors indicate different molecular profiles in each group. D Multivariable Cox
Proportional Hazards analysis of metastatic relapse in CPCG patients, stratified by ZNRF3 genomic loss, CCP/Prolaris score (continuous), clinical
prognostic factors, and PGA. p-values from a Wald test. Error bars represent 95% confidence intervals of the reported hazard ratios. E Volcano plot of
genes upregulated in TCGA tumors harboring monoallelic ZNRF3 loss. Dashed line represents cutoff of statistical significance (g >0.05). Colors show

genes implicated in the DREAM (blue) or WNT (red) pathways, or both pathways (orange). F Significant RNA upregulation of genes implicated in
polycomb repressive complex-1 and -2 (PRC2: EZH2, EED, SUZ12; PRC1: CBX2) in TCGA tumors (n = 493) harboring monoallelic losses of ZNRF3.

Kok ok

p <0.0007; ** p<0.001. p-values from a Mann-Whitney U test. Centre of box represents the median value. Lower and upper box hinges correspond to

the first and third quartile. Whiskers extend to the largest and smallest values no further than 1.5-times the Interquartile Range. Source data are provided as

a Source Data file.

harboring ZNRF3 loss, we evaluated clinical outcomes in patients
with ZNRF3 genomic loss, with or without amplification of
CCND1. We focused on CCNDI because its gain was significantly
more prevalent in mCRPC than localized disease and was itself
associated with metastatic relapse of localized disease; Fig. 2A and
Table S1). While only eight patients harbored CNAs of both
ZNRF3 and CCNDI, these patients were at significantly elevated
risk of BCR and metastatic relapse (p <2 x 10716, log-rank test;
Fig. 5C and S11C). To further confirm the effects of ZNRF3 and
cell proliferation, we assessed the interplay between ZNRF3 loss
and a clinically-validated RNA-based prognostic biomarker
(Prolaris/CCP), which is based on abundance of 31 genes related
to cell cycle progression®>. CCP score predicted risk of metastasis
(HR =1.51, 95% CI: 0.985-2.33, p = 0.059, Wald test) in CPCG.
However, on multivariable Cox proportional hazards analysis in
CPCG, including CCP score, ZNRF3 loss, PGA, and clinical
prognostic factors, only ZNRF3 loss and PGA remained
prognostic of metastatic relapse at our pre-specified level of
statistical significance (p < 0.05; Nygrs = 17/208; Fig. 5D).

GSEA also revealed strong enrichment of genes implicated in
dimerization partner, RB-like, E2F and multi-vulval class B
(DREAM) complex signaling and WNT activation and in
Polycomb Repressive Complex-1 and -2 (PRC1/2) signaling in
tumors harboring ZNRF3 loss, including EZH2, SUZ12, EED, and
CBX2 (Fig. 5E, F). Upregulation of PRC1/2 is strongly linked to
prostate cancer progression, lineage plasticity, and prostate
cancer-specific mortality*0->0, Taken together, these data demon-
strate a link between ZNRF3 loss and activation of pathways with
well-established links to aggressive prostate cancer.

Discussion
Prostate cancer lethality is a corollary of distant metastasis. While
most newly diagnosed cases are localized with no evidence of
extra-glandular spread, many men relapse following apparently
successful local therapy. This implies the presence of occult
metastases at the time of treatment, which are not accurately
predicted using standard clinical prognostic factors. We and
others have used multi-omic approaches to identify candidate
biomarkers that predict BCR’-10->1-53, While BCR is an early and
easily measured endpoint, it is a weak surrogate of prostate
cancer-specific mortality>0. Assessment of more meaningful
clinical endpoints (e.g. metastasis) requires mature cohorts with
matched molecular data and long-term follow-up. Moreover,
because large multi-omic studies interrogate many thousands of
individual mutations for links to outcome, there is a significant
risk of false discovery due to multiple hypothesis testing.

