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Objective: A major consequence of acute myocardial infarction is myocardial ischemia-reperfusion (I/R) injury. Collecting proof
demonstrates that AXIN1 assume a basic part in different disease; however, the role of AXIN1 in I/R injury remains to a great extent
obscure.
Methods: The I/R injury model on AC16 cells was constructed. siRNA transfection was used to knockdown AXIN1. The qRT-PCR
assays and western blot assays were used to detect the expression level of AXIN1 and other key proteins. CCK-8 assays and cell
apoptosis assays were used to detect cell proliferation and cell apoptosis.
Results: AXIN1 was significantly overexpressed in an in vitro model of I/R injury. Knockdown of AXIN1 significantly restored the cell
proliferation inhibition caused by IR injury, while inhibiting apoptosis and inflammation. Further mechanistic studies revealed that the
transcription factor c-Myc could regulate the expression of AXIN1. The effects of I/R injury on AC16 cells after overexpression of
c-Myc were reversed by knockdown of AXIN1. Meanwhile, AXIN1 could regulate the SIRT1/p53/Nrf 2 pathway.
Conclusion: Our results show an important role for AXIN1 and provide new targets for avoiding and treating I/R injury.
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Introduction

Myocardial ischemia-reperfusion (I/R) injury is on the rise in
China and around the world. China’s death rate has been rapidly
increasing since 2005[1–3]. Acute reperfusion therapy is currently
the most common and successful treatment for acute heart
attack[4,5]. Rapidly restoring blood flow after a heart attack, on
the other hand, may set off a chain reaction of unfavorable events
such as cardiocyte apoptosis, inflammatory response, and oxi-
dative stress, exacerbating rather than easing myocardial
infarction[6]. Myocardial I/R injury is the medical term for this
situation[7]. In the treatment of patients with severe myocardial
dead tissue, myocardial I/R damage has recently become a serious
concern[8]. Pretreatment or treatment with antiapoptotic, anti-
mitigating, or antioxidative techniques may be essential for

reducing the occurrence of myocardial I/R injury, which affects
the clinical outcome of reperfusion therapy.

The growth silencer AXIN1 is a delegate of characteristically
confused framework proteins[9]. Apart from its primary role in
Wnt signaling[10], it also acts as a negative regulator of -catenin in
the Wnt flagging pathway[11,12]. AXIN1 has been distinguished
as a part of a few unique pathways, including p53, c-Myc, TGF-β,
and JNK[13,14]. c-Myc directs a few cell capacities including cell
development, expansion, apoptosis, separation, digestion, and
neoplastic change[15,16]. The quality is broadly communicated
during cell development and fast expansion[17,18]. Besides, it stays
vague whether c-Myc can go about as a downstream go-between
of AXIN1 guideline in myocardial I/R injury. The aim of our
study was to investigate the role of AXIN1 and its specific
molecular mechanisms in an in vitro I/R injury model, providing
potential drug targets for the clinical treatment of myocardial I/R
injury.

Methods

Cell culture and stimulation

Human AC16 ventricular cardiomyocytes (Tongpai Biotechnology)
were grown in DMEM/F12 media supplemented with 5% FBS
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(Gibco), 100 U/ml penicillin (Sigma–Aldrich), and 100 g/ml strep-
tomycin (Sigma–Aldrich) at 37°C in a humidified incubator with
95% air and 5% CO2. The cells were typically cultivated in 6-well
plates with a density of 6 104 cells per well (Corning). Sigma–Aldrich
provided recombinant IL-1 with a purity of better than 98%
(HPLC). For 24 h, cells were treated with 5 g/ml IL-1.

Establishment of an in vitro model of I/R injury

An in vitro model of I/R injury was laid out by treating AC16 cells
with a state of oxygen glucose hardship followed by reperfusion
(OGD/R). Momentarily, AC16 cells filled in 24-well cell culture
dishes were kept up with in a sans glucose medium in an anoxic
climate (95%N2 and 5%CO2) for 4 h. Then, the cells were filled
in a total medium at 37°C in a 5%CO2 and 95% air hatchery for
24 h. AC16 cells filled in normoxic conditions were utilized as
controls. Also, an in vitro model of hypoxia injury was produced
by refined AC16 cells with the sans glucose medium in an anoxic
air (95% N2 and 5% CO2) for 4 h.

