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Abstract
In this paper we introduce a formalism that allows to describe the response of a part
of a biochemical system in terms of renewal equations. In particular, we examine
under which conditions the interactions between the different parts of a chemical
system, described by means of linear ODEs, can be represented in terms of renewal
equations. We show also how to apply the formalism developed in this paper to some
particular types of linear and non-linear ODEs, modelling some biochemical systems
of interest in biology (for instance, some time-dependent versions of the classical
Hopfield model of kinetic proofreading). We also analyse some of the properties of
the renewal equations that we are interested in, as the long-time behaviour of their
solution. Furthermore, we prove that the kernels characterising the renewal equations
derived by biochemical system with reactions that satisfy the detail balance condition
belong to the class of completely monotone functions.

Keywords Renewal equations · Response functions · Non-Markovian dynamics ·
Biochemical systems

1 Introduction

Abasic problem inbiology is to determine the response of a system (thatmight be a cell,
a cell organelle, a specific biochemical network or a tissue) to a chemical signal. The
response typically might be a chemical, electrical or mechanical output. A formalism
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relating the input and the output using the so-called response-time distribution has been
proposed in Thurley et al. (2018). In particular, this formalism has been applied there
to study signaling mechanisms between different immune cells. The goal of this paper
is to formulate precise mathematical conditions which allow to use the formalism of
Thurley et al. (2018) to model general biochemical systems.

In the simplest model the relation between the input signal I (t) and the output R(t)
of a system is given by

dN (t)

dt
= R(t)

R (t) = R0 (t) +
∫ t

0
ψ (t − s, N (s)) I (s) ds.

(1)

In this formula N (t) is the density of elements in the system, R0 (t) is a transient
response, associated to the initial state of the system and the integral term describes
the response to the input I (t) . The function R0 is also called forcing function, see
for instance (Diekmann et al. 1998). The input/output functions I (t) and R (t) might
be vectors, if the system under consideration has several inputs and several outputs.
Therefore, in general, ψ would be a matrix.

Notice that the formalism of response functions, using equations like (1), is par-
ticularly suited to study biological systems, specifically biochemical systems. Indeed,
due to the large number of substances involved in these processes, it is often difficult
to determine all the reactions, as well as the relevant chemical coefficients, that would
be needed to model the system in detail. On the other hand, response equations with
the form (1) (or non-linear versions of it) require only the knowledge of the function
ψ , which, in principle, can be determined experimentally from measurements of the
behaviour of the system.

It is worth to mention that systems with the form (1) have been extensively used
in the modeling of biological systems. The earliest example appears in population
dynamics, specifically in demography, see the seminal work by Sharpe and Lotka
firstly published in 1911 in Philosophical Magazine, Series, Vol.21: 435–438 and
more recently published in Sharpe and Lotka (1977). Similar approaches to the one
in Thurley et al. (2018) can be found in models of immune systems, see for instance
(Busse et al. 2010), in models that describe the production ofCa2+, see (Moenke et al.
2012; Thurley and Falcke 2011), in models of kinetic proofreading (Bel et al. 2009)
and in models of the circadian rhythms (Thurley et al. 2017).

In this paper, motivated by the work in Thurley et al. (2018), we analyze under
which conditions it is possible to study the interactions of different parts of a bio-
chemical system by means of a set of response functions that generalizes (1). In the
case of a linear system, our approach consists in considering a (large) subset of reac-
tions as an unique object. In this paper, we call this object compartment. Our interest
is to understand the interactions between different compartments. In fact, these inter-
actions are described in detail by response functions ψ , that can be derived from the
reactions taking place inside each compartment. Once the response functions have
been derived, one can study the resulting response function equation and ignore the
detailed information on the processes taking place inside each compartment.
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We anticipate that the evolution of the number of elements Nα in the compartment α
will be described, in the linear case and under suitable assumptions on the interactions
between the compartments of the biochemical system, by the following system of
equations

dNα(t)

dt
= Bα(t) − Dα(t), Nα(0) = N 0

α (2)

where Bα satisfies the renewal equation

Bα(t) = B0
α(t) +

∑
β �=α

∫ t

0
Bβ(s)�βα(t − s)ds (3)

and where Dα is a function of Bα , namely

Dα(t) = D0
α(t) +

∫ t

0
kα(t − s)Bα(s)ds. (4)

In our study, the variable α ∈ X is usually a compartment of a larger system �. More
precisely, � is the set of all possible states of elements in the system. Then, X is a
partition of �, i.e. X is the set of all compartments α. We assume that �, and hence
also X , is finite. In particular, (2)–(4) is a finite system of equations. In this paper we
mainly study the system of Eqs. (2)–(4). However we also analyse a generalization
of it, called GRFE (see Sect. 2.2) where no assumption is required on the interactions
between the compartments of the network.

We will refer from now on to the Eqs. (2)–(4) as Response Function Equations
(RFEs). Notice that we are assuming that the chemicals in the system are in different
states and the changes in the density of elements in a certain state is only due to jumps
from one state to another. Hence, in this paper we restrict ourselves to conservative
system, i.e. systems for which the total number of elements is constant in time. How-
ever, it would be possible to study also non-conservative systems, similar to the ones
which appear naturally in population dynamics, see e.g. Diekmann et al. (1998).

The functions Bα, Dα yield the total fluxes of elements from any compartment
β ∈ X towards α ∈ X , α �= β and from the compartment α towards any other
compartment β ∈ X , β �= α respectively. Notice that the set of functions {Bα} , {Dα}
are related bymeans of input-response equations of the form (1).More precisely, a flux
Bβ(s) arriving to the compartment β ∈ X at time s yields a response Bβ(s)�βα(t−s)
at the compartment α at time t . The formula yielding Bα(t) in (3) takes into account
the sum of the fluxes arriving to the compartment β for all times s ∈ (0, t) .

The function D0
α is the total flux of elements, that were already in the compartment

α at time 0, to any compartment β ∈ X . Similarly B0
α is the flux of elements arriving

in α from any compartment β, given that they where in β already at time equal zero.
Since we assume that

∑
α∈X Nα is conserved, we assume

∑
α∈X D0

α = ∑
α∈X B0

α

as well as

kα =
∑

β∈X\{α}
�αβ. (5)
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Furthermore, for consistency, we need to assume

Nα(0) ≥
∫ ∞

0
D0

α(t)dt (6)

for every α ∈ X . This is a natural assumption that guarantees that the out-flux from
the compartment α of the elements, which where in α already at time t = 0, must be
less than the total number of elements in α at time 0.

Finally, we assume

∑
β∈X\{α}

∫ ∞

0
�αβ(t) dt = 1, (7)

if it is possible to go from compartment α to any other compartment β. Otherwise, if
α is not connected to any β ∈ X then

∑
β∈X\{α}

∫ ∞

0
�αβ(t) dt = 0. (8)

Assumption (7) guarantees that an element moves away from a certain state in finite
time with probability one.

Equations of the form (2)–(4) are one of the main objects of our study in this paper.
Although in this paper we are mainly concerned with linear models, we also introduce
some non-linear variants.

Let us recall that equations of the form (3) are commonly referred to as renewal
equations, (REs). Such equations, as well as some non-linear versions of them, have
been extensively studied in the mathematical literature. For instance, they have been
used to analyze structured populations, see e.g. Feller (1967), Diekmann et al. (1998),
Gripenberg et al. (1990), Franco et al. (2021, 2023), or epidemiological models, see
e.g. Diekmann et al. (2013), Inaba (2017), Kermack and McKendrick (1927). Simi-
lar equations, in which �αβ contain in addition a dependence on the concentrations{
Nγ

}
γ∈�

, have been considered in Thurley et al. (2018).
It is known that linear renewal equations modelling the evolution in time of a

structured population can be reformulated as a partial differential equation with a
transport term and with birth-death terms. See for instance (Calsina et al. 2016).
Similarly, this is possible for the RFEs (2)–(4). The corresponding PDEs contain a
transport term and birth-death terms. We refer to these types of models as structured
population equations (SPEs). They have the form

∂t fα(t, x) + ∂x fα(t, x) = −	α(x) fα(t, x), x ≥ 0, t ≥ 0, α ∈ X

fα (t, 0) =
∑

β∈X\{α}

∫ ∞

0
λβα(x) fβ(t, x)dx

fα(0, x) = fα,0 (x)

(9)

123



Description of chemical systems by means of response functions Page 5 of 56    31 

where 	α(x) := ∑
X\{α} λαβ(x) ≥ 0.

In the context of this paper, the family of solutions { fα(t, x)} of the Eq. (9)
is the density of elements with state in the compartment α ∈ X and with age
x at time t . The particular type of SPEs considered here is conservative, i.e.
∂t
(∑

α∈�

∫∞
0 fα(t, x)dx

) = 0. Notice that in these equations we assume that the
elements of the population with trait in α and age x are removed with rate 	α(x) and
they re-appear in the population as elements with trait in β �= α and age x = 0 at rate
λαβ .

Usually in classical structured population models the parameter x could be the
age, the size or the immunity level against a certain pathogen, see (Diekmann et al.
1998; Franco et al. 2021). In this model x is the time for which an element has
been in a certain compartment. Introducing the age structure allows to reduce the non-
Markovian system of RFEs, with forcing function B0

α satisfying a suitable consistency
condition (cf. 67), to a Markovian system of PDEs. Here with Markovian system of
PDEs we mean that the transition from a certain state to another one does not depend
on the history of the function { fα}.

Let us remark that SPEs of the form (9) have been extensively used in Mathemat-
ical Biology, in particular in population dynamics, see for instance (Perthame 2006).
Solutions to SPEs describe the evolution of individuals (e.g. cells, humans, animals,
etc.) in a population structured via a certain variable (e.g. age, size, immunity against
a certain pathogen). In this paper, we study the equivalence of a generalization of the
SPE (9) with a generalization of the RFE (2)–(4), namely the GRFE (see Sect. 2.3).

Chemical systems in Systems Biology are often formulated as ODEs. Here, we
denote by� the finite set of possible states of the elements in the system. The elements
are for instance cells in different states or, alternatively, chemical substances which
can be transformed in another one by means of chemical reactions.

The system is described by a finite number of concentrations n(t) = (ni (t))i∈� ∈
R

|�|
+ . Here, |�| ∈ N denotes the total number of states. The concentrations evolve

according to ODEs of the form

dn

dt
(t) = An(t), n (0) = n0, (10)

where the matrix A ∈ R
|�|×|�| satisfies

Aii = −
∑

k∈�\{i}
Aki for all i ∈ � Aki ≥ 0 for k �= i .

As we will see in this paper, one can reduce a system of ODEs (10) to the RFEs
(2)–(4). To this end, we partition the set of states � into compartments, i.e. in a
family of disjoint sets α ∈ X . Then, our study concerns merely the concentrations
Nα = ∑

k∈α nk within each compartment α ∈ X as well as the inward and outward
fluxes. Let us mention that for general choices of matrices A these fluxes solve more
general RFEs than those in (2)–(4).

It is important to remark that, while the evolution of the solution n ∈ R
|�|
+ of (10)

is Markovian, the evolution of {Nα}α∈X is non-Markovian. Therefore, we say that
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reformulating theODEs (10) as a RFE is a demarkovianization process. Notice that the
ODEs (10) are in general not equivalent to the RFEs (2)–(4), unless some information
on the internal states of each compartment is available. However, the information on
the evolution of internal states before time 0 is contained in the functions {D0

α} and
{B0

α}. Similarly, the response functions �αβ(t) are given by the evolution of internal
states at time t .

Once a RFE has been derived from a ODEs system, we can think of each com-
partment as a black box. The RFE model describes interactions between these black
boxes. On the other hand, the concentrations nk can be interpreted as a set of internal
variables, which characterize each compartment completely. The demarkovianization
procedure yields a system with a smaller number of variables. Thus, one replaces a
large Markovian system by a smaller non-Markovian system.

This procedure is reminiscent of the construction of so-called hiddenMarkov mod-
els (cf. Baum and Petrie (1966)). The goal in that case is to study the evolution of a
Markov-process X, with unobservable (hidden) variables, by analysing only the evo-
lution of the observable variables. We refer to Bishop and Thompson (1986) where
hidden Markov processes have been applied to analyse DNA sequences for the first
time.

It is relevant tomention that the demarkovianization process in this paper is different
from a procedure called lumping, which has been extensively studied in chemical
engineering, see (Atay and Roncoroni 2017). In lumping a large system of ODEs is
reduced to a smaller system of ODEs, i.e. a Markovian process. This is only possible
if the initial system of ODEs has a particular structure. In the procedure studied here
the systems obtained are in general non-Markovian.