To overcome these limitations, we assessed differential pre-
valence of a set of established prostate cancer driver and recurrent

mutations in localized and metastatic prostate cancer to identify
candidate prognostic biomarkers of metastasis. In addition to
validating established biomarkers of biochemical relapse—MYC,
CCND1, and PRKDC gain, TP53 loss—as also prognostic of
metastatic relapse of localized disease, we identified and validated
ZNRF3 copy number loss as a prognostic biomarker of metastatic
relapse of localized disease. Importantly, ZNRF3 loss is associated
with higher tumor grade but provides prognostic value inde-
pendently of grade and other clinical prognostic factors. Of note,
neither PTEN nor RBI losses were prognostic of metastatic
relapse in CPCG, although both were prognostic of PFS in the
TCGA cohort. This may be due to the reduced power of multi-
gene studies (based on genome-wide surveys) such as this one
relative to candidate gene analyses, which have previously sug-
gested a role for these tumor suppressors in event-free survival
and metastatic relapse®*. Alternatively, our findings may, in part,
reflect a unique biology associated with the more advanced dis-
ease enriched in the TCGA relative to the CPCG one.

WNT activation is a hallmark of mCRPC?!22, and CNAs and
hypomethylation of WNT pathway genes occur in localized
prostate cancer in germline BRCA2 mutation carriers>>>%, which
have a significantly more aggressive clinical course than sporadic
disease®”. This implicates WNT signaling in the development of
aggressive, potentially lethal prostate cancer, consistent with our
finding—across multiple independent cohorts—of a link between
ZNRF3 loss, WNT pathway activation, and adverse clinical out-
comes. Similarly, the strong upregulation of cell cycle progression,
E2F/DREAM, and PRC1/2 pathways in tumors harboring ZNRF3
loss further supports a link between this tumor suppressor and
pathways with established links to prostate cancer aggression.

ZNRF3 genomic loss has not been identified as prognostic for
overall survival in mCRPC?2. Allelic gains in CTNNBI (26% of
mCRPC specimens) were not prognostic of shorter overall sur-
vival in mCRPC. These findings are consistent with a model in
which WNT pathway activation—via ZNRF3 loss, CTNNBI
allelic gains, or other mechanisms—increases the risk of meta-
static spread of the primary tumor but is not required for disease
progression once metastases have formed. Our finding that
ZNRF3 loss or low ZNRF3 RNA abundance is associated with
upregulation of cell cycle progression pathways further supports a
model whereby WNT activation may promote aggressive disease
in mitotically active cancers. While ZNRF3 loss is comparatively
rare in localized disease, the apparent interaction of at least two
mechanisms of ZNRF3 silencing (loss, hypermethylation) sug-
gests that the detection of loss alone, may underestimate the
impact of this gene as a predictor of adverse outcomes. However,
longitudinal studies of patient-matched primary disease—ideally
taking into account the presence of multifocal disease—and
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distant metastases will be required to establish the precise
mechanisms through which these (and other) aberrations con-
tribute to aggressive prostate cancer.

These data require careful prospective validation and testing in
randomized trials but suggest several potential clinical applica-
tions for ZNRF3 loss. For example, patients with favorable
intermediate risk prostate cancer whose tumors harbor ZNRF3
loss might be triaged out of active surveillance protocols and
toward definitive therapy. Similarly, patients with unfavorable
intermediate risk disease who would otherwise receive curative-
intent RP or radiation might be triaged to radiation + a short
course of ADT, as is now standard of care for men with high-risk
disease. ZNRF3 loss has also been suggested as a potential pre-
dictive biomarker for sensitivity to porcupine inhibitors®$, which
are in clinical trials for WNT- and NOTCH-driven cancers (e.g.
NCT01351103)*°. Thus, while the precise clinical impact of
assessing ZINRF3 loss is unclear, its presence in ~10% of localized
disease could make it a valuable endpoint to routinely assess. This
is particularly true in the context of more frequent somatic® or
germline?> molecular testing, where the incremental cost of
assessing an additional gene would be low. Moreover, while both
ZNRF3 loss and ZNRF3 RNA downregulation are significantly
associated with higher grade disease, these features conferred a
risk of adverse outcomes independently of grade. This suggests
that assessment of ZNRF3 loss could help to identify a substantial
fraction of patients who are at high risk of metastatic relapse, even
amongst those with higher grade disease. Thus, in some sense the
10% overall rate of ZNRF3 loss is misleading, because it encom-
passes all localized disease. Those 10% of cases are strongly
enriched for men at the highest risk of metastatic relapse.

