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The space of enzyme regulation in 
HeLa cells can be inferred from its 
intracellular metabolome
Christian Diener1, Felipe Muñoz-Gonzalez1, Sergio Encarnación2 & Osbaldo Resendis-Antonio1,3

During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase 
proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory 
events on the transcriptional or post-transcriptional level whose identification contributes to the 
rational design of therapeutic targets. We present a mechanistic strategy capable of inferring 
enzymatic regulation from intracellular metabolome measurements that is independent of the actual 
mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic 
constants (k-cone) such that the alteration between two phenotypes is given by their corresponding 
kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we 
identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few 
enzymatic activities change between those two cell lines and that this regulation does not depend on 
gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the 
major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with 
oxidative stress, that affects the activity of the pentose phosphate pathway.

During the development of cancer, cells undergo major metabolic changes to increase their capacity for prolifer-
ation. In many cases, that transition is characterized by an increased usage of fermentation, which is independent 
of the presence of oxygen and caused by a higher flux through glycolysis and diminished activity of the TCA 
cycle1. The resulting decreases in respiration and secretion of lactate have been known since the 1920s and were 
named after Otto Warburg. Although the Warburg effect has been well characterized in the last century, questions 
remain as to which regulatory changes are necessary to cause it2. The recently increased availability of genome 
and proteome technologies has provided great advantages in the analysis of genome-level regulation during the 
formation of cancer3–5. Thus, it has become apparent that regulatory events in cancer development are heteroge-
neous and that the regulatory events causing the Warburg effect may be distinct between different cancer types 
or even patients with the same cancer6,7. Additionally, data on the transcription level may only detect a subset of 
regulatory events, such as changes in gene expression and mutations, but fail to find post-translational regulation 
events such as protein modifications, phosphorylation or allosteric regulation that might have a large impact on 
cancer development8–11.

Therefore, it comes as no surprise that there has been an ongoing effort to combine data from the genome with 
the metabolome, the concentrations of all of the cells’ metabolites12,13. Metabolome data are inherently more com-
plicated to obtain than genome data due to the necessity of different protocols for different metabolites. However, 
the metabolome is also closer to the cellular phenotype, as it forms the basis for growth and cellular health and has 
proven to deliver reliable markers for the detection of cancer12,14. This case holds particularly for the intracellular 
metabolome which gives a detailed snapshot of a cells’ metabolic state and is often more informative than extra-
cellular measurements from biofluids15.

While there exists a wide selection of methods to analyze genomic data and infer regulation events in cancer 
up to the enzyme level, metabolome data are often analyzed solely on the abundance level with only limited abil-
ity to extend this information to the entire biological system or even connect metabolome data to the inferences 
made from genome data. However, there exist some notable exceptions where methods from Systems Biology 
have been applied successfully16,17. Here, a common strategy is to employ fluxome analysis, based mostly on Flux 
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Balance Analysis (FBA) or control theory18–22. FBA has been shown to be a valuable tool in cancer research, albeit 
with certain limitations23. In particular, it is difficult to connect metabolome data to FBA because FBA does not 
treat kinetics explicitly and therefore has no direct quantifiable concept of how metabolite concentrations influ-
ence cellular fluxes. An alternative formulation termed “k-cone” remedies this situation by acting on the space 
of possible kinetic parameters rather than fluxes24–26. In contrast to FBA, it makes assumptions about specific 
kinetics and may give better insight into the systems dynamics than FBA. In the analysis of regulation events, 
k-cone analysis is particularly useful because it expresses the systems properties in terms of individual enzyme 
activities, which can be connected to other omics data such as genome or proteome data that give estimates of 
enzyme concentrations.

In this manuscript, we present the first metabolome profiles for the cancerous HeLa and non-cancerous 
HaCaT cell lines. We use the k-cone formalism to obtain a differential analysis of enzyme activities between the 
two cell lines, as that formulation can use metabolome data to provide a mathematical transformation between 
the normal and disease state. Our analysis identifies alterations in the enzyme activities of HeLa cells, many of 
which are consistent with previously identified changes. Furthermore, we also show that there exists a set of 
optional enzyme regulations that may help HeLa cells to alleviate oxidative stress without compromising prolifer-
ation. Taken together, we propose that differential k-cone analysis, which may integrate genome-scale metabolic 
reconstructions and metabolome data, is a suitable conceptual scheme to identify and suggest the regulatory 
mechanisms required to establish the phenotype in cancer cell lines.