Furthermore, let us mention that ODEs of the from (10) describe pure jumpMarkov
processes. Similarly, RFEs of the form (2)–(4) describe the so-called semi-Markov
processes, see (Gyllenberg and Silvestrov 2008). These semi-Markov processes are,
as well, pure jump processes. However, while in the case of Markov processes jump
times are always exponentially distributed, semi-Markov processes allow for more
general distributions of the jump times. In fact, the response functions�αβ are exactly
the probability densities of these jump time distributions.

Let us now give an overview of the problems studied in this paper using the response
function formalism. First of all, we study the relation between the ODEs and the
RFEs in the linear case. We formulate in a precise manner the response function �αβ

corresponding to the decomposition in compartments of the systems of ODEs (10).
In addition, we prove that for any set of response functions �αβ satisfying (7) it is
possible to find a sequence of ODEs with the form (10), such that the corresponding
response functions converge to�αβ . In other words, we prove that the set of response
functions corresponding to the class of ODEs (10) is dense in the set of probability
measures (endowed with the weak topology). We refer to Sect. 3 for more details.

In this paper we consider also systems of the form (10) satisfying the detailed
balance condition, i.e. we assume that at the equilibrium each individual reaction is
balanced (cf. Liggett (1985)). It turns out that the class of response functions that can
be derived from these systems is much smaller than the one obtained for the general
systems with the form (10). More precisely, the response functions�αβ obtained from
a general class of ODEs satisfying the detailed balance condition belong to the family
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of completely monotone functions, i.e. they are Laplace transforms of non-negative
measures (see Theorem 3.2). We remark that, to have completely monotone response
functions is a necessary condition for systems originating from ODEs with detailed
balance, but it is not sufficient. There are also systems of ODEs, that do not satisfy the
detailed balance condition, for which the response function is completely monotone.
Theorem 3.2 provides a way to discriminate these systems from the ones satisfying
the detailed balance condition.

We underline that the detailed balance property is a consequence of the reversibility
in time of the quantummechanical equations (Boyd 1974). Therefore, closed biochem-
ical systems must satisfy the detailed balance property. However, many biological
systems are open and exchange substances with the environment, for instance they
consume ATP molecules and release ADP molecules. The outfluxes/influxes of sub-
stances keep these systems out of equilibrium and justify the lack of detailed balance,
which is typical of many biological systems. A few examples of biological systems
for which it has been experimentally estabilshed that they operate out of equilibrium
are molecular motors ( Alberts et al. 2002), actively beating Chlamydomonasflagella
( Battle et al. 2016) or the kinetic proofreading mechanisms (see Sect. 7.1)

As far as we know, this is the first property that has been derived for response
functions that at themicroscopic level are described by reactions satisfying the detailed
balance property. It is relevant to mention that the characterization of biochemical
systems forwhich the detailed balance condition holds or fails is an active research area
(see for instance (Battle et al. 2016; Li et al. 2019; Martínez et al. 2019)). For instance
in Martínez et al. (2019) a measure of the degree of irreversibility of general semi-
Markov processes has been obtained. However, notice that the question of determining
if the semi-Markov process under consideration has been obtained from a chemical
system satisfying the detailed balance condition, is not addressed in Martínez et al.
(2019).

Recall that the demarkovianization procedure yields a system of RFEs, which are in
general non-Markovian. It is then relevant to classify the response functions for which
the corresponding RFEs are actually Markovian. In fact, we prove, for a specific class
of forcing function, that such response functions are exactly given by exponentials. A
similar result is known for REs arising in population dynamics and in epidemiology,
see (Diekmann et al. 2020; Diekmann and Inaba 2023). Furthermore, in terms of semi-
Markov processes, this result is related to the fact that the only jump time distribution
which yields a Markov process is the exponential distribution.

Next, we study the long-time behaviour of solutions to (2)–(4). Specifically, we
give conditions on the response functions that guarantee that the solution {Nα} to
(2)–(4) converge to a unique stable distribution. For this we rely on Laplace transform
methods similar to the ones in Diekmann et al. (2012).

Another issue that we discuss in this paper is the reformulation of RFEs of the form
(2)–(4) in terms of SPEs of the form (9). This reformulation relies on the introduction
of a canonical age structure. We stress that the age structure will not be an intrinsic
property of the elements of the system, but a set of auxiliary variables that allows to
Markovianize the evolution of the densities of elements in the compartments.

In order to illustrate the use of the formalism of RFEs developed in this paper, we
provide several examples of linearmodels, which arewell-established in Biochemistry
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and in Systems Biology. In particular, we study the evolution in time of two variations
of the classical Hopfield model (Hopfield 1974) of kinetic proofreading using the
machinery of RFEs. Furthermore, we exhibit a model of polymerization combined
with proofreading (see (Pigolotti and Sartori 2016)) that results in a non-Markovian
polymerization rate. Then, we also formulate in terms of RFEs a linear version of the
classical Barkai-Leibler model for robust adaptation (Barkai and Leibler 1997).

Finally, we consider examples of non-linear models. In this situation the class
of RFEs must be much more general than the one in (1). Specifically, it would be
relevant to determine under which conditions a class of RFEs is equivalent to non-
linear chemical reactions with non-linearities of the kind of the mass action or more
complicated ones like Michaelis-Menten or Hill’s law. In particular, the response
function contains in general, multiple integrals of the form

∫ t

−∞
. . .

∫ t

−∞
I (s1) . . . I (sn)ψ(t − s1, . . . t − sn)ds1 . . . dsn . (11)

Notice that operators with the form (11) can provide information on the time corre-
lations of the signal I (s). In contrast, such correlations can not be described by the
integral operators in (1). This is not surprising since linear ODE systems cannot yield
information about time correlations of the incoming signal, in contrast with non-linear
systems.

The non-linear examples discussed here include a model of non-Markovian poly-
merization as well as a system of ODEs describing the standard Coherent Type 1 Feed
Forward Loop. The latter has been extensively considered in Systems Biology (cf.
Alon (2019)).

Some of the results of this paper have been derived in different contexts in the liter-
ature, as for instance the characterization of response functions associated Markovian
dynamics or the density of the response functions associated to ODEs systems in the
space of probability measures. However, in order to unify the notation and to present
the results in the context of chemical reactions considered in this paper, we decided
to include the proofs of these results here.

1.1 Notation and plan of the paper

Before explaining the plan of this paper let us collect here some notation used later
on. First of all we define R+ := [0,∞) and R∗ := (0,∞). Given a set �, we
denote with 2� to denote the set of all subsets of �. We denote by Cc(R+) the space
of continuous functions with compact support endowed with the supremum norm.
Moreover we writeM(R+) for the space of Radon measures on R+. We denote with
M+(R+) the cone of non-negative Radon measures and with Mb(R+) the space of
bounded Radon measures. Furthermore, we write M+,b(R+) to indicate the cone of
non-negative bounded Radon measures. Let us recall that endowing Mb(R+) with
the total variation norm ‖ · ‖T V yields a Banach space which can be identified with
C0(R+)∗.Here,C0(R+)denotes the space of continuous functions vanishing at infinity
endowed with the supremum norm.
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Furthermore, let us recall that the weak convergence in the sense of measures is
defined by duality with bounded continuous functionsCb(R+), i.e.μn⇀μ if and only
if

∫
R+

φ(x) μn(dx) →
∫
R+

φ(x) μ(dx)

as n → ∞ for any φ ∈ Cb(R+). Let us denote by dw a metric inducing weak
convergence, e.g. the Lévy-Prokhorov metric.

The space C([0, T ];M+,b(R+)) contains all continuous functions from [0, T ] to
M+,b(R+). Here, we endow the spaceM+,b(R+) with the Wasserstein distance W1
defined by

W1(μ, ν) := sup
{‖ϕ‖Lip≤1}

∫
R+

ϕ(x)(μ − ν)(dx)

where the supremum is taken over the Lipschitz functions and where

‖ϕ‖Lip = ‖ϕ‖∞ + sup
{x,y∈R+,x �=y}

|ϕ(x) − ϕ(y)|
|x − y| .

Furthermore, we denote with L1
loc(R,R

n×m) the space of measurable functions from

R to R
n×m that are locally integrable and with W 1,1

loc (R+,R) the space of locally
absolutely continuous functions from R+ to R. Let us also define by L1(R+, e−z0t dt)
the space ofmeasurable functions f fromR+ toR such that t 
→ f (t)ez0t is integrable.

In addition, we write f̂ (z) for the Laplace transform of f , i.e.

f̂ (λ) :=
∫ ∞

0
e−λt f (t)dt .

Finally, for A ∈ R
n×m we write ‖A‖ to indicate the matrix norm induced by

the standard euclidean norm on R
n and R

m . As no ambiguity should arise we abuse
notation and write ‖ · ‖ for the standard euclidean norm for vectors.

The paper is organized as follows. In Sect. 2 we discuss the reformulation of a linear
systems of ODEs (10) in a system of RFEs. In Sect. 3 we characterize the response
functions corresponding to general linear systems of ODEs as well as systems with
detailed balance. Section4 is devoted to the characterization of response functions�αβ

in (2)–(4) corresponding to a Markovian evolution. In particular, we prove that such
response functions are exactly exponentials. Then, we analyze the long-time behaviour
of solutions to (2)–(4) in Sect. 5. Furthermore, the equivalence of RFEs and SPEs is
discussed in Sect. 6. In Sects. 7 and 8 we present both linear and non-linear examples
of biochemical systems whose response can be described using RFEs. Finally, we
include some concluding remarks in Sect. 9.
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2 Reformulation of linear ODEs in terms of RFEs

In this section we study how to rewrite systems of ODEs of the form (10) using the
RFEs formalism. More precisely, we will show that the concentrations of elements
with different states in the compartment α, {nα} with nα ∈ R

|α|
+ satisfy a system of

ODEs (cf. (15)). Then we define the concentration Nα of individuals with states in
compartment α ∈ X by

Nα(t) :=
∑
j∈α

(nα(t)) j = e�|α|nα(t). (12)

Here, we use the notation

en = (1, . . . , 1)� ∈ R
n . (13)

for eα . As we will see, the evolution of {Nα} is given by a generalization of the RFEs
described in the introduction, cf. (2)–(4), which are valid only when the compartments
have at most one entrance point. In Sect. 2.1 we introduce the decomposition of the
system (10) into compartments. In Sect. 2.2 we formulate and study the generalized
RFEs. In Sect. 2.3, instead, we explain the relation between the system of ODEs (15)
and the RFEs.

2.1 Decomposition into compartments

In this section we introduce the decomposition of the system (10) into compartments.
We also give a definition of a special class of decompositions into compartments that
have at most one entrance point.

Recall that the set of the states, �, is finite. The dynamics of concentrations n =
(ni )i∈� ∈ R

|�|
+ are given by

dn(t)

dt
= An(t), t > 0. (14)

We assume the matrix A ∈ R
|�|×|�| to be of the form

Ai j = λ j i ≥ 0 for i, j ∈ �, i �= j, Aii = −
∑

k∈�\{i}
λik .

Hence, e�|�|A = 0 where we are using the notation (13). We recall that λ j i is the jump
rate from state i to j . The elements of the matrix A are defined as Ai j = λ j i instead
of Ai j = λi j in order to avoid to have the matrix AT in (14).

Let us note that the system of ODEs (14) is related to a pure Markov jump process
with jump rates λi j ≥ 0. Furthermore, these rates induce a graph structure on the
state space �. More precisely, we can define the set of the (directed) edges E ⊂ �2
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Fig. 1 Partition of a graph in
two compartments α and β. The
straight lines connecting the
elements are Markovian
reactions

α β

by E = {
(i, j) ∈ �2 : λi j > 0

}
. Then (�, E) is a directed graph. See Fig. 1 for a

graphical representation of the division into compartments.
For our reduction in compartments we choose a partition X ⊂ 2� of the set �.

Accordingly, the solution of (14) can be decomposed in n(t) = (nα(t))α∈X where
nα(t) ∈ R

|α|
+ is the evolution in time of the density of elements in the compartment

α ∈ X . In order to specify the equations solved by {nα}α∈X , we decompose the matrix
A as

A = (
Aαβ

)
α,β∈X .

Here, the matrices Aαβ ∈ R
|α|×|β| are defined by Aαβ = (Ai j )i∈α, j∈β = (λ j i )i∈α, j∈β

for every α, β ∈ X such that α �= β. Instead, when α = β we define

Aαα = Eαα − Cα.

where the matrices Eαα ∈ R
|α|×|α|
+ are given by (Eαα)i j = Ai j = λ j i when i, j ∈ α,

i �= j . While for i = j we have (Eαα)i i = −∑k∈α λik . The matrix Cα ∈ R
|α|×|α|
+

contains the loss terms due to the jumps from α to other compartments. In particular,
Cα is a diagonal matrix of the form (Cα)i i = ∑

j∈�\{α} λi j where i ∈ α.