Multiple lines of evidence support the hypothesis that ZNRF3
contributes to the clinical aggression observed in patients har-
boring monoallelic chr22q12.1 loss. Of the 9 genes in the region
that were significantly associated with metastasis-free survival
when downregulated at the RNA level, low ZNRF3 RNA abun-
dance was the only one that was prognostic across four inde-
pendent validation cohorts. Nevertheless, we cannot exclude the
possibility that other genes in the chr22q12.1 region contribute to
this aggressive phenotype. Moreover, the finding that tumors
harboring >1 ZNRF3 alterations (i.e. monoallelic loss, low RNA
abundance, and/or 5 hypermethylation) are significantly more
aggressive than those harboring 0-1 alterations supports a role for
ZNRF3 in promoting disease aggression. These data are con-
sistent with the hypothesis that monoallelic loss of ZNRF3 and
epigenetic silencing of the remaining allele may each contribute to
a reduction in ZNRF3 RNA abundance and increased tumor
aggression.

The current study has some limitations; first, the microarrays
used for calling CNAs in the CPCG and TCGA cohorts offer
lower resolution than the sequencing-based approaches used in
other cohorts. This may result in under-calling of focal CNAs
leading to some driver CNAs that exhibit modestly increased
prevalence in mCRPC being false positives. ZNRF3 loss was
3-fold more prevalent in mCRPC than localized disease and was
detected by microarray within a region of a minimum observed
size of ~1 Mbp (median: 6 Mbp, range: 1.01-35 Mbp), though we
cannot exclude the possibility that some cases may harbor focal
CNAs in this region. Similarly, mutation calling based on whole-
genome sequencing may have lower sensitivity than higher depth
whole-exome sequencing, although the overall prevalence of
SNVs in the driver genes studied was not different in whole-
exome vs. whole-genome sequencing mCRPC studies (Whole
Exome: 5.52%; 1078 SNV in 454 samples x 43 genes assessed per
sample vs. Whole Genome: 5.39%; 234 SNVs in 101 samples x 43
genes assessed per sample; p = 0.284, Pearson’s X2 test with Yates’
correction). Third, the vast majority of localized prostate cancer

specimens were derived from surgically resected tissue while all
mCRPC specimens were derived from biopsied metastases; the
latter may have lower clonal complexity than surgical specimens.
Thus, some of the mCRPC tumors may harbor subclonal muta-
tions in driver genes which were not detected due to sampling
bias. Fourth, driver SVs are under-represented across the study
because several studies employed exome sequencing. Fifth, the
cohorts in the study are strongly biased toward Caucasian men,
and it is unclear to what extent these findings will generalize
across ancestries. Sixth, the localized cohort is largely composed
of intermediate risk cases. While these represent a plurality of
newly diagnosed cases, it is unclear how these findings relate to
other localized disease states. Finally, we cannot exclude the
possibility of study-specific false-negative errors due to the use of
unique analysis pipelines for each study cohort, although, the
current study detected clinically relevant mutations in at least
some driver genes across validated analysis pipelines®!~63, For
example, in localized disease, CNAs were called from either
whole-genome sequencing (Gerhauser) or various microarray
platforms (CPCG, TCGA, Baca, Barbieri, Taylor). ZNRF3 loss
frequencies were not significantly different across these cohorts
(WGS: 5/48 vs. array: 108/1038; p = 0.811, Pearson’s X? test with
Yates’ correction), as might be expected if detection sensitivity
were inflating the CNA frequency in WGS-based studies.

Comparison of primary and metastatic tumor genomics pro-
vides an attractive strategy for prognostic biomarker discovery.
We apply it to identify ZNRF3 as a predictor of metastatic relapse
in localized prostate cancer. Pre-treatment evaluation of ZNRF3
tumor genomic loss and RNA abundance might improve treat-
ment stratification for men with localized prostate cancer.

Methods
Patient cohorts, pathology, and tissue procurement. Patients in the Canadian
Prostate Cancer Genome Network (CPCG) cohort (Supplementary Data 1;
n =385) were consented for whole-genome sequencing and other molecular
analyses and for reporting of anonymized clinical data, with approval from local
Research Ethics Boards (UHN #11-0024 and 06-0822; CHUQ 2012-913:H12-03-
192). All patients had National Comprehensive Cancer Network (NCCN) inter-
mediate risk prostate cancer, were treated with radical prostatectomy (RP) or
external-beam image-guided radiotherapy (IGRT) and were hormone- and
chemotherapy-naive at the time of treatment. Whole-blood or buffy coat speci-
mens were acquired at the time of consenting. For patients undergoing RP, a fresh-
frozen specimen was obtained from the index lesion within the resected prostate.
For patients undergoing IGRT, an ultrasound-guided biopsy to the index lesion
was obtained prior to the start of radiotherapy and was flash frozen in optimal
cooling temperature (OCT) medium. For all specimens, 20 X 0 um sections were
acquired, with a hematoxylin and eosin (H&E)-stained 5 um section on the top and
bottom, as well as between the 10th and 11th section, to confirm continuity of
histological features. All specimens were independently audited by two urogenital
pathologists for Gleason/ISUP grade’, tumor cellularity, and presence of intra-
ductal carcinoma of the prostate (IDC-P) and cribriform architecture (CA) his-
tology. Specimens of at least 70% tumor cellularity were used for molecular
analyses. Genomic DNA was extracted using phenol:chloroform, as previously
reported”-10. Double-stranded DNA quantity was assessed using a Qubit fluo-
rometer and quality was assessed using a Nanodrop spectrophotometer and a
BioRad Bioanalyzer, as previously reported’. All clinical, pathological, and mole-
cular data for the CPCG cohort have been reported elsewhere?:19:43,51,64,