Results
Obtaining the k-cone and global stability from metabolome data.  K-cone analysis is closely related 
to the steady state, the state of homeostasis for a metabolic system. During the steady state, metabolite concentra-
tions are constant which gives rise to the steady state equation

⋅ = .S v 0 (1)

Here, S denotes the stoichiometric matrix and v the vector of steady state fluxes. The space of all v that fulfill that 
equation is commonly known as the flux cone. The k-cone is based on the same equation but further assumes a 
distinct structure of the fluxes, where each flux can be decomposed into a kinetic constant and a metabolic term 
given by the metabolite concentrations x as vi =​ kimi(x). This case holds for mass-action kinetics with stoichio-
metries sji

∏=m x x( )
(2)

i
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and gives rise to the k-cone equation

⋅ ⋅ =S M k 0, (3)

where M denotes a diagonal matrix containing the mass-action terms mi(x) on its diagonal24,26. This equation now 
defines a space for all feasible kinetic constants in the steady state, the k-cone. Dividing all reversible biochemical 
reactions into their irreversible individual forward and backward reactions further yields a k-cone that is strictly 
positive. It is important to note that the k-cone does not identify the exact kinetic constants for the system but 
rather the space in which those constants must reside. Furthermore, the k-cone can be constrained by known 
in vivo equilibrium constants (see Supplementary Text)24. Because we were particularly interested in a differen-
tial analysis of enzyme activities, we tried to find expressions relating the k-cone of a normal cellular state to a 
disease state. As we show in detail in the Supplementary Text, given the k-cones for the normal state Kn and the 
disease state Kd, the corresponding mass action term matrices Mn and Md define a diagonal transformation matrix 
T =​ MnMd

−1 such that Kd =​ TKn . Thus, the difference between the normal and the disease state of the entire space 
of steady state kinetic parameters is completely defined by the mass-action terms which can be obtained from 
metabolome data. The diagonal matrix T explains all possible changes in enzyme activity between the normal and 
disease state in a quantitative manner and quantifies the prevalence with which an enzyme is regulated when the 
fluxes are unknown. Specifically, if feasible kinetic constants were randomly sampled from the normal and disease 
k-cones for the same cell, the expectation of their fold changes would be given by the diagonal of T, which is why 
we will denote the entries in T as the expected differential activities (EDAs).

However, one particular normal or disease state only occupies one distinct point, kn or kd, in its respective 
k-cone, Kn or Kd. In the case where the fluxes are known along with the metabolome one can use the mass-action 
kinetics, vi =​ kimi(x), to pinpoint the kinetic constants directly through dividing the fluxes by the corresponding 
mass-action terms mi(x). Based on this argumentation, one can derive a relation that incorporates flux data and 
where kd =​ TWkn (Supplementary Text). Here, W is a diagonal weight matrix containing the steady state flux 
ratios vd/vn. Thus, the transformation of the entire k-cone is given by metabolome data alone, whereas the exact 
position in the respective k-cones is defined by fluxome data. The fluxome of human cell lines is usually unknown, 
but there exist several strategies for using prior information to estimate a feasible flux distribution of cancer cells. 
Here, the most common strategy is to use flux balance analysis (FBA), possibly incorporating other genome-scale 
data, such as gene expression and growth rate measurements27.

Metabolome measurements were obtained for the HaCaT keratinocyte and HeLa cell lines, which are both 
selected for their ability to proliferate independently and have very similar doubling times28–30. Here, HaCaT cells 
were used as an immortalized control, meaning the cell line employs unlimited proliferation but is not cancerous, 
whereas HeLa is a cervical cancer cell line. We quantified a large fraction of the metabolites participating in the 
central carbon metabolism for both cell lines (three biological replications for each cell line, data in Table S1, see 
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Materials and Methods). The obtained log-fold changes in metabolite concentrations are shown in Fig. 1 and were 
consistent with previously published works15,31,32 on different cancers, particularly in showing a strong deregula-
tion of metabolites and intermediates of the glycine and proline metabolisms between HeLa and HaCaT33.

The measured metabolite concentrations were mapped to a model of the central carbon metabolism, extend-
ing a previously published model to yield one with 100 irreversible reactions assuming mass-action kinetics34. 
The model contained all major pathways of central carbon metabolism, such as glycolysis/gluconeogenesis, the 
TCA cycle and the pentose phosphate pathway, as well as simplified versions of cellular respiration and oxidative 
stress (Table S2). Of the measured metabolites, 28 could be mapped to the 43 metabolites in the model and the 
remaining unmapped model metabolites were imputed by previous measurements and assumed to be the same 
in HaCaT and HeLa (see Supplementary Tables S1 and S2 as well as Materials and Methods). This yielded the 100 
mass-action terms of the model, where 71 mass-action terms were based on at least one measured (non-imputed) 
metabolite and 43 mass-action terms contained at least one imputed metabolite.