As a consequence of (14) we have for all nα

dnα

dt
(t) = Eααnα(t) − Cαnα(t) +

∑
β∈X\{α}

Aαβnβ(t). (15)

Accordingly, the initial condition is nα(0) = n0α for a given n0α ∈ R
|α|
+ . Finally, the

graph structure (�, E) suggests the following definition.

Definition 2.1 (Entrance point) Consider a directed graph (�, E) and a partition X ⊂
2�. Let α ∈ X . A state i ∈ α is an entrance point if there exists β ∈ X\{α} and j ∈ β

such that ( j, i) ∈ E .

As mentioned in the introduction we sometimes restrict our attention to decomposi-
tions into compartments that have at most one entrance point. This single entrance
point (if it exists) is then denoted by iα ∈ α.
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2.2 Generalized RFEs

In this section we introduce the generalization of the RFE, termed GRFE.While RFEs
describe the interactions between compartments that have at most one entrance point,
GRFEs do not require this assumption on the compartments. The evolution in time of
the concentrations of elements in the compartment α ∈ X according to the GRFE is
given by

dNα

dt
(t) = e�

α Sα(t) − e�
α Jα(t), Nα(0) = N 0

α ≥ 0, (16)

Sα(t) = S0α(t) +
∑

β∈X\{α}

∫ t

0
Gβα(t − s)Sβ(s)ds, (17)

Jα(t) = J 0α (t) +
∫ t

0
Kα(t − s)Sα(s)ds. (18)

The fluxes {Sα(t)}, { Jα(t)}with Sα, Jα ∈ R
|α|
+ as well as the concentrations {Nα}with

Nα ∈ R
|α|
+ are the unknowns. Instead, the kernelsGαβ(t) ∈ R

|β|×|α|
+ , Kα(t) ∈ R

|α|×|α|
+

and the forcing functions S0α(t) ∈ R
|α|
+ , J 0α (t) ∈ R

|α|
+ are given data.

Let us mention that (16)–(18) is a closed system of equations, so once {Sα} is
known, we can deduce {Jα} and {Nα}. While the influxes and the outfluxes {Bα}
and {Dα} in (2)–(4) are real valued functions of time, the fluxes {Sα} and {Jα} are
now vector-valued. Here, the i-th component of Sα can be interpreted as the flux of
elements, coming from any other compartment, to the state i ∈ α. Analogously, the
i-th component of the vector Jα is the out-flux from the state i ∈ α to any state j in
some compartment β �= α.

Concerning the well-posedness of the system (16)–(18) we rely on the following
result.

Lemma 2.1 Assume that for all α, β ∈ X

Gαβ ∈ L1
loc(R+; R

|β|×|α|
+ ), Kα ∈ L1

loc(R+; R
|α|×|α|
+ ), S0α, J 0α ∈ L1

loc(R+; R
|α|
+ ).

(19)

Then, the system (16)–(18) has a unique solution with Sα, Jα ∈ L1
loc(R+; R

|α|
+ ) and

Nα ∈ W 1,1
loc (R+; R) for all α ∈ X.

Proof We have to prove existence and uniqueness of a solution of the renewal Eq. (17)
for every α ∈ X . Existence and uniqueness in L1

loc of a solution for (17) follows from
the existence of a unique resolvent R ∈ L1

loc, see e.g. (Gripenberg et al. (1990),Section
2.3) for the definition of resolvent and for the proof of its existence and uniqueness.
The resolvent is given by an infinite series of convolutions involving the kernels, hence
it is positive when the kernels are positive. This, together with the fact that the forcing
functions have non-negative entries, implies that also the solution {Sα}, {Jα} have
non-negative entries. �
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The solutions to (17)–(18) do not yield, in general, non-negative concentrations {Nα}.
However, as we see in the following lemma, this holds under additional assumptions
on the kernels and the forcing functions.

Lemma 2.2 Under the assumptions in Lemma 2.1 consider the unique solution of
(16)–(18). Assume in addition that for all α ∈ X, j ∈ α

∫ ∞

0
e�
α J 0α (r) dr ≤ N 0

α,

∫ ∞

0
[e�

α Kα(r)] j dr ≤ 1. (20)

Then, we have Nα(t) ≥ 0 for all t ≥ 0, α ∈ X.

Remark 2.1 Let us mention that condition (20) is sufficient to gurantee non-negativity
of Nα , but it is not necessary. Condition (20) appears very naturally, when we assume
that the kernels {Gαβ}, {Kα} are non zero. The first inequality in (20) ensures that
the total number of elements, that where in α already at time zero, removed from
compartment α does not exceed N 0

α . The second inequality can be interpreted by
viewing (16)–(18) as a semi-Markov process. The integral kernels are related to the
jump probabilities. Hence, (20) ensures that the probability to leave α via state j ∈ α

is bounded by one.

Proof of Lemma 2.2 According to (16), we write

Nα(t) = Nα(0) +
∫ t

0

(
e�
α Sα(s) − e�

α Jα(s)
)
ds

= Nα(0) +
∫ t

0

(
e�
α Sα(s) − e�

α J 0α (s) −
∫ s

0
e�
α Kα(s − r)Sα(r) dr

)
ds.

Here, we used (18). We then obtain from (20)

Nα(t) ≥
∫ t

0

(
e�
α Sα(s) −

∫ s

0
e�
α Kα(s − r)Sα(r) dr

)
ds

=
∫ t

0
e�
α

(
I|α|×|α| −

∫ t

s
Kα(r − s) dr

)
Sα(s) ds ≥ 0,

since (Sα) j ≥ 0 for all α ∈ X , j ∈ α. This concludes the proof. �
We now provide some conditions ensuring the conservation of mass.

Lemma 2.3 Under the assumption in Lemma 2.1 consider the unique solution to (16)–
(18). Assume that

∑
α∈X

e�
α

(
S0α(t) − J 0α (t)

)
= 0,

∑
β∈X\{α}

e�
β Gαβ(t) − e�

α Kα(t) = 0 (21)

for all α ∈ X. Then, the total mass is conserved
∑

α∈X Nα(t) = ∑
α∈X N 0

α .
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Proof We obtain from (16)–(18)

d

dt

∑
α∈X

Nα(t) =
∑
α∈X

e�α
(
S0α(t) − J0α (t)

)

+
∑

α, β∈X , α �=β

∫ t

0
e�α Gβα(t − s)Sβ(s) ds −

∑
α∈X

∫ t

0
e�α Kα(t − s)Sα(s) ds

=
∑
α∈X

∫ t

0
Sα(s)

⎧⎨
⎩

∑
β∈X\{α}

e�β Gαβ(t − s) − e�α Kα(t − s)

⎫⎬
⎭ ds = 0.

�

2.3 Generalized RFEs corresponding to the ODEsmodel

The main result of this section yields that generalized RFE, cf. (16)–(18), appear as
effective equations for {nα} solving (15).

Theorem 2.4 (ODE to RFE) Consider n(t) ∈ R
|�|
+ solution to (14) and Nα defined in

(12). Then, {Nα} satisfies (16). The corresponding fluxes Sα and Jα solve the system
(17)–(18) with kernels

Gβα(t) = Aαβe
t Aββ , t ≥ 0, (22)

(Kα(t))i j =
∑

β∈X\{α}

(
e�
β Aβα

)
i

(
et Aαα

)
i j
, i, j ∈ α, t ≥ 0, (23)

and forcing functions

S0α(t) =
∑

β∈X\{α}
Gβα(t)n

0
β; J 0α (t) = Kα(t)n

0
α, t ≥ 0. (24)

Furthermore, the fluxes are given in terms of n(t) by

Sα(t) =
∑

β∈X\{α}
Aαβnβ(t), (Jα(t))i = (nα(t))i

∑
β∈X\{α}

(
e�
β Aβα

)
i
, i ∈ α (25)

for all α ∈ X.

In order to prove Theorem 2.4 we first show that the ODE (15) can be reformulated
using the response function formalism by a system involving fluxes of the form I i jαβ .
This term is the flux from the state i ∈ α to the state j ∈ β. In the proof of Theorem
2.4 below we will obtain (16)–(18) from the system solved by {Nα} and the fluxes
{I i jαβ}.
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Let us first give an informal derivation of the equations solved by {Nα} and the
fluxes {I i jαβ}. First of all, the change of the concentration of the compartments is just
due to the individual fluxes summed appropriately, thus yielding

dNα(t)

dt
=
∑
i∈α

∑
β∈X\{α}

∑
j∈β

I jiβα(t) −
∑
i∈α

∑
β∈X\{α}

∑
j∈β

I i jαβ(t). (26)

Here, the gain term on the right hand side involves the summation over each individual
state j ∈ β for some compartment β �= α into some state i ∈ α. The loss term has a
similar form. Concerning the flux I i jαβ from state i ∈ α to state j ∈ β there are two
contributions.

(i) One contribution is due to elements that are in α, in some state r ∈ α, already
at time zero. When they evolve in time they reach state i ∈ α and jump to state
j ∈ β at time t .

(ii) The other contribution is due to the elements that jump from some state m ∈
γ , γ �= α to some state r ∈ α at time s ∈ (0, t). Then, they evolve in the
compartment α to reach state i ∈ α and jump to state j ∈ β at time t .

The system for the fluxes is therefore given by

I i jαβ(t) = I
i j
αβ(t) +

∑
r∈α

∑
γ∈X\{α

}
∑
m∈γ

∫ t

0
�αβ(t − s; r , i, j)Imr

γα (s)ds (27)

for all i ∈ α, j ∈ β and where

I
i j
αβ(t) =

∑
r∈α

�αβ(t; r , i, j)(n0α)r . (28)

The above system has again the form of RFEs. The precise form of the kernels are
given in the following lemma.

Let us mention that Eqs. (26) and (27) have been formulated in the supplementary
materials of Thurley and Falcke (2011).

Lemma 2.5 Let n(t) ∈ R
|�|
+ be the solution to (14) and {Nα} defined in (12). Then

{Nα} satisfies (26) and the corresponding fluxes I i jαβ are given in terms of n(t) by

I i jαβ(t) = (Aβα) j i (nα(t))i = λi j (nα(t))i . (29)

Furthermore, the fluxes I i jαβ solve (27) with kernels

�αβ(t; r , i, j) = (Aβα) j i

(
et Aαα

)
ir

= λi j

(
et Aαα

)
ir

(30)

for r , i ∈ α, j ∈ β and forcing functions I
i j
αβ defined by (28).
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Proof By definition of Nα in (12), we have

d

dt
Nα(t) = e�

α

d

dt
nα(t) = e�

α

⎛
⎝Eααnα(t) − Cαnα(t) +

∑
β∈X\{α}

Aαβnβ(t)

⎞
⎠ ,

where we used (15). By definition of Eαα we infer e�
α Eαα = 0. Similarly, by definition

of Cα and Aβα we have that

e�
α Cα =

∑
β∈X\{α}

e�
β Aβα.

As a consequence of these observations we deduce that

d

dt
Nα(t) = −

∑
β∈X\{α}

e�
β Aβαnα(t) +

∑
β∈X\{α}

e�
α Aαβnβ(t)

= −
∑

β∈X\{α}

∑
j∈β

∑
i∈α

(Aβα) j i (nα(t))i +
∑
i∈α

∑
β∈X\{α}

∑
j∈β

(Aαβ)i j (nβ(t)) j

= −
∑
i∈α

∑
β∈X\{α}

∑
j∈β

I i jαβ(t) +
∑
i∈α

∑
β∈X\{α}

∑
j∈β

I jiβα(t),

with I i jαβ(t) given by (29).
We now show that these fluxes satisfy (27) with corresponding kernels and forcing

functions in (30) respectively (28). To this end, we note that due to (15) we have

nα(t) = et Aααn0α +
∑

γ∈X\{α}

∫ t

0
e(t−s)Aαα Aαγ nγ (s)ds.

Writing the i-th component of the above expression and multiplying by λi j yields

I i jαβ(t) = λi j (nα(t))i

= λi j
∑
r∈α

(
et Aαα

)
ir
(n0α)r

+ λi j
∑
r∈α

∑
γ∈X\{α}

∑
m∈γ

∫ t

0

(
e(t−s)Aαα

)
ir

(
Aαγ

)
rm (nγ (s))mds

= I
i j
αβ(t) +

∑
r∈α

∑
γ∈X\{α}

∑
m∈γ

∫ t

0
�αβ(t − s; r , i, j)λmr (nγ (s))mds

= I
i j
αβ(t) +

∑
r∈α

∑
γ∈X\{α}

∑
m∈γ

∫ t

0
�αβ(t − s; r , i, j)Imr

γα (s)ds

This concludes the proof. �
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With this we can give the proof of Theorem 2.4.