Cell transfection

GenePharma Co. generated the c-Myc-OE overexpression plas-
mid, human c-Myc sequence, and human AXIN1 sequence
(Shanghai, China). The pEX-2 plasmid was used to insert full-
length wide-type AXIN1 genes (GenePharma). As a negative
control, an empty pEX-2 plasmid was transfected. AXIN1-specific
siRNAwas cloned into the U6/Neo plasmid (GenePharma). Under
nonserum conditions, cell transfections were carried out with the
Lipofectamine 3000 reagent (Invitrogen).

For transient transfection, a mixture of siRNA (80 nM) or/and
miRNA mimic (30 nM) or/and miRNA inhibitor (50 nM) or/and
plasmid (100 ng), Opti-MEM medium, and Lipofectamine 2000
(all from Thermo Fisher Scientific) was prepared as per the
accompanying guidance and then dispensed into each well of 24-
well cell culture dishes containing AC16 cells (5× 105 per well).

CCK-8 assay

The transfected AC16 cells (5× 103) in a 96-well plate and kept
up with in a total medium. After one more 24 h of agonizing at
new culture medium, cell appropriateness was studied by using
CCK-8 (Dojindo Molecular Technologies). Immediately, the
lifestyle medium was taken out, and the cells were washed two
times with phosphate pad saline (PBS). 10 μl CCK-8 course of
action was added, and the plates were incubated for 1 h at 37°C.
The absorbance was assessed at 450 nm using a Microplate
Reader (Bio-Rad).

Apoptosis assay

After transfection and IL-1 administration, the AC16 cells
(5× 105) in 6-well plates were examined for apoptosis using the
Annexin V-FITC/PI apoptosis detection kit (Invitrogen). Within
the sight of 50 g/ml RNase A, 1× 105 cells from each example
were washed two times with PBS and stained with Annexin
V-FITC and PI as indicated by the producer’s convention.
(Sigma–Aldrich). The FACS can discriminate between apoptotic
and nonapoptotic cells (Beckman Coulter). FlowJo software was
used to quantify the data (Tree Star Inc.).

qRT-PCR

The RNA Pure Rapid Extraction Kit was used to extract
total RNA from AC16 cells (Bioteke Corporation). The
SuperScriptTM IV First-Strand Synthesis System was used to
transcribe the cDNA (Invitrogen). The mRNA and miRNA
expressions were detected using SYBRTM Green PCR Master
Mix (Applied Biosystems).

Western blot

Full scale protein in AC16 cells after significant transfection and
treatment were eliminated using a RIPA lysis pad (Beyotime). The
goodness of proteins was estimated by the BCA Protein Assay Kit
(Pierce). The western smudge structure was spread out using a
Bio-Rad Bis-Tris Gel system (Bio-Rad Laboratories). Proteins in
identical obsession were electrophoresed in PAGE-SDS and
moved onto PDVF films (Millipore). Ensuing to blocking in the
5% impeding support (Beyotime), the movies were agonized with
fundamental antibodies, which were prepared in the 5% ruining
support at a debilitating of 1:1000. Subsequent to incubating
with fundamental antibodies at 4°C present moment, the PDVF
films were agonized with an assistant immunizer for 1 h at room
temperature. Indications of the gatherings were discovered using
the Bio-Rad ChemiDocTM XRS system (Bio-Rad). The force of
the gatherings was estimated using Image Lab Software (Bio-
Rad). The power of the groups was evaluated utilizing Image Lab
Software (Bio-Rad).