Using this model, we derived the specific k-cones and transition matrix T from the metabolite measurements, 
yielding a k-cone containing over 80,000 basis vectors. Due to the high dimensionality of the k-cone visualization 
requires a mapping to a lower dimensional space. We employed two different strategies for this purpose. In the 
first attempt, shown in Fig. 2B, we mapped the reduced k-cone onto two dimensions by principal component 
analysis (PCA) and proceeded by clustering the reduced k-cone vectors in order to eliminate identical vectors in 
the reduction (also see Materials and Methods for details on the projection). As an alternative we also employed 
a strategy based on reducing the original k-cone space. Here, we used additional constraints taken from approxi-
mations of in vivo equilibrium constants (Keq) obtained from the equilibrator database35 (http://equilibrator.weiz-
mann.ac.il/) which reduced the k-cone to only 40 basis vectors which were then mapped onto two dimensions 
by PCA (see Fig. S1, Table S2 and Supplementary Text). We observed that on a global scale, the space of enzyme 
activities, as given by the kinetic parameters, was almost identical between the HaCaT and HeLa cell lines, indi-
cating that the differences were limited to reactions with relatively low enzyme activities (compare Fig. 2B and 
Fig. S1A). To see whether there exists a subspace where the k-cones differ, we also visualized the k-cone for only 
those reactions whose mass-action terms changed by at least 2-fold, thus indicating large influences in the matrix 
T (Fig. 2C and S1B). Here, we observed a stronger difference between the k-cone spaces of the normal and control 
group, mostly achieved by slight rotation and strong scaling in the basis vectors. Those results could be observed 
for the complete k-cones as well as for the ones constrained by equilibrium constants.

Given a k-cone basis, it is also possible to evaluate the stability of the entire basis. Here, stability denotes the 
ability of the system to return to its steady state upon slight perturbation. For a detailed explanation refer to 
Supplementary Text. We calculated the stability for all basis vectors in each of the non-reduced k-cones. Because 
every possible steady state solution of kinetic constants must be a linear combination of the k-cone basis vectors, 
the global stability of the system must be a combination of the observed stabilities. The majority of all k-cone basis 
vectors were stable, which is to be expected of biologically relevant steady states (Fig. S1C). However, there was 
also a large group of unstable basis vectors, albeit with very small positive eigenvectors. One should note that due 
to the smaller absolute values of eigenvalues in the unstable states, the stable state will predominate, meaning that 
mixed states composed of stable and unstable basis vectors will most likely be stable (see Supplementary Text). The 
proportion of stable basis vectors in each k-cone remained the same between HaCaT and HeLa cells, suggesting 
that cancer in HeLa cells is essentially a stable state and as difficult to perturb as the non-cancerous HaCaT cells.

Figure 1.  Differential metabolome profile of HeLa versus HaCaT cells. The log2-fold changes between HeLa 
and HaCaT cells (3 biological replicates each). The boxplots denote the distribution of log-fold changes for all 
combinations of HeLa and HaCaT samples. Missing boxes denote metabolites that could not be detected. Some 
replicates also showed missing values and the full data set can be found in Supplementary Table S1.

http://equilibrator.weizmann.ac.il/
http://equilibrator.weizmann.ac.il/
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Inference of enzymatic regulation in HeLa.  As shown in the previous section, the transition given by 
T gives an approximation of enzyme activity fold-changes between the HeLa and HaCaT cell lines and does not 
require explicit calculation of the k-cone. However, because the mass-action terms are based on the products 
of noisy data, special care must be taken to avoid an influence of the reaction order (number of multiplicands 
in the mass-action terms) on the fold-changes and their statistics. Thus, we performed all analyses in log-space 
considering log2T rather than T. The problem of identifying differential enzyme activity is similar to the problem 
of identifying differential gene expression. Thus, analysis methods for microarray data can be applied to the 
mass-action terms if they follow the required log-normal distribution. Because we used mass-action kinetics, the 
logarithmic transformation of the mass-action terms is a weighted sum of the log-transformed metabolite con-
centrations and is approximately normally distributed as long as the log-transformed metabolite concentrations 
are as well. The validity of this assumption was verified by quantile-quantile plots as well as the empirical distri-
bution function of the log-transformed metabolite concentrations (shown in Fig. S2). This assumption allowed 
us to employ methods from microarray analysis, as used by the limma package36. The significance of the observed 
log-fold changes in enzyme activity between HaCaT and HeLa cells was obtained by Welch t-tests using an empir-
ical Bayes estimator for the stable quantification of sample variances37.

There is the possibility that only a subset of the reactions are actually required to maximize proliferation, 
leaving a large window of variation for fluxes that do not directly influence the growth rate. Due to the identical 
model, and thus identical flux cone, for both conditions, those differences would not be detectable with standard 
methods to calculate metabolic fluxes such as sampling from the flux cone or flux balance analysis that would 
both result in the same fluxes for both conditions in average. Because the accuracy of our approximation of dif-
ferential enzyme activity is compromised by large changes in the fluxes between the cell lines, we performed flux 
variability analysis to identify the maximum log-fold change that could be caused by variation in the fluxes. Here, 
we first added a biomass reaction to the model and maximized its flux. This step was followed by flux variability 
analysis to obtain upper bounds for the absolute log-fold change for each reaction flux38. The individual log-fold 
changes were then filtered by those upper bounds to leave only those log-fold changes that could not be counter-
acted by flux variation (see Materials and Methods). This process could be used to identify differential enzyme 
activities that were necessary for optimal proliferation, as they could not be explained by flux variation under 
optimal growth. This analysis can be interpreted as identifying dimensions in the k-cones that do not overlap 
between normal and disease conditions.