Proof of Theorem 2.4 According to Lemma 2.5 the function {Nα} solves (26) with
fluxes satisfying (29). Thus defining the fluxes {Sα}, {Jα} by

(Sα)i =
∑

β∈X\{α}

∑
j∈β

I jiβα, (Jα)i =
∑

β∈X\{α}

∑
j∈β

I i jαβ. (31)

we obtain (16). Note that the formula in (25) is a consequence of (29) and (31).
Moreover, from (27) we obtain

I i jαβ(t) = I
i j
αβ(t) +

∑
r∈α

∫ t

0
�αβ(t − s; r , i, j)(Sα(s))r ds. (32)

Consequently, summing over β ∈ X \ {α} and over j ∈ β yields that {Jα} satisfies
Eq. (18) with kernels and forcing functions given by

(Kα(t))ir =
∑

β∈X\{α}

∑
j∈β

�αβ(t; r , i, j), (J 0α (t))i =
∑

β∈X\{α}

∑
j∈β

I
i j
αβ(t).

Thus, (23) and (24) follow from the formula for the functions �αβ , cf. (30). We can
argue similarly to deduce that {Sβ} satisfy Eq. (17) by summing over α ∈ X and i ∈ α

in Eq. (27) and defining

(Gαβ(t)) jr =
∑
i∈α

�αβ(t; r , i, j), (S0β(t))i =
∑

α∈X\{β}

∑
i∈α

I
i j
αβ(t)

The two Eqs. (22) and (24) are, therefore, a consequence of (30). �
Remark 2.2 The kernels given by (22) and (23) satisfy both the conditions in Lemma
2.2 and 2.3. Indeed, we have with for any T ≥ 0

∫ T

0
[e�

α Kα(r)] j dr =
∑
i∈α

∑
β∈X\{α}

∑
k∈β

∫ T

0
(Aβα)ki

(
et Aαα

)
i j

dr

=
∑
i∈α

∫ T

0
(Cα)i i

(
et Aαα

)
i j

dr .

Recall the definition of Cα in Sect. 2.1. Using Aαα = Eαα − Cα we obtain

∫ T

0
e�
α Kα(r) dr = e�

α

(
I − eT Aαα

)
+ e�

α

(∫ T

0
Eααe

t Aαα dt

)
= e�

α

(
I − eT Aαα

)
,

since e�
α Eαα = 0. Since the semigroup et Aαα induced by Aαα is positivity preserving

we obtain the second inequality in (20). For the first in (20) we use (24) and the
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previous reasoning

∫ T

0
e�
α Kα(t)n

0
α dt = e�

α

(
I − eT Aαα

)
n0α ≤ e�

α n
0
α = N 0

α.

Finally, both conditions in (21) follow from (22) and (23). More precisely, we have
for all α ∈ X and k ∈ α

∑
β∈X\{α}

[e�
β Gαβ(t)]k − [e�

α Kα(t)]k

=
∑

β∈X\{α}

∑
j∈β

∑
i∈α

(Aβα) j i

(
et Aαα

)
ik

−
∑

β∈X\{α}

∑
j∈β

∑
i∈α

(Aβα) j i

(
et Aαα

)
ik

= 0.

We conclude this section with the special case of system of ODEs (10) with graph
structure (�, E) that is decomposed into compartmentswith atmost one entrance point
(see Definition 2.1). Then the system of Eqs. (16)–(18) can be reduced to (2)–(4).

Lemma 2.6 Consider n(t) ∈ R
|�|
+ solution to (14) and Nα defined in (12). Further-

more, assume that for all α ∈ X there is at most one entrance point in (�, E), denoted
by iα if it exists. Then the following holds.

(i) For all α ∈ X we have (S0α) j = (Sα) j = 0 for all j �= iα .
(ii) The functions {Bα} = {(Sα)iα }, {Dα} = {e�

α Jα} satisfy (3)–(4) with kernels and
forcing functions

kα :=
{∑

j∈α(Kα) j iα if iα ∈ α exists,

0 otherwise,

�βα :=
{
(Gβα)iα iβ if iα ∈ α, iβ ∈ β exist,

0 otherwise,

B0
α :=

{
(S0α)iα if iα ∈ α exists,

0 otherwise,
D0

α := e�
α J 0α .

(iii) Finally, {Nα} satisfies (2) with fluxes {Bα, Dα}.
Proof We prove each claim separately.

Claim (i). Let us note that for α, β ∈ X and j �= iα , j ∈ β we have (Aαβ) j� =
λ� j = 0 for all � ∈ β. In particular, by (22) we have (Gβα) jk ≡ 0 for all k ∈ β.
Hence, (24) yields (i).

Claim (ii). By Theorem 2.4 the fluxes Sα solve the system (17). The iα-th compo-
nent, if it exists, yields (3) for �βα as in (ii) due to (i).
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Furthermore, {Jα} solve (18). Thus, (i) and summing over j ∈ α yields (4) with
kernels �α as in (ii).

Claim (iii). Finally, we conclude (iii) from (16) and Bα = e�
α Sα = (Sα)iα if iα

exists, Bα = 0 otherwise. �

Remark 2.3 Let us recall that the kernels {�αβ}α,β∈X in (2)–(4) are assumed to satisfy

∑
β∈X\{α}

∫ ∞

0
�αβ(t) dt = 1. (33)

if the compartment α is not a sink, i.e., if there are connections to any other compart-
ment β �= α. In the latter case the kernels are zero �αβ ≡ 0 for all β �= α.

However, even if�αβ �= 0 a further assumption on the compartment α is necessary
to obtain (33). Observe that from (ii) in Lemma 2.6 and form (22) it follows that

�αβ(t) =
(
Aβαe

t Aαα

)
iβ ,iα

.

Thus,�αβ �= 0 implies that there is a path in (�, E) from iα to iβ . However, in α there
could be a state � ∈ α that has no path to any entrance point iβ , β �= α, but there
is a path from iα to �. Hence, there is a sink inside the compartment α. In this case,
(33) fails. The reason is that limt→∞ et Aααeiα �= 0. In fact, the left hand side in (33)
can be reformulated as follows. Note that (Aβα) j,i = 0 for j �= iβ and any i ∈ α,
since iβ is the only entrance point, cf. Definition 2.1. We conclude from this and the
conservation property

∑
β∈X\{α} e�|β|Aβα = −e�|α|Aαα that

∑
β∈X\{α}

∫ ∞

0
�αβ(t) dt = −e�|α|

∫ ∞

0
Aααe

t Aααeiα dt = 1 − lim
t→∞ e�|α|et Aααeiα .

Thus, we need necessarily limt→∞ e�|α|et Aααeiα = 0 to ensure (33). This is satisfied if
any state j ∈ α that has a path from iα to j also has a path to some entrance point iβ ,
β �= α.

3 Approximation of measures bymeans of response functions

In this section,we are concernedwith approximation results for the kernels {�αβ}α,β∈X
appearing in (3). We restrict ourselves to the case that each compartment has at most
one entrance point. Accordingly, the RFEs have the form (2)–(4). In Sect. 3.1 we
prove that the set of the response functions obtained form ODEs of the form (10) is
dense in the space of probability measures. In Sect. 3.2, we prove that if we assume
that (10) satisfies the detailed balance condition, then the response functions must be
completely monotone functions.
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3.1 Density of the response functions obtained fromODEs in the space of
probability measures

Recall that in Sect. 2 we proved that a system of ODEs of the form (10) can be reduced
to the system (2)–(4) by decomposing the state space into compartments with at most
one entrance point, cf. Theorem 2.4 and Lemma 2.6. Furthermore, the corresponding
kernels {�αβ}α,β∈X have the form

�αβ(t) =
(
Aβαe

t Aαα

)
iβ ,iα

=
∑
j∈α

(
Aβα

)
iβ , j

(
et Aαα

)
j,iα

=
∑
j∈α

λ j,iβ

(
et Aαα

)
j,iα

,

(34)

where iα ∈ α, iβ ∈ β are the entrance points in α and β, if they exist, �αβ ≡ 0
otherwise.

We now show that for any set of integral kernels {�βα}β,α∈X satisfying (7) it is
possible to find a sequence of kernels {�αβ} as in (34) that is arbitrarily close (in a
suitable sense) to the kernel {�βα}β,α∈X . In other words, we prove that for any system
of the form (2)–(4) we can find an approximating sequence of systems of ODEs of the
form (10).

In order to prove this we need to specify

(i) a state space �′, on which the approximating ODEs will be defined;
(ii) the jump rates between the states, i.e. a matrix A ∈ R

|�′|×|�′| yielding an ODE
system (10). This defines a directed graph (�′, E ′);

(iii) a decomposition X ′ ⊂ 2�
′
into compartments.

Since the kernels {�αβ}β,α∈X are labeled by the set X , the decomposition X ′ needs
to be identified with X . More precisely, we require the existence of a relabeling, i.e.
there is a bijective mapping ι : X → X ′ which associates to each compartment α ∈ X
a compartment ι(α) = α′ ∈ X ′. Then, we apply the procedure in Sect. 2 to (�′, E ′)
and the decomposition X ′ which yields kernels {�β ′α′ }β ′,α′∈X ′ . Choosing (�′, E ′) and
X ′ appropriately, these kernels yield an approximation to {�αβ}β,α∈X .

The approximation result holds in terms of the weak topology of measures. Recall
that we denote by dw a metric inducing weak convergence, see Sect. 1.1. Let us note
that in the precise statement below we assume that the response functions are merely
finite, non-negative measures �αβ ∈ M+,b(R+) rather than measurable functions.

Theorem 3.1 Consider a family of finite, non-negative measure kernels {�αβ}β,α∈X
with |X | < ∞ satisfying (7) or (8). Let ε > 0 be arbitrary. Then, we can find a
finite state space �′, a decomposition X ′ ⊂ 2�

′
and a matrix A ∈ R

|�′|×|�′| with the
following properties.

(i) The matrix A satisfies Ai j ≥ 0 for all i �= j , i, j ∈ �′ and e�
|�′|A = 0.

(ii) There is a bijection ι : X → X ′.
(iii) The partition X ′ decomposes (�′; E ′) into compartments with at most one

entrance point, denoted by iα ∈ α, α ∈ X ′ if it exists, see Definition 2.1.
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(iv) The kernels given by

�αβ(t) =
∑
j∈α

(
Aβα

)
iβ , j

(
et Aαα

)
j,iα

(35)

if iα, ωα,β ∈ α exist, �αβ ≡ 0 otherwise are such that

∫ ∞

0
�αβ(t) dt = �αβ(R+) =: pαβ,

∑
α,β∈X , pαβ>0

dw

(
1

pαβ
�ι(α),ι(β)(t) dt,

1

pαβ
�αβ

)
≤ ε.

Furthermore, let us mention that the above result is reminiscent of the so-called phase
method in queuing theory, see e.g. (Asmussen (2003), Section III.4), allowing to
approximate any probability measure on (0,∞) by a combination of exponentially
distributed times. For the proof of Theorem 3.1wemake use of this constructionwhich
contains probabilistic arguments.

Proof of Theorem 3.1 We split the proof into two steps. In the first step we recall a
standard result from queuing theory which allows to approximate any probability
distribution on R+. Furthermore, we show how to obtain such approximations from
ODE models of the form (10) for a certain choice of matrices A. In the context of the
above theorem, this allows to approximate one given response function by an ODE
model. This serves as a basic building block for the next step. In Step 2 we then show
how to construct the whole state space �′ with a partition X ′ as well as the matrix A
that allows to find an approximation for all response functions {�αβ} simultaneously.

Step 1. Let us recall the following result from (Asmussen (2003), Theorem 4.2):
any probability measure � on (0,∞) can be approximated in the weak topology by
distributions F with density

f (t) :=
L∑
j

q jγM,m j (t), γM,m(t) = Mm+1

m! tme−Mt , t > 0 (36)

for some L ∈ N, q j > 0,
∑

j q j = 1 and some M ∈ N, m j ∈ N. Here, γM,m

is the density of the Gamma distribution appearing as an m-fold convolution of the
exponential distribution with rate M ∈ N. Thus, for ε > 0 we can find corresponding
parameters such that dw(F,�) < ε with the measure F = f (t) dt .