Molecular, clinical, and pathologic data for patients in the TCGA PRAD cohort
(PanCancer Atlas; n = 494; Supplementary Data 1)!° were obtained from
cBioPortal®>% (www.cbioportal.org) and the NIH Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov). Similar data were obtained from the publicly
available Baca!l, Berger!2, Weischenfeldt!3, Barbieri?), Gerhauser!4, Robinson?!,
and Abida?? cohorts (Supplementary Data 1). Where an individual patient sample
was included in multiple reports (e.g. samples from the Baca, Berger, Barbieri,
Weischenfeldt, and TCGA studies were included in a meta-analysis along with
CPCG samples’, the Robinson/Abida SU2C mCPRC cohorts?1:?2 contained 125
patients that were analyzed in both studies), all cases were audited using original
sample and patient identifiers across studies to ensure no duplication of patients.
Data from the Quigley cohort!® was downloaded from the authors’ website, as
described below. Data for the Taylor/MSKCC validation cohort?” was obtained
from cBioPortal.

Patients in the Mt Sinai Hospital cohort (‘Mt Sinai’; n = 47) were consented for
molecular analysis and reporting of anonymized clinical data, with approval from
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the Research Ethics Board at Mt. Sinai Hospital and the Lunenfeld Research
Institute (MSH REB #14-0211-E and University of Toronto REB #35275). All
patients underwent RP for localized high-volume intermediate risk or high-risk
prostate cancer and total RNA was extracted from fresh-frozen specimens (see
below).

The final cohort for molecular discovery consisted of 1844 unique patient
samples from the Abida, Baca, Barbieri, Berger, CPCG, Gerhauser, Quigley,
Robinson, TCGA, and Weischenfeldt studies (Supplemenary Data 1). For clinical
outcome analyses (see below), CPCG was used for discovery, with validation in the
Gerhauser (EOPC), Mt. Sinai (LTRI), Taylor, and TCGA cohorts.

Selection of driver aberrations. A list of 113 mutations across 72 established
driver genes or recurrently altered loci was compiled as the union of drivers
reported in the Quigley and Fraser studies”!8 (Supplementary Data 2). Mutations
included copy number aberrations (CNAs), coding single nucleotide variants
(SNVs; non-synonymous, stop codon gained, stop codon lost, and splice gain/loss),
non-coding single nucleotide variants (ncSNVs) and non-CNA structural variants
(translocations, fusions, inversions; SVs). While frameshift indels can also result in
stop codon losses, we did not include these mutations in the current analysis, which
focused only on established driver mutations. Mutations in the androgen receptor
enhancer (624 kb upstream of AR!$; CNAs only) were pooled with those in the AR
gene body. For ncSNV drivers identified in CPCG, hg19 coordinates were mapped
to GRCh38 using the NCBI Remap web interface (https://www.ncbi.nlm.nih.gov/
genome/tools/remap) to compare across cohorts. In cases where a gene was subject
to multiple mutation types (e.g. TP53 SNVs, CNAs, and SVs), each mutation was
analyzed independently. Because not all mutation types were available for all
cohorts, the denominator was different for different types:

Coding SNV: 1204 localized + 555 mCRPC = 1759 specimens

Non-Coding SNV: 201 localized + 101 mCRPC = 302 specimens

CNA: 1279 localized 4 555 mCRPC = 1834 specimens

SV: 201 localized + 101 mCRPC = 302 specimens

DNA copy number aberrations. For the CPCG cohort, copy number aberrations
(CNAs) were called from OncoScan FFPE v3 microarrays (n = 382), as previously
described’. For The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-
PRAD; n = 494) and Baca (n = 53) cohorts, CNAs were called from Illumina SNP
6.0 microarrays. For the Taylor/MSKCC validation cohort (n = 194), CNAs were
called from Agilent 244 K array comparative genomic hybridization (aCGH)
microarrays. Overall, CNA calls were available for 1279/1289 localized patients. For
mCRPC specimens from the Quigley study (n = 101), CNAs were called from
whole-genome sequencing (n = 101) using CopyCat-generated BED files down-
loaded from the authors’ website (http://davidquigley.com/prostate.html) with
copy number status (‘gain’, ‘neutral’, or ‘loss’) assigned based on log, ratios
according to the authors’ guidelines!®: for autosomal genes, gain: log, CN score > 3,
loss: log, CN score < 1.65, neutral: 1.65 < log, CN score < 3; for genes on chro-
mosomes X and Y, gain: log, CN score > 1.4; loss: log, CN score < 0.6; neutral:
0.6 <log, CN score < 1.4. For the Abida and Robinson mCRPC cohorts (n = 454),
CNAs were called from whole-exome sequencing, as described?!. In all cases except
CPCG and Quigley cohorts, CNA data were extracted from publicly available
datasets via the CGDS-R package (v 1.3.0). In these cases, shallow deletion and
deep deletion were pooled as loss while gain and amplification were pooled as gain.
Percentage of the genome affected by a copy number alteration (PGA) was
calculated as the number of bases affected by a CNA divided by the total number of
bases in the genome, as previously reported’-3267:68, When comparing the PGA
associated with the presence or absence of a specific CNA, an adjusted PGA was
calculated by omitting the chromosome on which the specific gene is found.

Single nucleotide variants. Coding single nucleotide variants (SNVs) in driver
genes were called from whole-genome or whole-exome sequencing data based on
tumor-normal comparisons. Of the 1289 localized prostate cancer patients, coding
SNV data were available from 1204 independent localized patient specimens
(CPCG: 300, Barbieri: 109, Berger: 7, Baca: 53, TCGA: 494, Weischenfeldt: 11, and
Gerhauser: 230) and 555 mCRPC patient specimens (Quigley: 101, SU2C: 454). As
noted above, these numbers represent unique patients; where a given specimen was
included in two or more studies, it was included only once in the current study.
SNV data for all localized prostate cancer studies were downloaded from cBio-
Portal (via the CGDS-R package for R) or the ICGC Data Portal (dcc.icgc.org). For
Quigley mCRPC specimens, VCF files were downloaded from the authors’ website
(http://davidquigley.com/prostate.html). For Robinson and Abida cohort mCRPC
specimens, SNV calls were downloaded into R from cBioPortal using the CGDS-R
package (v1.3.0). For each patient, we extracted calls for missense (non-synon-
ymous), nonsense (stop codon gained or stop codon lost), and splicing variants
(spice donor or splice acceptor) within each gene analyzed.

For non-coding SNVs in the Quigley cohort, hgl9 coordinates from the CPCG
study were re-mapped to GRCh38 (as described above).

The list of genes affected by SNVs in the current study is available in
Supplementary Data 2. Amongst the 43 genes evaluated for SNVs, 20 were
included in a previous analysis of driver SNV enrichment in localized prostate
cancer vs. mCRPC!®.

Structural variants. Driver structural variants (SVs) in the CPCG cohort were
previously reported’. For mCRPC specimens, SV calls from Manta®® were down-
loaded from the authors” website (http://davidquigley.com/prostate.html). Overall,
SV calls were available for 201 localized patients and 101 mCRPC patients. SVs
included translocations and inversions, except where a specific SV type is specified
for a given gene or locus. To assess SVs that were originally called from localized
specimens in one megabase bins based on hgl9 coordinates, these bins were re-
mapped to GRCh38 using the NCBI Genome Remapping Service (https://
www.ncbi.nlm.nih.gov/genome/tools/remap). For SVs at the PTEN locus, we
evaluated inter-chromosomal translocations and deletions separately from inver-
sions within the chr10:89 Mbp bin (hgl9), which regulate PTEN RNA abundance

in localized prostate cancer’.