The mean log-fold changes for the EDAs in each reaction are shown in Fig. 3. Reactions with a significant 
p-value (FDR corrected p <​ 0.05) in their EDAs are indicated in Fig. 4A, and their individual log-fold changes 
along with their flux variation are shown in Fig. 4B. Mean log fold changes along with their credible intervals are 
reported in Supplementary Table S3.

Notably, many of the enzymes with significant EDAs are already known to be altered in cancer. Those enzymes 
include phosphofructokinase, phosphoglycerate mutase, pyruvate kinase, 6-phosphogluconate dehydroge-
nase, pyruvate dehydrogenase and aconitase39–45. Previously unknown regulation events include a retention of 
glucose-6-phosphate, an increased production rate of PRPP (5-Phospho-alpha-D-ribose 1-diphosphate) and a 

Figure 2.  The k-cone space of HaCaT and HeLa cells. (A) Missing data are imputed within or across 
conditions using the measured concentrations. The “+​” sign denotes newly imputed values. Only metabolites 
completely lacking from measurements are obtained from the HMDB database. Enzyme activities in a disease 
state are given by a distinct transformation of enzyme activities from a healthy reference, composed of a 
transformation matrix T, which transforms the entire k-cone space and is given by metabolome data alone, 
and a weight matrix W, which maps the distinct points of enzyme activities in the k-cone spaces and requires 
fluxome data. For visualization purposes, the k-cone spaces were reduced to the two dimensions explaining 
the highest variance. (B) Projection of k-cone spaces for HaCaT metabolome measurements (blue) and HeLa 
(red). The axes correspond to the two largest eigenvectors of the entire space and the annotations denote 
reactions with the highest absolute loadings in those eigenvectors. Arrows denote the clusters of basis vectors 
of the respective k-cones and shaded areas denote the space within the k-cone; thus, all points falling in this 
area denote feasible enzyme activities (3 measurements for each cell line). The relative error of the dimension 
reduction is 6.7%. The mean distance within arrow clusters is 0.13. (C) K-cone spaces for only those reactions 
whose mass-action terms changed at least by a factor of 2. The relative error of the projection was 6.9%, and the 
mean distance within arrow clusters was 2.8e-5.
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strongly accelerated production of glyceraldehyde 3-phosphate. Additionally, the EDAs predict a strong dysreg-
ulation of TCA cycle enzyme activities as well as increased ATP usage and lactate export in HeLa cells, all con-
sistent with the Warburg effect14. The set of necessary regulations for proliferation consisted of the up-regulation 
of four glycolytic enzymes, the up-regulation of ATP synthesis and the increased export of lactate. Thus, the 
Warburg effect in HeLa cells seems to be a consequence of maintaining a high proliferation rate. In general, the 
strongest regulation was observed for phosphofructokinase, which showed an 8-fold increase in enzyme activity 
in HeLa compared to the HaCaT cell line. Because phosphofructokinase is allosterically regulated by ATP, citrate 
and pH, this regulation is consistent with the observed lower concentrations of ATP, citrate and lactate as shown 
in Fig. 1 46.

Relation to gene expression and coregulation of heterogeneous enzyme activities.  Given our pre-
dictions of differential enzyme activity based on metabolome data (EDAs), we also investigated how well these data 
would correlate with differential gene expression in HaCaT and HeLa cells and, thus, whether the observed changes 
in enzyme activity are due to changes in gene expression. For this purpose, we assembled a data set consisting  
of 58 microarray samples (20 HaCaT and keratinocytes and 38 HeLa) on a single platform (HGU133Plus 2.0)  
obtained from the GEO database47. Here, the keratinocyte samples were added because only very few HaCaT 
samples were available in the GEO database. Their validity was checked by PCA and clustering over the expression  
values, which consistently grouped the keratinocyte samples together with the HaCaT samples (Fig. S2 and 
Supplementary Text). All samples in the list were curated manually to ensure that they described untreated 
conditions, and they can be found in Supplementary Table S4. We found that log-fold changes obtained from 
EDAs and gene expression did not correlate on a global level (see Fig. 5A, Pearson product-moment correlation  
<​0.01, p >​ 0.83). However, some of the enzymes with the largest changes in activity also showed significant changes 
in gene expression (compare Table S5), particularly phosphofructokinase, glucose-6-phosphate isomerase and 
phosphoglucokinase. As shown in Fig. 5A, enzymes participating in the pentose phosphate pathway and TCA cycle 
with a significant change in enzyme activity, as predicted by metabolome data, often showed significant changes 
in gene expression, but in many cases in the opposite direction (meaning they were up-regulated in their EDA but 
down-regulated in gene expression and vice versa; also see Supplementary Text). In total, genomic regulation is 
mostly active in glycolysis. However, gene expression in general is not a good predictor of differential enzyme activity,  
suggesting that the primary regulation of metabolism in HeLa cells occurs on the post-transcriptional level.