We now construct an ODE system of the form (10) and relate f (t) in (36) with
the response function corresponding to the ODEs system. We start by describing the
structure of the graph. Consider one starting node ζ and L chains with m j nodes
(that we denote with xnj with 1 ≤ j ≤ L and 1 ≤ n ≤ m j ) bifurcating from ζ .
Furthermore, all chains have ω as final node, see Fig. 2.
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Fig. 2 Graph structure
corresponding to approximation
in Step 1

ζ

x1,1

x1,L

xm1,1

xmL,L

ω

We assume that the rate to jump from ζ to x1 j is equal to q j M while the rate to
jump from xn−1, j to xn, j is equal to M . Finally the rate to go from xm j to ω is also
equal to M . This defines the ODE system

dζ

dt
= −Mζ, ζ(0) = 1

dx1, j
dt

= q j Mζ − Mx1 j , x1, j (0) = 0, for 1 ≤ j ≤ L

dxn, j
dt

= Mxn−1, j − Mxn, j , xn, j (0) = 0, for 1 ≤ j ≤ L and 2 ≤ n ≤ m j

(37)

which can be written also as dx
dt = Ax where x = (ζ, x1,1, . . . xmL ,L) and where the

matrix A is such that Ai j ≥ 0 for i �= j and e�
n A = 0.

We now prove that M
∑L

j=1 xm j−1, j (t) = f (t). Indeed

f̂ (z) =
L∑
j=1

q j γ̂M,m j (z) =
L∑
j=1

q j Mm j+1

(z + M)m j+1 = M
L∑
j=1

x̂m j , j (z) (38)

where the last equality has been obtained solving (37) via Laplace transforms. Equality
(38) implies that M

∑
j∈L xm j , j (t) = f (t). Notice that if α = {ζ, x1,1, . . . xmL ,L} and

β = {ω} are two compartments, then f (t) is the response function �αβ in Lemma
2.6.

Step 2. We now use Step 1 to construct the state space �′, the matrix A and the
partition X ′. To this end, we construct as in Step 1 probability measures Fαβ , for each
pair of compartments, with densities fαβ of the form (36) that satisfy

∑
α,β∈X , pαβ>0

dw

(
Fαβ,

1

pαβ
�αβ

)
≤ ε. (39)

Observe that 1
pαβ

�αβ is a probability measure.
We now construct the ODE system and its corresponding graph. First, let (iα)α∈X

be states representing the entrance points of the compartments to be constructed. Next,
we fix one compartment α ∈ X and specify the states and rates inside the compartment
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Fig. 3 Graph structure in
compartments in Step 2. Here
with {Cαβ }α �=β we denote the
graphs that connect ζ = ζαβ to
ω = iβ as in Fig. 2

.   .   .   .   .      

iα

ζαβ

ζαγ

ζαμ

cαγ

cαβ

cαμ

iβ
iγ

iμ

α′ = ι(α) ⊂ �′. For any β �= α with pαβ > 0 introduce a state ζαβ . The rate to jump
from iα to ζαβ is given by Mpαβ .

Now we add to the state ζαβ the graph in Step 1, see Fig. 3, with end point ω := iβ .
We can repeat this construction for any compartment and we obtain the state space

�′, the partition X ′, the relabeling ι : X → X ′ and the matrix A. By definition A
satisfies statement (i) in the theorem. Also statements (ii) and (iii) are satisfied.

Finally, concerning (iv) we use Step 1 to deduce that for every α �= β the approxi-
mation (39) holds for the measures Fαβ with densities given by

fαβ(t) =
∑
j∈α

(
Aβα

)
iβ , j

(
et Aαα

)
j,iα

= �αβ(t).

�

3.2 Response functions corresponding to ODEs satisfying the detailed balance
condition

In this section we demonstrate that a particular structure of the biochemistry of the
system imposes some restriction on the form of the response functions. Specifically
we consider here systems satisfying the detailed balance condition.

We say that the ODE model (10) satisfies the detailed balance condition if there
is μ ∈ R

|�|
+ , μ j > 0,

∑
i∈� μi = 1 such that Aμ = 0 and Ai jμ j = A jiμi for all

i, j ∈ �. The latter condition is equivalent to the fact that M−1AM is a symmetric
matrix, where

M := diag
({√μ j } j∈�

)
.

Let us mention that the vector μ is usually referred to as the equilibrium distribution
of the ODE system. We will prove, see Theorem 3.2, that the corresponding response
functions are completely monotone. We recall that a completely monotone function
f : R+ → R is continuous on R+ and satisfies (−1)n f (n)(t) ≥ 0 for all n ∈ N0,
t > 0. An example of completely monotone function is the exponential function e−λt

with λ ≥ 0 or the function 1/t for t > 0. It is well-known that completely monotone
functions are exactly the Laplace transforms of non-negative finite Borel measures on
R+. See for instance (Feller 1967, Chapter XIII).

123



   31 Page 24 of 56 E. Franco et al.

We have the following result.

Theorem 3.2 Let (10) with A ∈ R
|�|×|�| satisfy detailed balance for μ ∈ R

|�|
+ . Let

X be a decomposition such that any compartment has at most one entrance point in
(�, E). Then, we have for all α, β ∈ X, α �= β and some κ j , ν j ≥ 0

�βα(t) = λiβ ,iα

∑
j∈β

κ2j e
−ν j t ,

∑
j∈β

κ2j = 1,

whenever the entrance points iα ∈ α, iβ ∈ β exists, otherwise�βα ≡ 0. In particular,
�βα is completely monotone.

Theorem 3.2 implies that not all the sets of kernels {�βα} can be approximated by
those appearing in an ODE model (10) with detailed balance. This is in contrast with
Theorem 3.1 and implies a very strong restriction on the integral kernels that can be
approximated by models satisfying the detailed balance condition.

Proof of Theorem 3.2 Let α, β ∈ X with entrance points iα, iβ , respectively. By The-
orem 2.4 and Lemma 2.6 we have

�βα(t) =
(
Aαβe

Aββ t
)
iα,iβ

= λiβ ,iα

(
eAββ t

)
iβ ,iβ

.

Here, we used that Aβα has only one non-zero element due to the detailed balance
condition and the assumption that there is at most one entrance point in α, β. Let us
define Mβ := diag({√μ j } j∈β). Using the decomposition Aββ = Eββ − Cβ as in
Sect. 2.1 we obtain that Dββ := (Mβ)−1AββMβ is symmetric because the matrix A
satisfies the detailed balance condition and therefore the blocks Aββ also satisfy the
detailed balance condition. Recall that Eββ defines a conservative ODE system, while
−Cβ is an additional loss term in Aββ = Eββ − Cβ . Thus, the eigenvalues {ν j } j∈β

of Dββ are non-positive. Using an orthonormal basis of eigenvectors we deduce that
there is an orthogonal matrix Q such that

�βα(t) = λiβ ,iα

(
Q diag

({e−ν j t } j∈β

)
Q�)

iβ ,iβ
= λiβ ,iα

∑
j∈β

Q2
j,iβ e

−ν j t .

Since Q is orthogonal we have
∑

j∈β Q2
j,iβ

= 1. Defining κ j := Q j,iβ concludes the
proof. �

4 Characterization of response functions yieldingMarkovian
dynamics

As anticipated in the introduction, one important property that is lost when reformu-
lating the system of ODEs (14) using the response function formalism (16)–(18), is
the Markovianity of the evolution of the number of individuals {Nα}.

In this section, we give a precise definition of Markovianity and characterize the
integral kernels yielding a Markovian dynamics. To this end, we restrict ourselves to
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decompositions X of the state � into compartments with at most one entrance point.
In other words, we restrict our attention to RFEs of the form (2)–(4) with forcing
function satisfying particular conditions (see (42)).

As we will see, kernels inducing a Markovian dynamics are exactly given by
exponentials, and they correspond to Markov jump processes involving exponentially
distributed waiting times, see Theorem 4.2 below. Similar results, for some type of
non-linear structured population models can be found in Diekmann et al. (2020). Here
we present a simple proof for the linear renewal equations considered in this paper.

Definition 4.1 (Markovianity) We say that the evolution induced by (2)–(4) is Marko-
vian if and only if any solution N of Eq. (2) can be written in the form

N (t) = et AN 0 (40)

for all N 0 ∈ R
|X |. Furthermore, the matrix A ∈ R

|X |×|X | is independent of N 0 ∈ R
|X |
+ ,

satisfying Aii = −∑i �=k Aik for every i ∈ {1, . . . , |X |}.
Since we apply the Laplace transform in the proof of Theorem 4.2 below, the

following lemma is useful.

Lemma 4.1 Assume that each compartment in α ∈ X has at most one entrance point.
Let z0 > 0 such that {kα}, {�αβ}, {D0

α}, {B0
α} ∈ L1(R+, e−z0t dt) for everyα, β ∈ X.

Then, there exists a unique solution {Nα, Bα, Dα} to (2)–(4) such that for every α ∈
X it holds that Bα, Dα ∈ L1(R+, e−x0t dt) for some x0 > z0 and Nα ∈ W 1,1(R+,R+)

satisfies

∫ ∞

0
Nα(t)e

−x0t dt < ∞. (41)

Proof We refer to (Gripenberg et al. (1990), Section 3.3) for the existence of Bα ∈
L1(R+, e−x0t dt) for some x0 > z0. Thanks to the assumptions on kα and D0

α we
deduce that Dα ∈ L1(R+, e−x0t dt). Hence (41) follows by Gronwall’s Theorem. �
Theorem 4.2 (Markovianity for RFEs with at most one entrance point) Under the
conditions of Lemma 4.1, assume moreover that {kα}, {�αβ} satisfy (5) and that for
every α ∈ X either equality (7) or (8) holds. Let {Nα, Bα, Dα} be the solution to
(2)–(4) with

D0
α(t) = kα(t)N

0
α, B0

α(t) =
∑

β∈X\{α}
�αβ(t)N

0
β (42)

for every t ≥ 0 and N 0 ∈ R
|X |. Then, the evolution of {Nα} is Markovian, in the sense

of Definition 4.1, if and only if for all t ≥ 0

�αβ(t) = λαβe
−t
∑

γ∈X\{α} λαγ (43)

for some λαβ ∈ R+.
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Proof Step 1. We first assume that the dynamics are Markovian and deduce (43). Let
� := {z ∈ C : �z > x0}. We apply the Laplace transform to each term in (3)–(4)
yielding

D̂(z) = D̂0(z) + Q(z)B̂(z) (44)

B̂(z) = B̂0(z) + M(z)B̂(z) (45)

for z ∈ �. Here, D̂(z) ∈ R
|X |
+ is the vector whose α-th element is the Laplace

transform of Dα and we define D̂0(z), B̂0(z), B̂(z) ∈ R
|X |
+ analogously. The matrix

Q(z) is diagonal with (Q(z))αα = k̂α(z) and (M(z))αβ = �̂βα(z).
Similarly, we obtain from (2) that

z N̂ (z) = N 0 + B̂(z) − D̂(z), (46)

for z ∈ �. Notice that z 
→ (I − M(z))−1 is a meromorphic map on �. We denote
by P the set of poles in �. From Eq. (45) we deduce that for z ∈ � \ P it holds that

B̂(z) = (I − M(z))−1 B̂0(z). (47)

Substituting this in (46) and using (44) we obtain

z N̂ (z) = N 0 + (I − Q(z)) (I − M(z))−1 B̂0(z) − D̂0(z) (48)

for z ∈ � \ P . By assumption there exists a matrix A with dN
dt = AN . Since N

satisfies (41) the spectral radius of the matrix A is smaller or equal than x0. Applying
the Laplace transform yields

N̂ (z) = (z I − A)−1N 0. (49)

for z ∈ �. Thus, combining (48), (49) and B̂0(z) = M(z)N 0, D̂0(z) = Q(z)N 0 we
obtain

A(z I − A)−1N 0 = (I − Q(z)) (I − M(z))−1 M(z)N 0 − Q(z)N 0

for z ∈ � \ P . Since this holds for any N 0 ∈ R
|X | this implies

A(z I − A)−1 = (I − Q(z)) (I − M(z))−1 M(z) − Q(z)

= −I + (I − Q(z)) (I − M(z))−1 .

After rearranging we obtain

zM(z) = zQ(z) + A(I − Q(z)) (50)
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for z ∈ �\P . Now recall that Q(z) is diagonal with Qαα(z) = k̂α(z) and (M(z))αα =
0. Thus, (50) yields for z ∈ � \ P

zk̂α(z) + λαα(1 − k̂α(z)) = 0 (51)

where λαα := Aαα . When instead α �= β then

z�̂αβ(z) = λαβ(1 − k̂α(z)) (52)

for z ∈ � \ P , where λαβ := Aβα . Thus, (51) and (52) yield

z�̂αβ(z) = λαβ

(
1 + λαα

z − λαα

)
= z

λαβ

z − λαα

(53)

for z ∈ �\ P . We deduce that�αβ(t) = λαβetλαα and that kα(t) = −λααetλαα . Then,
(43) follows from λαα = −∑β∈X\{α} λαβ .