RNA abundance data. RNA abundance data were available for 208 patients with
clinical outcome data in the CPCG cohort®!. For all cases, total RNA was extracted
from tumor tissue sections, alternating with those used for whole-genome
sequencing to minimize any effects of spatial heterogeneity. Total RNA (100 ng)
was assayed using Affymetrix Human Transcriptome Array 2.0 and HuGene 2.0 ST
microarrays, and RNA abundance calculated as previously reported”-10. Samples
were stratified as having high or low RNA abundance based on median dichot-
omization of log, abundance values.

The LHRI cohort RNA abundance was assessed from RNA-seq (n =47).
Briefly, total RNA was extracted using RNeasy Mini kit (Qiagen, Maryland, USA).
RNA quantity was assessed using a Qubit fluorometer (ThermoFisher,
Massachusetts, USA). 200 ng of total RNA was used to construct a TruSeq strand
specific library with the Ribo-Zero protocol (Illumina), and all samples were
sequenced on a HiSeq2500 to a target depth of 50 million read pairs. Reads were
mapped and mRNA abundance was quantified using the STAR aligner (v2.5.2a)
against GRCh37 with Gencode Annotations (v24) lifted to GRCh3779, Library
normalization was performed using trimmed means of M-values (TMM) with the
BioConductor package EdgeR (v3.12.1)7. Samples were stratified as having high or
low RNA abundance based on median dichotomization of log, abundance.

RNA abundance data for TCGA (RNA-seq; n = 493) and Taylor/MSKCC
(Affymetrix Human Exon 1.0 ST microarrays; n = 216) were downloaded into R
from cBioPortal (www.cBioPortal.org) using CGDS-R (v1.3.0). To take advantage
of the increased statistical power from these larger cohorts, we stratified samples
into quartiles based on log, RNA abundance values.

Comparison of RNA abundance between groups was performed using the
Spearman rank correlation coefficients and Mann-Whitney U tests. Gene Set
Enrichment Analysis (GSEA) and Gene Ontology (GO) analyses were performed
using the online Molecular Signatures Database tool from the Broad Institute (v7.0;
March 3, 2020; http://software broadinstitute.org/gsea/msigdb/annotate.jsp) an
G:Profiler g:GOSt (version e99_eg46_p14_{929183d, July 20, 2020; https://
biit.cs.ut.ee/gprofiler/).

Comparison of driver aberration prevalence. For the localized and mCRPC
cohorts (as well as the two cohorts combined), we calculated the proportion of
samples harboring mutations in each driver gene (e.g. TP53) as well as the pro-
portion of samples harboring each driver gene mutation type (e.g. TP53 SNV,
CNAs, and SVs). For each individual mutation class (CNA, SNV, or SV), the
proportion (Pyyr) was calculated as

number of specimens with specific mutation

()]

P, =

MUT ™ umber of specimens analysed for mutation class
We also calculated the proportion of specimens harboring more than one mutation
class (i.e. CNA + SNV, CNA + SV, SNV + SV, and/or CNA + SNV + SV). 95%
confidence intervals for the proportions of each mutational class (or combination
of classes) were calculated as:

Cl=p+1.96\/p(1 —p)/n (2

where p is the overall proportion for each mutation or combination of mutations
for each gene and # is the number of samples analyzed for that mutation class or
combination of classes.

For each gene, the final proportion of cases harboring a mutation of any kind
(Pgenge) was calculated as

Pgpne = (Pona + mPsay + Psy) — (Penagsny + Ponaesy + Psnvesy + Ponagsnvesy)
(3)

where P is the proportion of cases harboring each stated mutation class (i.e. CNA,
SNV, SV; as applicable to the specific gene). To account for unequal sample sizes
for each mutation class (or combination of classes), we calculated propagation of
error for each mutation class (or combination of classes, as applicable) as

PEclass =1/ CIUpper2 + CILower2 (4)

Variance of propagation of error was calculated as

aéLNE = V/(PEcna+PEgny +PEsy) — (PEcnagsny+PEenagsy HPEsnviesy + PEenagsavisy) (5)
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Final 95% confidence intervals for each gene were calculated as above:

Cl=p+1.96\/p(1 —p)/n (6)

where p is the overall gene proportion and # is the number of samples analyzed for
that gene (Supplementary Data 2).