Genomic analysis of human cancers has already shown that metabolic regulation in cancer can be highly het-
erogeneous and varies greatly among different cancers and even within patients with the same cancer7. Here, we 
aimed to analyze the heterogeneity of regulation on a metabolic level. Log-fold changes of enzyme activity within 
HaCaT samples and between HeLa and HaCaT samples both showed strong variations (compare Figs 3 and 4B). 
To analyze this phenomenon in more detail, we calculated standard deviations for all obtained log-fold changes of 
the EDAs for the control log-fold changes (within HaCaT) and differential log-fold changes (between HeLa and 
HaCaT). Here, standard deviations were mostly conserved on a reaction level between the HeLa and HaCaT cell 
lines, and most standard deviations for enzyme activities from the HeLa samples remained in the range of 3-fold 
(0.33 to 3) standard deviations within the HaCaT samples (see Fig. 5B). The largest variations within HaCaT and 
between HeLa and HaCaT could be observed for reactions alleviating oxidative stress and the reactions of the 
TCA cycle, indicating that both HaCaT and HeLa cells show variations in the regulation of enzymes involved 
in oxidative stress and the TCA cycle. Although gene expression was not a good predictor of enzyme activity 
changes, the heterogeneity seemed to be consistent with previously reported measurements of gene expression 
which also identified the TCA cycle and oxidative stress genes as the most heterogeneous ones in both normal 
and cancer cells7.

To identify reactions with specifically increased heterogeneity in cancer, we selected reactions whose variation 
increased by at least 3-fold in HeLa cells compared to HaCaT cells. For the EDAs, this selection produced a set of 
11 reactions involved in the pentose phosphate pathway, glycolysis and respiration as well as increased ATP usage 

Figure 3.  Global changes in enzyme activity between HeLa and HaCaT cells. Changes in enzyme activities 
are shown as mean log2-fold changes between HeLa and HaCaT cells. Each point denotes a single irreversible 
reaction, and reactions are grouped by metabolic pathway. Circles denotes the expected differential enzyme 
activities predicted by the transformation matrix T, and triangles denote regulations that are necessary for 
proliferation.
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(see Fig. 5C). Log-fold changes of those reactions were highly correlated and formed two blocks, one connecting 
a high ATP usage, respiration and the late phase of glycolysis and another connecting reactions of the pentose 
phosphate pathway. Both of these blocks were connected by phosphofructokinase (PFK), showing a strong influ-
ence of PFK in the balancing of respiration with the pentose phosphate pathway.

Figure 4.  Reaction-level differences of enzymatic activity. (A) Reactions with significantly (corrected 
p <​ 0.05) altered enzyme activities between HeLa and HaCaT cell lines are indicated by colored arrows in the 
direction of the alteration together with their mean fold changes. Regulations that are necessary for proliferation 
(worst case corrected p <​ 0.05) are marked with green asterisks. (B) Log-fold changes between all combinations 
of HeLa and HaCaT samples (3 biological replicates each). Colors from blue to red denote log-fold changes and 
columns are sorted by increasing p-values from left to right. The upper bounds for the fluxes absolute log-fold 
changes as estimated from flux variability analysis are shown in green.

Figure 5.  Heterogeneity and co-regulation in HeLa cells. (A) Comparison of the log-fold changes in enzyme 
activity by either gene expression analysis of 58 microarray samples (20 HaCaT/keratinocyte and 38 HeLa) 
or the EDAs obtained from metabolome data. Colors denote pathways and are the same as in Fig. 2 and panel 
B of this figure. Triangles denote enzymes that are significantly regulated in their EDAs and gene expression. 
(B) Standard deviations of HeLa/HaCaT log-fold changes as obtained after optimizations. Each point denotes 
a reaction, and the colors are the same as used in Fig. 2. The blue-shaded area denotes a change in standard 
deviation from HaCaT to HeLa by a factor of 3. The blue line denotes a 1:1 relationship between standard 
deviations. (C) Correlation matrix for log-fold changes in differential heterogeneous reactions in HeLa cells, as 
obtained from the EDAs. Names denote enzymes and the type of regulation relative to HaCaT cells is denoted 
in brackets. (D) Illustration of the proposed major metabolic changes in HeLa cells. Proliferation in HeLa cells 
requires higher enzyme activities in glycolysis (mostly due to phosphofructokinase) and increased fidelity in 
the entry to the TCA cycle (red arrows). Additionally, higher activity in the TCA cycle and respiration lead to 
up-regulation of the pentose phosphate pathway which is drained into NADPH, nucleotide precursors and 
glycolytic intermediates (blue arrows).
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Because in our results phosphofructokinase up-regulation is the most prominent change necessary for pro-
liferation, we suggest the mechanism illustrated in Fig. 5D, where HeLa cells divert most of their metabolism 
towards glycolysis and use the pentose phosphate pathway only when a higher respiration requires it.