Step 2.Assume now that� is given by (43). Thenwe have �̂αβ(z) = λαβ/(z−λαα)

and k̂α(z) = −λαα/(z−λαα) for z > 0, where λαα = −∑β∈X\{α} λβα . Let us define

the matrix M(z) via Mαα(z) = 0, Mαβ(z) = �̂βα(z) = λβα/(z − λββ) and the
diagonal matrix Q(z) via Qαα(z) = k̂α(z) = −λαα/(z−λαα). As in Step 1, we apply
the Laplace transform to (2)–(4) and use (47), yielding for z > 0

z N̂ (z) = N 0 + (I − Q(z))(I − M(z))−1M(z)N 0 − Q(z)N 0

= (I − Q(z))(1 − M(z))−1N 0.

Thus, the matrix A(z) := z − z(I − M(z))(I − Q(z))−1 satisfies N̂ (z) = (z I −
A)−1N 0. To conclude, notice that Aαβ(z) = λβα when α �= β while Aαα(z) = λαα .
In particular, A is independent of z. Thus, the requirements of Definition 4.1 are
satisfied. �

5 Long-time behaviour of the solution of the classical RFEs

In this section we study the long-time behaviour of equations of the form (2)–(4).
Once the asymptotic behaviour of B(t) is known, the one of the vector D(t) follows
from the equality (4). Similarly the long-time behaviour of N , satisfying (2), can be
obtained starting from the asymptotics of B and D.

To study the long-time behaviour of B(t) we will need to make an additional
assumption on the kernels �. More precisely we assume that the matrix � such that
(�)αβ = �βα is irreducible. This corresponds to assuming that every compartment α
can be reached by any other compartment β. In other words the graph having as ver-
texes the compartments must be strongly connected. This assumption guarantees the
existence of an invariant measure, which is proven here to be stable. The irreducibility
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assumption of� corresponds to the irreducibility property which guarantees the exis-
tence of and convergence to an invariant measure for Markov chains (Feller (1967),
Chapter VIII).

To analyse the long-time behaviour of (3) we will use Laplace transforms. In par-
ticular, we follow the approach in Diekmann et al. (2012). In order to apply Laplace
transforms we make the same assumptions as in Theorem 4.2 on the forcing function
B0 and on the kernel�. We also use the same notation as in the proof of Theorem 4.2
for M(z),�, P . Namely � is the subset of the complex plain on which the Laplace
transform is defined, (M(z))αβ = �̂βα(z) for z ∈ � and P is the set of the poles of
the map z 
→ (I − M(z))−1, which is meromorphic on �. For z ∈ � \ P we have,
cf. (47),

B̂(z) = (I − M(z))−1 B̂0(z). (54)

The first step for analysing the long-time behaviour of B consists in finding a solution
(r , v), with r ∈ R and v ∈ R

|X |
+ , to the non-linear eigenproblem

v = M(r)v. (55)

We call this eigenproblem non-linear to distinguish it from the classical eigenproblem
of the formMv = rv. In this case the non-linearity is due to the non-linear dependence
of M(r) on r . Notice that the solutions r of Eq. (55) are the poles of the function
z 
→ I − M(z).

Lemma 5.1 Let the assumptions of Lemma 4.1 hold. Moreover, assume that for every
z ∈ R the matrix M(z) is irreducible, i.e. for every i �= j there exists a k > 0 such
that (M(z)k)i j �= 0. Then there exists a unique real eigen-couple (z, v) = (0, v0)

satisfying Eq. (55) with v0 ∈ R
|X |
+ .

Proof We recall that by the Perron–Frobenius theorem for irreducible matrices, see
(Carl 2000), for every z ∈ R the spectral radius ρ(M(z)) of the matrix M(z) is a
simple eigenvalue of M(z). Moreover, the corresponding eigenvector vr has positive
entries vr ∈ R

|X |
+ .

By the definition of M(z), eT|X | is a left-eigenvector of M(0), hence the matrix M(0)
has only one eigenvalue λ = 1, corresponding to the normalized eigenvector v0. Since
on the other hand ρ(M(0)) ≤ ‖M(0)‖ ≤ 1, the Perron–Frobenius theorem implies
that ρ(M(0)) = 1.

Moreover, the functionR → R : z 
→ ρ(M(z)) is strictly decreasing. Indeed, recall
that ρ(M(z)) = limk→∞ ‖M(z)k‖1/k , where ‖ · ‖ is the matrix norm induced by the
standard euclidean norm. All the entries of the matrix M(z) are strictly decreasing as
a function of z ∈ R, which implies the claim.

Thus, we infer ρ(M(z)) < 1 for z > 0 while ρ(M(z)) > 1 for z < 0. Furthermore,
by the Perron–Frobenius theorem all eigenvectors with positive entries are associated
to the eigenvalue given by the spectral radius ρ(M(z)). Consequently, (0, v0) is the
unique real eigen-solution of (55). �
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Theorem 5.2 (Long-time behaviour) Let the assumptions of Lemma 5.1 hold. Let v0
be as in Lemma 5.1. Denote with B ∈ L1(R+; R

|X |
+ ) the solution of Eq. (3). Then there

exist three constants c0 ≥ 0, ε, C > 0 such that

‖B(t) − c0v0‖ ≤ Ce−εt

for all t > 0. Here, c0 depends only on the vector
∫∞
0 B0(s) ds.

Before starting the proof of Theorem 5.2we stateWielandt’s theorem (see Carl (2000),
Chapter 8.3). This theorem will be used in the proof of Theorem 5.2.

Theorem 5.3 (Wielandt’s theorem) Let A, B ∈ C
n×n. If B ≤ A where A us irre-

ducible, then ρ(B) ≤ ρ(B). If equality holds (i.e. if μ = ρ(A)eiφ ∈ σ(B) for some
φ ∈ R, then

B = eiφDAD−1 for some D = diag{eiθi }ni=1.

Proof of Theorem 5.2 By the Laplace inversion formula, see Diekmann et al. (2012),
applied to (54) we have that

B(t) = 1

2π i
lim

T→∞

∫ γ+iT

γ−iT
ezt (I − M(z))−1 B̂0(z)dz (56)

for γ > sup{Rez : det(I − M(z)) = 0}.
We now compute the integral on the right-hand side of Eq. (56). To this end, we

first prove that there exists an ε > 0 such that, if z ∈ C satisfies det(I − M(z)) = 0,
then �z ≤ −ε or z = 0. Indeed assume that there exists a z ∈ R \ {0} such that
det(I −M(i z)) = 0. In particular, M(i z) has one as eigenvalue. Note that the absolute
value of any element of the matrix M(i z) is smaller or equal than the corresponding
element of M(0). Consequently, by Wielandt’s theorem there is a diagonal unitary
matrix D such that M(i z) = DM(0)D−1. More precisely, the diagonal elements of D
have the form Dαα = eiμα for some μα ∈ R. We infer M(i z)αβ = ei(μα−μβ)M(0)αβ .
As a consequence we have

∫ ∞

0

(
1 − ei(μα−μβ−zt)

)
�αβ(t)dt = 0.

Since z �= 0 we obtain �αβ(t) = 0 a.e., which contradicts the assumption that the
matrix M(z) is irreducible. We deduce that det(I − M(z)) = 0 implies �z < 0 or
z = 0.

We now prove that there exists an ε such that if det(I −M(z)) = 0 then�z ≤ −ε or
z = 0. Thanks to the Riemann Lebesgue Lemma for every x < 0 there exists a η0 > 0
such that the matrix (I − M(s + iη)) is invertible for every s ∈ [x, 0] and |η| > η0.
Moreover, since the function z 
→ (I − M(z))−1 is meromorphic, we deduce that the
number of poles contained in the compact set {λ ∈ C : |�λ| ≤ η0 and �λ ∈ [x, 0]} is
finite. Hence, we can choose ε > 0 small enough so that z 
→ (I − M(z))−1 has only
one pole z = 0 in the set {λ ∈ C : �λ > −ε}.
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Therefore we can consider any γ > 0 in (56). We deduce that

∫ γ+iT

γ−iT
ezt (I − M(z))−1 B̂0(z)dz =

∮
�

ezt (I − M(z))−1 B̂0(z)dz

−
3∑

i=1

∫
�i

ezt (I − M(z))−1 B̂0(z)dz

where � := ∪4
i=1�i and where �4 is the segment in the complex plane connecting

γ + iT to γ − iT , �2 is the segment connecting γ + iT to −ε+ iT , �3 is the segment
connecting −ε + iT to −ε − iT , finally �1 connects −ε − iT to γ − iT .

By the residue theorem we have

1

2π i

∮
�

ezt (I − M(z))−1 B̂0(z)dz = Resz=0(I − M(z))−1 B̂0(z).

We now compute Resz=0(I − M(z))−1 B̂0(z). To this end, we notice that for small z
we have the following Laurent series representation of (I − M(z))−1

(I − M(z))−1 =
∞∑

n=−p

znRn,

where Rn ∈ R
|X |×|X |, p ≥ 1. Since (I − M(z))−1(I − M(z)) = (I − M(z))(I −

M(z))−1 = I we deduce that (I − M(z))R−1 = 0 which implies that R−1v =
αv0 for every vector v and for some α ∈ C that depends on v. Thus Resz=0(I −
M(z))−1 B̂0(z) = R−1 B̂0(0) = c0v0 where the constant c0 ≥ 0 depends on B̂0(0) =∫∞
0 B0(s) ds. In addition, by the Riemann Lebesgue Lemma, we have that

lim
T→∞

1

2π i

∥∥∥∥
∫
�i

ezt (I − M(z))−1 B̂0(z)dz

∥∥∥∥ = 0

for i = 1, 2. Moreover

lim
T→∞

1

2π i

∥∥∥∥
∫
�3

ezt (I − M(z))−1 B̂0(z)dz

∥∥∥∥
= lim

T→∞
1

2π i

∥∥∥∥
∫ −ε+iT

−ε−iT
ezt (I − M(z))−1 B̂0(z)dz

∥∥∥∥ ≤ Ce−εt .

The desired conclusion follows.
�

Lemma 5.4 Make the assumptions of Theorem 5.2. Let K ∈ R
|X |×|X |
+ be the diagonal

matrix s.t. Kαα = kα . Denote with D ∈ R
|X |
+ the function given by (4). Assume that
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there exist z0,C1,C2 > 0 such that for every t > 0

kα ≤ C1e
−z0t and D0

α ≤ C2e
−z0t

for every α ∈ X. Then there exist two constants C, ρ > 0 such that

‖D(t) − c0v0‖ ≤ Ce−ρt

for every t > 0, where the constant c0 is the same as in Theorem 5.2.

Proof First of all, note that
∫∞
0 kα(t)dt = 1 for every α ∈ X since {�} is irreducible.

Then, by definition of D(t) and the bounds on D0, kα we have

‖D(t) − c0v0‖ =
∥∥∥∥D0(t) +

∫ t

0
K(s)B(t − s)ds − c0

∫ t

0
K(s)v0ds − c0

∫ ∞
t

K(s)v0ds

∥∥∥∥
≤ Ce−z0t +

∥∥∥∥
∫ t

0
K(s) [B(t − s) − c0v0] ds

∥∥∥∥ ≤ Ce−z0t

+
∫ t

0
‖K(s)‖ ‖B(t − s) − c0v0‖ ds ≤ Ce−z0t + Ce−εt

∫ t

0
‖K(s)‖ eεsds

≤ Ce−z0t + Ce−εt
∫ t

0
e(ε−z0)sds ≤ Ce−ρt

for some ρ > 0. Notice that for the above computation we have used the long-time
behaviour of B computed in Theorem 5.2 and the bounds on kα and D0

α . �
Theorem 5.5 Make the assumptions of Theorem 5.2. Let K ∈ R

|X |
+ be the diagonal

matrix s.t. Kαα = kα . Assume in addition that N 0 = ∫∞
0 D0(s)ds. Then the solution

N (t) ∈ R
|X |
+ of (2) is such that there exists two positive constants r and C such that

for all t > 0

∥∥∥∥N (t) − c0v0

∫ ∞

0
sK(s)ds

∥∥∥∥ ≤ Ce−r t , (57)

where c0 is the same constant as in Theorem 5.2.

Proof By definition of N = (Nα)α∈X we have that

N (t) = N 0 +
∫ t

0
[B(s) − D(s)] ds.

Then
∥∥∥∥N (t) − c0v0

∫ ∞

0
vK(v)dv

∥∥∥∥
=
∥∥∥∥N 0 +

∫ t

0
[B(s) − D(s)] ds − c0v0

∫ ∞

0
vK(v)dv

∥∥∥∥
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=
∥∥∥∥N 0 +

∫ t

0

[
B(s) − D0(s) −

∫ s

0
K(s − v)B(v)dv

]
ds − c0v0

∫ ∞

0
vK(v)dv

∥∥∥∥
≤
∥∥∥∥N 0 −

∫ t

0
D0(s)ds

∥∥∥∥
+
∥∥∥∥
∫ t

0

[
B(s) −

∫ s

0
K(s − v)B(v)dv

]
ds − c0v0

∫ ∞

0
vK(v)dv

∥∥∥∥ .