Immunofluorescence confocal microscopy

Treated AC16 cells were gathered and cultivated onto glass
coverslips uniquely ready for immunofluorescence. Subsequent to
washing two times with cold PBS for 5 min, cells were fixed with
4% paraformaldehyde (PFA) for 25 min, and permeabilized with
PBS containing 0.2% Triton X-100 for 25 min. Then, the cells
were obstructed with 3% BSA in PBS for 1 h, and brooded with
against caspase3 immunizer (1:50) at 4°C short-term. In the wake
of washing threefold with PBS for 5 min, the cells were stained
with FITC-formed enemy of bunny IgG immunizer (1:200) at 37°
C for 1 h. In the wake of counterstaining with DAPI, (Invitrogen)
for 20 min, the pictures were caught with an Olympus FV1000
confocal magnifying lens.

Dual-luciferase reporter assay

AC16 cells were co-transfected using Opti-MEM medium and
Lipofectamine2000 in quintuplicate with the appropriate luci-
ferase reporter (100 ng) and 30 nM of either a control mimic or
an AXIN1mimic. Cell lysates were used to evaluate the luciferase
activity after 48 h using a dual-luciferase reporter system with a
luminometer (Promega).

Chromatin immunoprecipitation (CHIP) assays

For CHIP experiments, 5× 106 AC16 cells transfected with si-NC
or si-c-Myc were lysed (0°C; 30 min) in 100–200 μl of RIPA
buffer. In the meantime, a mixture of an antibody against AXIN1
(Abcam) or isotype IgG antibody (ab172730, Abcam) and pro-
tein A/G magnetic beads (MedChemExpress) was prepared and
incubated for 4 h at 4°C. Following the cross-linking unfastening
with the use of 0.2 µM NaCl at 65°C for 6 h, the pulled down
fragment was subjected to a qPCR assay.
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Statistical analysis

Except if part of the information is from Western smear
examination, any remaining information is introduced as the
mean ± SD. Measurements were examined by the one-way
examination of change (ANOVA) in SPSS 19.0 factual
programming (SPSS Inc.). A P-worth of lower than 0.05 was
considered as a critical outcome.

Results

AXIN1 is upregulated in I/R-stimulated AC16 cells

To explain the meaning of AXIN1 in myocardial I/R injury, we
first established the in vitro models of I/R injury. As exhibited by
qRT-PCR and WB, AXIN1 was especially overexpressed in the
myocardial I/R injury AC16 cells (Fig 1A and B).

Silencing AXIN1 lightens I/R-prompted injury in AC16 cells

To explore the role of AXIN1 in I/R injury, we silenced the
expression of AXIN1 in AC16 cells with siRNA-AXIN1(si-
AXIN1). In I/R-stimulated AC16 cells, transient transfection of
si-AXIN1, but not si-NC controls, significantly reduced AXIN1
expression (Figs 2A and B). The cell viability of AXIN1 knock-
down AC16 cells in the I/R injury model was measured by
the CCK-8 assay. Cells were incubated for 0, 6, 12, and 24 h,
respectively. As shown in Figures 2C, D and F, comparedwith the
I/R models, knockdown of the expression of AXIN1 could
enhance cell proliferation and repress cell apoptosis. The restraint
of AXIN1 knockdown on cell apoptosis was additionally
affirmed by the modification of Bax and Bcl-2 levels (Fig. 2E).
AXIN1 knockdown reduced the production of IL-1, IL-6, and
TNF in I/R-stimulated AC16 cells, implying that AXIN1 silencing
inhibited cell inflammation (Fig. 2G).