Discussion
As we have shown, differential k-cone analysis is capable of suggesting regulated enzymes in the transition to can-
cer for the central carbon metabolism of HeLa cells. We feel that this method is particularly well-suited to exam-
ining the regulation of non-essential enzymes or enzymes that are not visibly affected on the genome level, as it 
detects regulation on the metabolome level, explicitly including post-transcriptional regulation events. Analysis 
based on the k-cone, as performed here, combines well with existing methods such as FBA or control theory by 
integrating data from the metabolome and thus giving a more appropriate description of the phenotype48. In 
particular, the quantities used in the k-cone method are very similar to FBA and create the possibility of incorpo-
rating prior knowledge in the form of the matrix W containing the flux ratios.

However, it is also important to note the limitations of our results. At least in the analysis we performed here, 
the method assumed the kinetics to be governed by the mass-action law, which is, at best, an approximation of 
the most likely more complex underlying kinetics. Another limitation is lacking metabolite measurements for 
metabolites included in the used model. The analyses, as we performed here, aimed to be conservative, meaning 
that we treated cases with missing data as non-differential.

Our results suggest that the activities of many enzymes in the central carbon metabolism of HeLa cells are 
similar to the activities found in the non-cancerous HaCaT cells. However, there is a small set of enzymes that can 
alter their activities in the two cell lines, and those changes do not seem to affect the stability of the system. Those 
regulation events can be further subdivided into a small set of necessary regulations required for proliferation 
and a slightly larger set of enzymes that can be regulated on a on-demand basis. Here, the up-regulation of phos-
phofructokinase (PFK) seems to be the major driver for maintaining proliferation, which explains the require-
ment of the Warburg effect, as a high concentration of lactate, citrate or unused ATP can allosterically inhibit  
phosphofructokinase46,49. As such, it might be beneficial for HeLa cells to limit the production of ATP in the TCA 
cycle to maintain a more active PFK. One of the optional regulation events in HeLa cells is a strong regulation of 
the entry and exits of the pentose phosphate pathway. This regulation caters to the needs of the cancer by draining 
the pentose phosphate pathway into ribonucleotide and glycolytic precursors while simultaneously producing 
NADPH, which is required to alleviate oxidative stress. Interestingly, our results propose an up-regulation of 
almost all enzymes in the central carbon metabolism using fructose 6-phosphate as a substrate, which might 
be associated with its necessity for glycolysis and the production of nucleotide precursors (compare Fig. 4).  
In our analysis, mitochondrial and oxidative stress enzyme activity show high variation in individual HeLa 
cell cultures and are correlated with pentose phosphate pathway enzyme activity (Fig. 5). Additionally, some 
of the genes associated with oxidative stress are among the most down-regulated ones (compare Fig. 5A and 
Table S5). This finding suggests a low tolerance of HeLa cells to oxidative stress in the default state, as most of 
glucose-6-phosphate is diverted into glycolysis by a more active PFK. However, this low tolerance can be counter-
acted by a high fidelity in deviating flux into the pentose phosphate pathway. There is some evidence that fidelity 
to oxidative stress is indeed due to the precedence of faster metabolic regulations50. However, at this stage, it is 
impossible to say whether this is an observation specific to the comparison of HeLa to HaCaT cells or a general 
mechanisms in various human cancers. There is some slight evidence of abnormal transaldolase activity in cancer, 
but not to the extent that we observed here51,52. Finally, experiments in yeast and B. subtilis suggest that large parts 
of the central carbon metabolism are regulated on a post-transcriptional level rather than on a transcriptional 
level, which seems to be the case particularly for the pentose phosphate pathway and late glycolysis, which we 
also find strongly regulated here22,53–55. Further investigation of this putative phenomenon could be of medical 
interest. Many of the more severe treatment options such as chemotherapy rely upon increasing oxidative stress in 
cancer cells. Thus, optional signatures of enzyme activity indicating a strong ability to combat oxidative stress via 
the pentose phosphate pathway might have consequences for the treatment options of those particular cancers.

We also observed that the metabolic differences between cancer and healthy cells are caused by the alteration 
of only a few enzymes. This result stands in contrast to mRNA measurements, which often suggest that cancer 
alters the expression of the majority of enzymes in the central carbon metabolism7. Thus, it seems that not all 
genomic aberrations are capable of affecting the dynamics of the underlying metabolic network sufficiently, and 
this result further outlines the necessity of methods that can map regulatory events in cancer to effects on metab-
olite abundances, which are closely connected to the resulting phenotype. Consequently, it would be worthwhile 
to combine the presented methods with existing omics data. For instance, one could study whether certain sig-
natures in mRNA expression or protein abundance changes are associated with a particular change in enzyme 
activity. We feel that such a combination of methodologies could yield insights into the metabolic state of cancer 
cells and help understand their ruling principles, elucidate the heterogeneous causes of cancer and potentially 
identify new targets to halt or delay cancer progression.