We know that, for some positive constants C1, C2, C3 and z0, ε > 0

∥∥∥∥N0 −
∫ t

0
D0(s)ds

∥∥∥∥ ≤ C1e
−z0t , ‖B(t) − c0v0‖ ≤ C2e

−εt ,

∥∥∥∥v0
∫ ∞
t

∫ ∞
s

K(v)dvds

∥∥∥∥
≤ C3e

−z0t .

Then, we conclude

∥∥∥∥N0 −
∫ t

0
D0(s)ds

∥∥∥∥+
∥∥∥∥
∫ t

0

[
B(s) −

∫ s

0
K(s − v)B(v)dv

]
ds − c0v0

∫ ∞
0

vK(v)dv

∥∥∥∥
≤ (C1 + C3)e

−z0t +
∥∥∥∥
∫ t

0
B(s)

∫ ∞
t−s

K(v)dvds − c0v0

∫ t

0

∫ ∞
t−s

K(v)dvds

∥∥∥∥
≤ Ce−z0t +

∥∥∥∥
∫ t

0
[B(s) − c0v0]

∫ ∞
t−s

K(v)dvds

∥∥∥∥ ≤ Ce−z0t

+
∫ t

0
‖B(s) − c0v0‖

∥∥∥∥
∫ ∞
t−s

K(v)dv

∥∥∥∥ ds ≤ Ce−z0t + C
∫ t

0
e−εse(s−t)z0ds ≤ Ce−r t

for some r , C > 0. �

6 Response functions and structured population equations

In this section, we study the relation between the formalism of response functions
introduced in Sect. 2 and the formalism of structured populationmodels, which is often
used in biology, see for instance (Perthame 2006). The theory of structured population
models is a verywell devolpedfield. Therefore relating structured population equations
toRFEs can help the understanding ofRFEs.Moreover as explained in the introduction
the RFEs are, in general, non-Markovian equations, while SPEs are Markovian. In
Sect. 6.1 we study the relation between (2)–(4) and (9), while in Sect. 6.2 we consider
the equivalence between (16)–(18) and generalizations of (9). We notice that in order
to obtain this equivalence it is crucial to study the properties of the forcing function
{B0

α}which describes the transient response of the system, (cf. 67). Finally, in Sect. 6.3
we describe the conditions on the initial data {n0α} that allow to rewrite the ODEmodel
(15) as SPEs.
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6.1 Classical RFEs

Here, we reformulate (2)–(4) as a structured population model and we study the equiv-
alence of the two formulations. To this end, we introduce the concept of age of an
individual in some compartment α. In this section, we assume that every element
enters the compartment α with the same age ξ = 0.

Let fα(t, ξ) be the number of elements in the compartment α with age ξ at time t .
Since here we assume that all the elements enter the compartment α with age ξ = 0,
the age of an element in the compartment α at a certain time t ≥ 0 is just ξ = t − t ,
where t is the time at which it entered in α.

We then have the following evolution equation for fα

∂t fα(t, ξ) + ∂ξ fα(t, ξ) = −	α(ξ) fα(t, ξ), (58)

fα(t, 0) =
∑

β∈X\{α}

∫
R+

λβα(η) fβ(t, η)dη (59)

fα(0, ξ) = mα(−ξ)e− ∫ ξ
0 	α(s)ds (60)

where 	α(ξ) = ∑
β∈X\{α} λαβ(ξ). Indeed, fα(t, ξ) changes in time due to the aging

of the elements, described by the transport term in (58), due to jumps from the com-
partment α to any other compartment β ∈ X , described by the loss term in (58), and,
finally, due to the fact that elements enter the compartment α with age zero, from any
other compartment β ∈ X . Accordingly, λαβ(η) in the above equation is the rate at
which an individual, which has been in the compartment α for a time interval of length
η, jumps from compartment α to compartment β. Finally, mα(−ξ) in (60) is the num-
ber of elements with state in the compartment α at time −ξ . We then obtain fα(0, ξ),
multiplying mα(ξ) by the probability that these elements stay in the compartment α

up to time 0, namely multiplying by e− ∫ ξ
0 	α(s)ds .

Definition 6.1 Let λαβ ∈ Cb(R+) be non-negative for every α, β ∈ X . Assume
that f 0α ∈ M+,b(R+) for every α ∈ X . A family of functions { fα} with fα ∈
C([0, T ];M+,b(R+)) is a solution of Eq. (58), with initial condition f 0α (·), if for
every ϕ ∈ C1

c (R+) the map t 
→ ∫
R+ ϕ(ξ) fα(t, dξ) is differentiable and

d

dt

∫
R+

ϕ(ξ) fα(t, dξ) =
∫
R+

[
ϕ′(ξ) − 	α(ξ)ϕ(ξ))

]
fα(t, dξ) (61)

+ ϕ(0)
∑

β∈X\{α}

∫
R+

λβα(η) fβ(t, dη) (62)

for every α ∈ X . Furthermore fα(0, ·) = f 0α (·).
We recall that in the definition of C([0, T ],M+,b(R+)) we endow the space

M+,b(R+) with the Wasserstein distance, see Sect. 1.1.

Lemma 6.1 Let λαβ ∈ Cb(R+) to be non-negative for every α, β ∈ X. Let mα ∈
M+,b(R+) for α ∈ X. Assume that f 0α is given by (60). Then there exists a unique
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solution { fα} with fα ∈ C([0, T ],M+,b(R+)) for all α ∈ X to Eq. (58) in the sense
of Definition 6.1. The solution satisfies

∫
R+

e
∫ ξ
0 	α(v)dv fα(t, dξ) < ∞, (63)

for every α ∈ X and every t ≥ 0, where 	α(t) := ∑
β∈X\{α} λαβ(t).

Proof We can rewrite Eq. (61) in fixed point form as follows. We use the notation
Y := C([0, T ],M+,b(R+))|X | where Y is endowed with the metric induced by the
distance

dT ( f , g) =
∑
α∈X

sup
t∈[0,T ]

W1( fα(t, ·)gα(t, ·)).

Given a f = ( fα) ∈ Y we define the operator T [ f ](t) : Cc(R+) → R
|X |
+ as

〈T [ f ](t), ϕ〉α :=
∫ t

0
ϕ(t − ξ)e− ∫ t−ξ

0 	α(v)dv
∑

β∈X\{α}

∫
R+

λβα(η) fβ(ξ, dη)dξ

+
∫
R+

f 0α (dξ)ϕ(ξ + t)e− ∫ t+ξ
ξ 	α(v)dv (64)

where we are using the notation 〈·, ·〉α to indicate the α-th component of T [ f ](t)
applied to ϕ.

We define ‖ f ‖Y := ∑
α∈X supt∈[0,T ] ‖ fα(t, ·)‖T V and the set XT ⊂ Y as

XT :=
{
f ∈ Y : ( f (0))α = f 0α for every α ∈ X , || f ||Y ≤ 1 +

∑
α∈X

‖ f 0α ‖T V
}
.

For every f ∈ XT each component of the operator T [ f ](t) is a linear, positive and
continuous operator from Cc(R+) to R and, hence, can be identified with an element
of M+,b(R+).

Using the bound for the parameters λαβ , we deduce that, for every f ∈ XT , we have
that T [ f ] ∈ XT for sufficiently small values of T . Similarly, for sufficiently small
values of T , the operator T is a contraction and hence Banach fixed point Theorem
implies that there exists a unique fixed point f ∈ XT .

Since the fixed point f of T satisfies T [ f ](t) = f (t) the map t 
→ 〈 f (t, ·), ϕ〉α =
〈T [ f ](t), ϕ〉α is differentiable if ϕ ∈ C1

c (R+). Hence, the fixed point of T is a solution
to (61) for T small enough. Due to the linearity of the problem ‖ f ‖Y stays finite for
every t > 0.We can then iterate the argument and prove the existence and uniqueness
of a solution to (61) for an arbitrary T > 0.

To prove (63) we consider the test function ϕε,R(ξ) = χR,ε(ξ)e
∫ ξ
0 	α(v)dv in Eq.

(64). Here χR,ε is a smooth decreasing function such that χR,ε(ξ) = 0 for ξ > R + ε
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and χR,ε(ξ) = 1 for ξ ≤ R. We deduce that

∫
R+

χR,ε(ξ)e
∫ ξ
0 	α(v)dv fα(t, dξ) ≤

∫ t

0
χR,ε(t − ξ)

∑
β∈X\{α}

∫
R+

λβα(η) fβ(ξ, dη)dξ

+ c1 f
0
α (R+) ≤ C sup

t∈[0,T ]

∑
β∈X\{α}

fβ(t,R+) + c1 f
0
α (R+)

where the positive constants c1,C do not depend on ε and R. Sending ε to zero and
R to infinity concludes the proof. �
Since we are assuming that each of the compartments α ∈ X has at most one entrance
point, we can consider the simplified system for {Nα, Bα, Dα}, cf. (2), (3), (4). In the
following two theorems, we study the equivalence between (58)–(60) and (2)–(4).

Theorem 6.2 (RF and SP) Under the assumptions of Lemma 6.1 consider the solution
{ fα}with fα ∈ C([0, T ],M+,b(R+)) to (58)–(60). Then, the family of functions {Nα},
defined by

Nα(t) =
∫
R+

fα(t, dξ), t ≥ 0 ∀α ∈ X , (65)

satisfies (16) where {Bα, Dα} satisfy (3), (4) with response functions {�αβ} and {kα}
given by

�αβ(t) = λαβ(t)e
− ∫ t0 	α(s)ds, kα(t) = 	α(t)e

− ∫ t0 	α(s)ds (66)

and with

B0
α(t) =

∑
β∈X\{α}

∫
R−

�βα(t − ξ)mβ(dξ), D0
α(t) =

∫
R−

kα(t − ξ)mα(dξ). (67)

Proof From Eq. (61) we deduce that

d

dt
Nα(t) = d

dt

∫
R+

fα(t, dξ) = −
∫
R+

	α(ξ) fα(t, dξ) +
∑

β∈X\{α}

∫
R+

λβα(ξ) fβ(t, dξ).

Notice that we can use the test function ϕ = 1 due to (63).
The fixed point formulation of Eq. (61), namely (64), implies that

∫
R+

λβα(ξ) fβ(t, dξ) =
∫ t

0
λβα(t − ξ)e−

∫ t−ξ
0 	β(v)dv

∑
γ∈X\{β}

∫
R+

λγβ(η) fγ (ξ, dη)dξ

+
∫
R−

λβα(t − ξ)e−
∫ t−ξ
0 	β(v)dvmβ(dξ). (68)
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Summing in the above equation over β ∈ X \ {α} we deduce that
∑

β∈X\{α}

∫
R+

λβα(ξ) fβ(t, dξ) =: Sα(t)

satisfies (3) with kernel�αβ as in (66) and with the forcing function B0
α given by (67).

Similarly, taking the sum over α ∈ X \ {β} we deduce that
∫
R+

	α(ξ) fα(t, dξ) =
∫ t

0
kα(t − ξ)

∑
γ∈X\{α}

∫
R+

λγα(η) fγ (ξ, dη)dξ + D0
α(t),

where kα is as in (66). Hence,

D0
β(t) =

∫
R+

	β(ξ) fβ(t, dξ)

satisfies (4). This concludes the proof. �
Theorem 6.3 (RF and SP) Let {Nα, Bα, Dα} satisfy (2)–(4) with response functions
�αβ ∈ C(R+; R+) and kα ∈ C(R+; R+) and assume that {B0

α, D
0
α} satisfy (67)

where {mα} is a family of measures mα ∈ M+,b(R+). Assume in addition that for
every α, β ∈ X it holds that the function

λαβ(t) := �αβ(t)

1 −∑
γ∈X\{α}

∫ t
0 �αγ (s)ds

t ≥ 0 (69)

is continuous and bounded for every α, β. Then the family of functions { fα} solving
(58)–(60) satisfy (65).

Before proving the theorem we remark that the continuity of λαβ as in (69) holds if we
assume that for every α, β ∈ X the support of the function�αβ is unbounded. Notice
that this assumption is true for all the examples in Sect. 7.