AXIN1 is regulated by the transcription factor c-Myc

To understand how AXIN1 influenced I/R-induced injury in
AC16 cells, we considered that c-Myc may be directly bound to
AXIN1.We first overexpressed and silenced c-Myc in AC16 cells,
respectively. The detection of c-Myc silencing and overexpression
efficiency using Western blotting assays is shown in Figure 3A.
Then, we constructed the AXIN1 wild-type or mutant luciferase
plasmids and analyzed them by a double luciferase assay.
Transfection of c-Myc specifically decreased and luciferase jour-
nalist quality merged on the wild-type target grouping, and this
impact was protected by changes in the corresponding restricting

site (Fig. 3B). CHIP experiments showed that transfection of
c-Myc led to a sharp rise in the level of AXIN1 improvement in
controls that had c-Myc (Fig. 3C). And then, we explored the
expression of c-Myc in I/R-stimulated AC16 cells at different
times. As shown in Figures 3D and E, c-Mycwas overexpressed in
I/R-stimulated AC16 cells, with a time-dependent relationship.
We then found out if c-Myc addressed a utilitarian go between of
AXIN1 in directing I/R injury. To address this, we co-transfected
si-c-Myc and c-Myc-OE into AC16 cells before the I/R injury.
AXIN1 articulation in AC16 cells was altogether decreased, and
overexpression of c-Myc improved the outflow of AXIN1
(Fig. 3F).

Silencing of AXIN1 alleviates I/R injury in AC16 cells by
upregulating c-Myc

In I/R-stimulated AC16 cells, transfected si-AXIN1 markedly
reverses the effects of c-Myc-OE cell viability enhancement,
inflammation inhibition, apoptosis defect, and proliferation
promotion (Figs. 4A–D). Moreover, overexpression of c-Myc
cancels out the power of reduced AXIN1 on TNF-α, IL-6, and IL-
1β production levels in I/R-stimulated AC16 cells (Fig. 4E). In
addition, we examined related pathway proteins and found the
same effect. As shown in Figure 4F, Western blotting assays
revealed that in I/R-treated AC16 cells, knockdown of AXIN1
offset the influence of c-Myc-OE, which reduced the expression of
SIRT1 and Nrf 2, but enhanced p53.

Discussion

The system of myocardial I/R injury is a complex pathophysio-
logical process that could prompt unfortunate patient
results. Recently, it has become evident that c-Myc directs
a few cell capacities, including cell development, expansion,
apoptosis, separation, digestion, and neoplastic change[15,16].
Simultaneously, a significant appearance of myocardial I/R injury
is the decline of myocardial cell suitability, the increment of
apoptosis, and the presence of specific safe reactions. Knowing
how c-Myc works at a molecular level will be crucial for devel-
oping molecularly focused therapies. In this article, our data
showed that AXIN1 was overexpressed in I/R-stimulated AC16
cells. According to previous research, AXIN1 has a crucial role in
cardiomyocyte apoptosis produced by I/R activation[19].
According to our findings, AXIN1 controlled I/R-induced car-
diomyocyte damage by altering cell proliferation, inflammation,
and apoptosis. At least in part, we offered a new molecular
explanation for the critical control of AXIN1 in myocardial I/R

Figure 1. AXIN1 is overexpressed in I/R-stimulated AC16 cells. (A). The expression of AXIN1 in AC16 cells wasmeasured by qRT-PCR,N=3. (B) The expression of
AXIN1 was monitored by Western Blot. *P< 0.05,**P<0.01,***P<0.001. I/R, ischemia-reperfusion.
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damage, at least in part. Also, the highly cytoplasmic restriction
of AXIN1 in AC16 cells could give the likelihood of the asso-
ciations between AXIN1 and c-Myc.

The basic function of c-Myc in human illnesses has been
broadly revealed[6,20,21]. For instance, dysregulation of c-Myc is
tightly associated with the development of various cancers, such

Figure 2. Knocking down AXIN1 alleviates I/R injury in AC16 cells. AC16 cells were transfected with or without si-NC or si-SNHG15and then exposed to a control
condition or a condition of oxygen glucose deprivation followed by reperfusion (OGD/R). (A) AXIN1 expression was gauged by qRT-PCR in treated AC16 cells. (B)
AXIN1 expression was gauged by Western Blot in treated AC16 cells. (C) Viability of treated AC16 cells was assessed by CCK-8 assay. (D) Annexin V/PI assay
tested cell apoptosis. (E) Western blot showed the levels of Bax and Bcl-2 in treated AC16 cells. (F) The caspase3 expression in AC16 cells was verified by
Immunofluorescence. (G) The production levels of IL-6and TNF-α in treated AC16 cells were tested by Western Blot. n=3 independent biological replicates.
*P<0.05, **P< 0.01, ***P<0.001. I/R, ischemia-reperfusion.