The per patient overlap in available mutation data is shown in Fig. S1.
Differences in proportion of localized and mCRPC patients (‘A proportion’) were
calculated by subtracting the proportion of localized specimens harboring the
specific aberration from the proportion of mCRPC specimens harboring the same
aberration. Positive A proportion values indicate higher prevalence in mCRPC;
negative A proportion values indicate enrichment in localized disease. To
determine if specific mutations were statistically differentially prevalent between
localized disease and mCRPC, we used Fisher’s Exact tests. For SNVs (coding and
non-coding), we corrected for global mutational burden as follows: first, we used a
binomial distribution to calculate the probability of observing no mutations in a
given driver gene in a given sample, corrected for the size of the gene coding region
(Mbp) and the mutational burden (SNVs per Mbp) in that sample (Pxomur); the
probability of observing at least one mutation in a given gene was then calculated
as: Pyiur = 1 - Pnomut- We then performed a simulation of 100,000 samples of the
binomial distribution, using Pyiyr to weight the probability of mutation in each
sample. A two-sided p-value was calculated as proportion of these simulations
showing as great or greater simulated A proportion than observed A proportion.

We corrected for CNA burden in a similar manner, using gene size and per
sample CNA burden (i.e. proportion of the genome altered by a CNA x 3 x 10°) to
identify Pyrur (as above), which was then used to weight the sampling probability.
We then calculated a two-sided p-value for each driver CNA as half of the
proportion of permutations showing as great or greater simulated A proportion
than the observed A proportion (to account for the fact that a CNA can be either a
gain or a loss).

Confidence intervals for A proportions were calculated using Yates’ X? with
continuity correction,

Cl=p, —p,+1.96
b1 =P, " m

pl(l_pl)+p2(l_p2)il*<i+l> (7)
m 2
where p, is the proportion of mCRPC harboring the mutation, p, is the proportion
in localized prostate cancer harboring the mutation, m is the number of mCRPC
specimens tested, n is the number of localized prostate cancer specimens tested.
Adjusted A proportion was calculated as the difference between observed A
proportion and expected A proportion; adjusted A proportion values >0 indicate a
higher-than-expected proportion of mCRPC cases harboring the specific mutation
while adjusted A proportion <0 indicates a higher-than-expected proportion in
localized disease.

Clinical outcome. For patients undergoing RP, biochemical relapse (BCR) was defined
according to American Urological Association (AUA) guidelines: two consecutive PSA
values of >0.2 ng/mL over at least 6 months following treatment or initiation of salvage
therapy. Patients who had initial PSA failure after RP and then underwent successful
salvage RT (i.e. PSA <0.2 ng/mL in two consecutive tests within 6 months) were not
classified as having BCR unless they subsequently met AUA (not Phoenix) conditions
for BCR; in these cases, BCR was backdated to the time of initial post-RP PSA rise. For
patients who underwent IGRT with curative intent, BCR was defined according to the
Phoenix criteria’% a PSA value of 2 ng/mL above PSA nadir or initiation of salvage
hormone therapy. For the TCGA cohort, progression-free, disease-specific, and overall
survival were used as reported by the consortium”3,

Biochemical relapse-free rate (bRFR), metastatic relapse-free rate (mRFR) and
overall survival were calculated using the Kaplan-Meier method. Associations
between mutations and outcome were assessed using log-rank or univariate Cox
proportional hazards models, as appropriate. Adjustments for clinical factors [T-
category (categorical; T1, T2a/b, or T2c), pre-treatment PSA, and diagnostic (i.e.
biopsy) ISUP grade (categorical; Grade 1 vs. Grade 2 vs. > Grade 3)] using
multivariable Cox proportional hazards modeling. In all cases, the proportional
hazards assumptions were verified graphically using Schoenfeld residuals. Log-rank
tests were used when the proportional hazards assumptions were violated.

Prognostic signature scores. Fraser signature scores were calculated based on a
modified version of the six-feature signature reported in Fraser et al”. Briefly, MYC
gain, ATM SNVs, TCERGLI hypomethylation, ACTL6B hypermethylation, chr7:61
Mbp inter-chromosomal translocations, and clinical T category were scored for each
patient; CNAs, SNVs, and SVs were scored as absent (0) or present (1); probe-based
methylation p-values were median dichotomized and patients scored as being either
above or below the median; clinical T category was scored as cT1 or cT2a/b (0) or cT2c
(1). For multivariable analyses, a signature score was derived based on the sum of the six
features. For visualization, scores were median dichotomized and patients assigned to
either “Signature High” or “Signature Low” bins.