Materials and Methods
Metabolome measurements.  Measurement of the ionic metabolites was performed using the CE-MS sys-
tem. The HeLa cell line was provided by the oncology laboratory of the Centro Medico Siglo XXI, which belongs 
to the Instituto Mexicano del Seguro Social. The HaCaT cell line was donated by the Centro de Investigación 
Sobre Enfermedades Infecciosas, which belongs to the Instituto Nacional de Salud Pública. Cell lines were cul-
tured in RPMI-advanced as previously described by our group56. For each of the two cell lines, we obtained 
three biological replicates. First, 5 · 106 cells were harvested at 70% confluence with 2 ml MeOH including the 
internal standards. Then, 1.6 ml of cell suspension was transferred to microcentrifuge tubes containing 1.6 ml of 
CHCl3 plus 640 μ​l of milliQ water, vortexed and then centrifuged at 2300 g and 4 °C for 5 minutes. 1.5 ml of the 
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transferred aqueous layer was filtered through a Millipore 5-kDa cutoff and evaporated to dryness using a cen-
trifugal evaporator. The measurement and quantification of extracted metabolites were performed by a commer-
cial provider using a capillary electrophoresis (CE) connected to an ESI-TOF-MS with an electrophoresis buffer 
(Solution ID H3302-1021, Human Metabolome Technologies Inc., Tsuruoka, Japan).

Abundances were transformed into concentrations by dividing by the total volume of the 106 cells, assuming 
an individual cell volume of 1.54 fl57. Hydrogen was not considered in the model due to lack of concentration  
(or intracellular pH) measurements.

Missing metabolite concentrations required in the model were imputed in multiple steps. First, missing data 
were imputed from measurements within the same cell line, followed by imputation across the two cell lines. 
Concentrations for metabolites that could not be detected in either of the two cell lines were obtained from the 
Human Metabolome database, primarily using cytosolic concentration measurements and falling back to blood 
measurements if cytosolic measurements were not available58. The actual values of those imputed concentrations 
were only of importance for the stability analysis described below. During differential analysis, metabolites with 
missing measurements for either cell line were assigned fold-changes of one due to the nature of the imputation 
procedure. As such, we made the implicit assumption that missing metabolite concentrations did not change 
across the two cell lines.

Data availability and reproducibility.  The raw data used for the analysis are provided in Supplementary 
Tables S1, S2 and S4. The methods of data handling, optimization and analysis were implemented in the dycone 
R package available at https://github.com/cdiener/dycone together with installation instructions (doi: 10.5281/
zenodo.49987). A detailed protocol describing the steps taken to generate all figures and results in this paper 
is given in the Supplementary Text. To adhere to Open Science standards, the protocol is also available as R 
Markdown document together with the raw data files at https://github.com/cdiener/kcone-paper and can be used 
to reproduce all analyses in this manuscript.

Model specification and k-cone calculations.  The underlying kinetic model was obtained by extending 
a previously published model that had been validated by experimental data. The model was updated by annotat-
ing all reactions with their respective IDs from KEGG and adjusting the hydrogen balances to coincide with the 
ones reported in KEGG. We added additional reactions summarizing core mechanisms such as the neutralization 
of peroxide, import of glutamine, as well as the production of ATP and reduction of NADH in the mitochondria. 
Appropriate exchange reactions were added to molecules that could either be produced or consumed by meta-
bolic processes not included in the model or obtained from the extracellular environment. The complete model 
specification can be found in Table S1, which is also the exact file read to generate the presented results.

A complete mathematical derivation of the formalism can be found in Supplementary Text. The k-cones for 
various metabolite measurements are obtained from the flux cone V. Because the flux cone equations define 
the H-representation of a polyhedral cone, obtaining the basis for the flux cone is equivalent to the vertex 
enumeration problem, which was solved using the method of Fukuda et al.59 using the Rcdd package (https://
cran.r-project.org/web/packages/rcdd) on a H-representation with redundancies removed. Basis elements were 
normalized to unit length. The non-reduced individual k-cones, individual k-cones were calculated as M−1V, 
where M denotes the diagonal matrix with the mass action terms on its diagonal. The k-cones which where addi-
tionally constrained by equilibrium constants were calculated individually by adding the respective equilibrium 
constraints to the k-cone equation (see Supplementary Text). Visualization of the k-cones was performed by first 
performing dimensionality reduction using principal component analysis, followed by k-means clustering of 
the reduced vectors to avoid overlap for the k-cones not constrained by equilibrium constants. The convex hull, 
representing the shadow cast by the k-cone into the lower dimension, was calculated by identifying the set of 
non-redundant vectors in the reduced polytope.