Figure 3. AXIN1 targets c-Myc. (A) c-Myc expression was gauged by Western Blot in treated AC16 cells. (B) Relative luciferase activity of AXIN1 wild-type (WT-
AXIN1) or mutant (MUT-AXIN1) luciferase reporter was detected in AC16 cells transfected with c-Myc mimic. (C) AC16 cells were transfected with si-c-Myc and
then lysed. CHIP experiment was performed to assess AXIN1 enrichment level using an antibody against c-Myc or IgG. (D) c-Myc expression was gauged by qRT-
PCR in treated AC16 cells. (E) c-Myc expression was gauged by Western Blot in treated AC16 cells. (F) The expression of AXIN1 and c-Myc in treated AC16 cells.
n= 3 independent biological replicates.*P< 0.05, **P<0.01, ***P< 0.001.
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as breast cancer[22], nonsmall cell lung cancer[23], gastric
cancer[24], and prostate cancer[20]. Our findings show that
AXIN1 managed myocardial I/R injury in vitro, most likely via
c-Myc, a controller in cerebral I/R injury. The correlation
between c-Myc and AXIN1 levels in I/R-stimulated AC16 cells

suggests that AXIN1 may act by binding to c-Myc. Furthermore,
up-regulation or down-regulation of c-Myc did not affect AXIN1
expression in I/R-stimulated AC16 cells (Fig. 3F), suggesting that
AXIN1 up-regulation may be the main event. In I/R-stimulated
AC16 cells, transfected si-AXIN1 markedly reverses the effects of

Figure 4. c-Myc is a downstream mediator of AXIN1 function. (A–F): AC16 cells were transfected with or without c-Myc-OE, c-Myc-OE + si-AXIN1, then exposed
to a control condition or a condition of oxygen glucose deprivation followed by reperfusion (OGD/R). (A) Viability of treated AC16 cells was assessed by CCK-8
assay. (B) Annexin V/PI assay tested cell apoptosis. (C)Western blot showed the levels of Bax and Bcl-2 in treated AC16 cells. (D) The caspase3 expression in AC16
cells was verified by Immunofluorescence. (E) The production levels of IL-6and TNF-α in treated AC16 cells were tested byWestern Blot. (F) The expression of p53,
SIRT1 and Nrf 2 in in treated AC16 cells were tested by Western Blot. n= 3 independent biological replicates. *P< 0.05, **P<0.01, ***P< 0.001.
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c-Myc-OE cell viability enhancement, inflammation inhibition,
apoptosis defect, and proliferation promotion. The above
experimental data indicates that c-Myc is downstream of AXIN1.

Based on the effect of si-AXIN1 in AC16 cells with or without
I/R injury compared to si-NC controls, we speculated that
AXIN1 knockdown might be more important in AC16 cells with
I/R playing amore significant role. Furthermore, our results show
that AXIN1 and c-Myc are upregulated in I/R-stimulated human
AC16 cardiomyocytes. Furthermore, AXIN1 can participate in
the dysfunction of various human cells, such as endothelial
cells[25], neurons[26,27], and cancer cells[28–31]. However, we
failed to validate the role of AXIN1 in vivo, which is one of our
limitations. In follow-up, we will construct cardiomyocyte-
specific AXIN1-deficient mice to investigate its role in vivo.

In summary, our discoveries in this study showed a defensive
capacity of AXIN1 overexpression on I/R-animated AC16 cells.
The defensive activities may be delivered by focusing on c-Myc
and the regulation of SIRT1/p53/Nrf2 pathways. This study gives
an original insight into the role of c-Myc in myocardial I/R injury.
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