Cell Cycle Progression/Prolaris scores were approximated as previously
reported*>74. Briefly, the mean abundance of the 31 CCP genes was normalized to the
mean abundance of 15 housekeeping genes to yield a CCP score, as previously
reported®>. Outcomes analyses were performed using CCP as a continuous variable.

Differential DNA methylation analyses. Illumina HumanMethylation 450k
microarray data for CPC-GENE were pre-processed as previously described”.
TCGA PRAD 450k data were obtained from the TCGA data portal (https://
portal.gdc.cancer.gov/projects/ TCGA-PRAD). Beta values (i.e. ratio of methylated
to unmethylated signal) were transformed to M-values (i.e. log, ratio of methylated
probes to unmethylated probes) using the beta2m function within the lumi R
package (v. 2.24.0)7°. For each cohort, patients were classified as having high or low
ZNRF3 RNA abundance, as described above. Differential methylation was assessed
using the limma R package (v3.13)7°, including array probes mapping within genes
(n=335,926). Differentially methylated probes were visualized using Manhattan
plots, with statistical significance inferred using a Bonferroni cutoff of

P <1.49 x 1077 To test the association between methylation and clinical outcomes,
M-values for each patient were dichotomized as high or low based on Youden’s J
statistic, using the cutpointr R package (v1.1.1)77. Patients were then binned based
on this cutoff and time-to-event (metastasis or disease progression) was deter-
mined using Cox proportional hazards models, as above.

Statistical testing and data visualization. All statistical analyses were performed
using R statistical software (v3.5.2) with the following packages: Bou-
trosLab.plotting.general (v5.9.2)78, VennDiagram (v1.6.20)7%, CGDS-R (v1.3.0), survival
(v2.43-3), ggplot2 (v3.1.0), easyGgplot2 (v1.0), survminer (v0.4.3), forestplot (v.1.7.2),
factorial2x2 (v0.2.0), cowplot (v1.1.0) and tidyverse (v1.2.1). All tests of statistical sig-
nificance were two-sided. p-values were corrected for multiple comparisons using the
Benjamini-Hochberg False Discovery Rate (FDR) method or the Bonferroni method, as
noted. For Analysis of Variance (ANOVA), between group significance was evaluated
using Tukey post-hoc tests. All source code is available from Zenodo®.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The genomic variant calls, clinical, and pathology data for the CPC-GENE study are
available through the ICGC Data Portal under accession PRAD-CA. Raw whole-genome
sequencing data for the CPC-GENE study are available through the European Genome-
Phenome Archive used accession ID EGAD00001003761. Raw DNA methylation data are
available from the NCBI Gene Expression Omnibus under accession number GSE84043.
Summary DNA methylation data are available from Figshare (https://doi.org/10.6084/
m9.figshare.16574486.v1). Raw and processed mRNA array data for the CPC-GENE study
are available from the NCBI Expression Omnibus under accession number GSE107299.
Genomic variant calls, mRNA abundance, clinical, and pathology data are available from
cBioPortal for the Abida (accession prad_su2c_2019), Barbieri (accession prad_broad), Baca
(accession prad_broad_2013), Robinson (accession prad_su2c_2015), Taylor (accession
prad_mskec), Gerhauser and Weischenfeldt studies (accession prostate_dkfz 2018). Raw
sequencing data, genomic variant calls, mRNA abundance, and DNA methylation data for
the TCGA study are available from cBioPortal (accession prad_tcga_pan_can_atlas_2018)
and the GDC Data Portal (accession TCGA-PRAD). Processed genomic variant, mRNA
abundance, and clinical/pathology data for the Quigley study are available from the authors’
website (https://quigleylab.ucsf.edu/data). Processed mRNA abundance, and clinical/
pathology data for the LTRI cohort are available from Zenodo (https://doi.org/10.5281/
zenodo.5389194). Patients in the LTRI cohort were not specifically consented for deposition
of their raw sequencing data into public repositories. Therefore, raw RNAseq data for the
LTRI cohort are available upon request from Dr. Michael Fraser (michael fraser@cpcgene.
com) and are subject to the requestor entering into a Data Sharing Agreement with the
Lunenfeld-Tanenbaum Research Institute. We will attempt to make data available within
one month of any request. Source data are provided as a Source Data file. Source data are
provided with this paper.

Code availability

Scripts used for data analysis and visualization are available from Zenodo (https://
doi.org/10.5281/zenodo.5389194) and GitHub (https://github.com/mfraser3/
ZNRF3_2021).
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