The stability of the k-cone was obtained from calculations as detailed in Supplementary Text. Derivatives for 
the mass-action kinetics were derived analytically for each reaction and the Jacobian matrix constructed for each 
of the basis vectors of the corresponding flux cone. The stability for one basis vector was then evaluated based on 
the eigenvalues of the Jacobian matrices. The basis vector was identified as stable if all eigenvalues were smaller 
than −​ε​ (where ε​ denotes the double float machine accuracy) and unstable if at least one eigenvalue was larger 
than ε​.

Optimization and differential analysis.  Approximations of changes in enzyme activities were either 
obtained by the transformation T via calculating its log-diagonal log2 diag(T) =​ log2 (k2/k1) for T =​ M1M2

−1, as 
derived in the Supplementary Text.

Necessity for proliferation was performed by first appending a biomass reaction to the model and identifying 
the maximum permissible flux through that reaction. The biomass reaction was adapted from Recon 260. Here, 
we mapped metabolites or precursors from our model to the metabolites included in the Recon 2 model (version 
2.02, also see Supplementary Text). In the case that one precursor could produce several metabolites in Recon 2, 
we used the maximum stoichiometry of the associated products. Given the resulting biomass reaction flux vbm, this 
procedure gave rise to the following linear programming program for the flux balance analysis18 of the fluxes vi:

. . ⋅ =
≤ ≤ .−

v
s t S v

v

max
0

10 1 (4)

bm

i
16
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Here, the upper bound could be chosen arbitrarily, as later calculations used only the flux ratios, which are 
invariant to the upper bound. Lower bounds for the fluxes were chosen as 10−16 to ensure a non-zero flux for each 
reaction, as all reactions of the central carbon metabolism should be active in the cell lines used.

After obtaining the maximum biomass flux vmax, the upper and lower flux limits were obtained by solving two 
linear programming problems for each flux vi:

. . ⋅ =
≤ ≤
≥ .

−

v
s t S v

v
v v

min/ max
0

10 1
(5)

i

i

bm

16

max

The largest absolute log-fold change that could be explained by flux variability analysis could now be obtained as

= − .lf c v vlog (max ) log (min ) (6)i imax 2 2

Finally, all individual log-fold changes obtained from the EDAs whose absolute value exceeded that of lfcmax were 
deemed necessary for proliferation.

All log-fold changes, obtained by the transformation T, were handled in the same way. Significance measures 
were obtained by performing Welch t-tests on the log-transformed mass-action terms after validating their nor-
mal distributions (Fig. S1). Sample variances were estimated using the empirical Bayes method as implemented 
in limma36,37. P-values obtained for all reactions were finally adjusted to q-values (false discovery cutoffs) by the 
method of Benjamini-Hochberg61. As an alternative to hypothesis testing, we also estimated log-fold changes by 
a combinatorial method. First, control log-fold changes were obtained from all permutations of HaCaT samples, 
yielding 6 control log-fold changes for each reaction with a zero mean. Log-fold changes were also obtained for 
all combinations of HeLa samples with a HaCaT samples, yielding 9 differential but possibly interdependent 
log-fold changes. Those combinatorial estimates were then used to obtain 95% credible intervals using the Bayes 
bootstrap62. The 95% credible intervals denote the one interval which contains the true log-fold change with 95% 
probability. The obtained p-values, as well as the mean log-fold, worst-case estimates, 95% credible intervals and 
standard deviations for the EDAs are reported in Table S3.

Gene expression and coregulation.  Fifty-eight microarray samples were manually selected from the 
GEO database by selecting for samples from a single platform (HGU133Plus 2.0), in untreated conditions and 
only for the previously used cell lines (HaCaT, keratinocytes and HeLa). The analysis of gene expression was per-
formed by normalizing the raw data for the 58 samples by Frozen Robust Multiarray Analysis (fRMA), followed 
by differential analysis using the limma package, particularly its empirical Bayes method36,63. The exact protocol 
for the analysis can again be found in the Supplementary Text.

Standard deviations for log-fold changes of enzyme activities were obtained from the 9 possible Hela/HaCaT 
sample combinations of log-fold changes as used in the approximation of credible intervals. To obtain an esti-
mate for the standard deviation in untreated conditions we used the control samples obtained from the paired 
permutations of HaCaT samples, as previously described. Given the control standard deviation σ​c and the differ-
ential standard deviation σ​d (obtained from the log-fold change samples described before), a reaction was consid-
ered differentially heterogeneous if σ​d/σ​c >​ 3, based on the visualization in Fig. 5B that showed that the majority 
of reactions fell into that margin. Correlation between the selected heterogeneous enzymes was calculated by 
Pearson correlation between the corresponding 9 HeLa/HaCaT log-fold changes.
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