Proof Since { fα} solves (58)–(60) by Theorem 6.2 the functions N̄α(t) :=∫
R+ fα(t, dξ) solve (2)–(4) with the same initial conditions as {Nα, Bα, Dα} and

some response functions {�̄αβ} given by (66). Since 	α is given by

	α(t) =
∑

β∈X\{α} �αβ(t)

1 −∑
γ∈X\{α}

∫ t
0 �αγ (s)ds

,

then we have that
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∫ t

0
	α(v)dv =

∫ t

0

∑
β∈X\{α} �αβ(v)

1 −∑
γ∈X\{α}

∫ v

0 �αγ (s)ds
dv

= − ln

⎛
⎝1 −

∫ t

0

∑
β∈X\{α}

�αβ(s)ds

⎞
⎠ .

Hence,

e− ∫ t0 	α(v)dv = 1 −
∫ t

0

∑
β∈X\{α}

�αβ(s)ds. (70)

By (66) we deduce that �̄αβ = �αβ . By uniqueness of the solution, we obtain Nα =
N̄α . This concludes the proof. �

6.2 Generalized RFEs

Here, under suitable conditions on the forcing functions, we reformulate (16)–(18) as
a structured population model. As in Sect. 6.1, we assume that the elements have age
ξ = 0 when they enter in the compartment. We assume that fα j (t, ξ) is the density
of individuals that entered the compartment α with state j ∈ α, and that have age ξ at
time t .

The evolution in time of fα j is described by the following SPEs

∂t fα j (t, ξ) + ∂ξ fα j (t, ξ) = −Mα j (ξ) fα j (t, ξ) (71)

fα j (t, 0) =
∑

β∈X\{α}

∑
k∈β

∫
R+

fβk(t, η)μk j (η)dη (72)

fα j (0, ξ) = mα j (−ξ)e− ∫ ξ
0 Mα j (v)dv (73)

where Mα j (ξ) = ∑
β∈X\{α}

∑
�∈β μ j�(ξ).

The transport term in (71) is due to the aging of the elements in the compartments.
Moreover, elements with "state-at-entrance" j ∈ α and age ξ jump to another com-
partment with rate Mα j (ξ). The birth term in (72) is due to elements that entered β

with any state and at any time in the past, that at time t jump to state j ∈ α. Finally
mα(−ξ) in (71) is a vector whose j-th element is the density of elements with state
j ∈ α at time −ξ .
Eq. (71)–(73) is a special case of (58)–(60). Indeed, consider in (58)–(60) a set of

compartments X1 such that every compartment in X1 is of the form { j} with j ∈ �.
Moreover, we assume that the compartments { j} with j ∈ α with α ∈ X , are not
connected, which means that λi j = 0 when i, j ∈ α. Then (58)–(60) for the set of
compartments X1 reduce to (71)–(73) for the set of compartments X .

We therefore define a solution of (71)–(73) in analogy with Definition 6.1.

Definition 6.2 Let μi j ∈ Cb(R+) be non-negative for every i ∈ α, j ∈ β with
α, β ∈ X . Assume that f 0α j ∈ M+,b(R+) for every j ∈ α and every α ∈ X . A family
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of functions { fα j } with fα j ∈ C([0, T ];M+,b(R+)) is a solution of Eq. (71), with
initial condition f 0α j (·), if for every ϕ ∈ C1

c (R+) the map t 
→ ∫
R+ ϕ(ξ) fα j (t, dξ) is

differentiable and

d

dt

∫
R+

ϕ(ξ) fα j (t, dξ) =
∫
R+

[
ϕ′(ξ) − Mα j (ξ)ϕ(ξ))

]
fα j (t, dξ)

+ ϕ(0)
∑

β∈X\{α}

∑
k∈β

∫
R+

μk j (η) fβk(t, dη) (74)

for every j ∈ α with α ∈ X . Furthermore fα j (0, ·) = f 0α j (·).
Moreover, as a consequence of Lemma 6.1 we have the existence of a unique

solution for (71)–(73).

Lemma 6.4 Let μi j ∈ Cb(R+) to be non-negative for every i, j . Let mα j ∈
M+,b(R+) for α ∈ X. Assume that f 0α j is given by (60). Then there exists a unique
solution { fα j } with fα j ∈ C([0, T ],M+,b(R+)) for all j ∈ α and α ∈ X to Eq. (71)
in the sense of Definition 6.2. The solution satisfies, for every j ∈ α and α ∈ X and
every t ≥ 0

∫
R+

e
∫ ξ
0 Mα j (v)dv fα j (t, dξ) < ∞, (75)

where Mα j (t) := ∑
β∈X\{α}

∑
i∈β μi j (t).

In the following two theorems, we study the equivalence between (71)–(73) and
(16)–(18).

Theorem 6.5 (RF and SP) Under the assumptions of Lemma 6.4 consider the solution
{ fα j } with fα, j ∈ C([0, T ],M+,b(R+)) to (71)–(73). Then, the family of functions
{Nα}, defined by

Nα(t) =
∑
j∈α

∫
R+

fα j (t, dξ), t ≥ 0, ∀α ∈ X , (76)

satisfies (16). The corresponding fluxes {Sα} and {Jα} satisfy (17) and (18) with
response functions given by

(Gαβ(t)) jk = μk j (t)e
− ∫ t0 Mαk (v)dv (77)

for k ∈ α, j ∈ β and

(Kα(t))i i = Mαi (t)e
− ∫ t0 Mαi (s)ds, (Kα(t))i j = 0 (78)

for i, j ∈ α. The corresponding forcing functions have the form

S0α(t) =
∑

β∈X\{α}

∫
R−

Gβα(t − s)mβ(ds), J 0α (t) =
∫
R−

Kα(t − s)mα(ds). (79)
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Here, we write mα ∈ R
|α|, (mα) j = mα j for every j ∈ α, α ∈ X.

Proof We have that

d

dt
Nα(t) = −

∑
j∈α

∫
R+

Mα j (ξ) fα j (t, dξ) +
∑
j∈α

∑
β∈X\{α}

∑
k∈β

∫
R+

μk j (ξ) fβk(t, dξ).

As in the proof of Theorem 6.2 one can show that the function t 
→ Sα(t) with
Sα(t) ∈ R

|α| given by

(Sα(t)) j =
∑

β∈X\{α}

∑
k∈β

∫
R+

μk j (ξ) fβk(t, dξ)

satisfies (17) with response function given by (77) and with forcing function given by
(79). Similarly, Jα(t) ∈ R

|α|
+ given by

(Jα(t)) j =
∫
R+

Mα j (ξ) fα j (t, dξ)

satisfy (18) with response function (78) and forcing function (79). �
Theorem 6.6 (RF and SP) Let {Nα, Sα, Jα} satisfy (16)–(18) with response functions
Gαβ ∈ C(R+; R

|β|×|α|
+ ) and Kα ∈ C(R+; R

|α|×|α|
+ ) assume that {S0α, J 0α } satisfy (67)

where {mα j } is a family of measures mα j ∈ M+,b(R+). Assume in addition that for
every i ∈ α and j ∈ β with α, β ∈ X the function

μi j (t) := (Gαβ(t)) j i

1 −∑
γ∈X\{α}

∑
k∈γ

∫ t
0 (Gαγ (s))ki ds

t ≥ 0 (80)

is continuous and bounded. Then the family of functions { fαi } solving (71)–(73) sat-
isfies (76).

Proof Since { fα j } solves (71)–(73) with coefficients μi j given by (80) the functions
N̄α(t) := ∑

j∈α

∫
R+ fα j (t, dξ) satisfy (16)–(18) with the same forcing function as

{Nα, Sα, Jα} and some response functions {Ḡαβ} given by (79). Then

∫ t

0
Mαi (v)dv =

∫ t

0

∑
β∈X\{α}

∑
j∈β(Gαβ(v)) j i

1 −∑
γ∈X\{α}

∑
k∈β

∫ v

0 (Gαγ (s))ki ds
dv

= − ln

⎛
⎝1 −

∫ t

0

∑
β∈X\{α}

∑
k∈β

(Gαβ(s))ki ds

⎞
⎠ .

Hence, e− ∫ t0 Mαi (v)dv = 1−∫ t0 ∑β∈X\{α}
∑

k∈β(Gαβ(s))ki ds. We deduce that Ḡαβ =
Gαβ . By uniqueness of the solution, we obtain Nα = N̄α . This concludes the proof. �
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6.3 Initial conditions of ODEs compatible with a SPEs reformulation

We now characterize the initial conditions of the ODE (15) that guarantee that the
corresponding forcing function S0α is of the form (79) for some mα . This allows to
associate with these ODEs a SPE of the form (71)–(73). Indeed, starting from the
ODEs (15) we can write a system of RFEs for Nα , see Theorem 2.4. Then, if S0α is
of the form (79) we can associate to this RFEs a SPEs. With this procedure we can
therefore, implicitly, associate to these ODEs an age structure.

Proposition 6.7 (ODEs and SPEs) Let Nα be given by (12) where {nα} is the family
of solutions to (15). If for every β ∈ X there exists a mβ ∈ (M+,b(R+)

)|β|
such that

n0β =
∫
R−

e−ξ Aββmβ(dξ) (81)

then Nα is given by (76), where { fα j } is the solution to a SPE of the form (71)–(73).

Proof Theorem 2.4 implies that Nα satisfies Eq. (16). The flux Sα solves (17) with
response functions Gαβ(t) = Aβαet Aαα and forcing functions

S0α(t) =
∑

β∈X\{α}
Gβα(t)n

0
β =

∑
β∈X\{α}

Aαβe
t Aββn0β =

∑
β∈X\{α}

∫
R−

Gβα(t − ξ)mβ(dξ),

(82)

where in the last equality we used (81). As a consequence of (82) and Theorem 6.5
we can associate to the RFEs (16)–(18) a system of SPEs of the form (71)–(73). �

As explained above, Proposition 6.7 guarantees that if (81) holds, then we can
introduce an age structure in the ODEs system.

7 Specific examples and applications: linear case

We now consider some examples of applications of the response function formalism in
biochemistry. We consider first systems leading to linear problems. The examples that
we study include the classical kinetic proofreading model introduced by Hopfield and
Ninio (Sect. 7.1), a model of non-Markovian linear polymerization (Sect. 7.2), and a
simple linear network inspired by the model of robust adaptation in Barkai and Leibler
(1997), (see Sect. 7.3).

7.1 Kinetic proofreading, Hopfield model

Our first application concerns a kinetic proofreading mechanism due to Hopfield Hop-
field (1974) and Ninio Ninio (1975). The Hopfield model, or other mechanisms of
kinetic proofreading inspired by that, have been found in many biological processes,
including pathogen recognition from the immune system (Goldstein et al. 2004),
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McKeithan (1995), DNA replication, m-RNA translation, DNA recognition and DNA
transcription, see the review (Boeger 2022) and also (Murugan et al. 2012; Pigolotti
and Sartori 2016).

The classical Hopfield model is a biochemical network of reactions of the form

C � S, C � S∗ (83)

S ←−� S∗ (84)

C → ∅, S∗ → P (85)

where we indicate with � the reactions having detailed balance and with ←−� the
reaction that does not have detailed balance. For more complex kinetic proofreading
networks we refer to Murugan et al. (2012), Murugan et al. (2014).

It is important to notice that the state denoted by S is a complex that consists in the
combination of the molecule denoted by C with some receptor. In the formulation of
(83) and (84) we assume that the number of receptors is very large and therefore the
number of attachment points for C can be assumed to be constant. On the other hand,
S∗ is the phosphorylated state of S and it synthesize the product P . For example, C
could be a codon on the mRNA, S the complex made ofC and a tRNA. The product P
would then be an amino acid.We refer to Chapter 7 in Alon (2019) for more biological
details.

We assume that E(S) − E(C) = E1 while E(S∗) − E(C) = E2 where
E(S), E(S∗), E(C) are the free energies of S, S∗ and C . We stress here that we
are choosing units of energy such that kBT = 1 where kB is the Boltzmann constant
and T is the temperature of the system, so that the energies are dimensionless. The
affinity E1 to be detected by the receptor can be different for another molecule C ,
producing the complexes S and S

∗
. In other words, the affinity E1 = E(S) − E(C)

can be slightly different from E1. Specifically, if the circuit has a preference for the
molecule C over C we have E1 > E1. However E1 − E2 can be assumed to be
constant, i.e. E1 − E2 = E1 − E2 where E2 = E(S

∗
) − E(S). The reason why we

can make this assumption is that the phosphorylation process takes place in a part of
the molecule that is far from the part of the receptor where the molecule C or C was
attached. The phosphorylation reaction (84) does not have detailed balance due to the
consumption of ATP (or energy) in an irreversible manner, see Fig. 4.

The rate of the reaction C → S is k. Due to the detailed balance condition the
rate of the reaction S → C is keE1 . Indeed the detailed balance property guarantees
that kNC = k−NS where k− is the rate of the reaction S → C and where NC =
e−E(C), NS = e−E(S) are respectively the concentrations of C and S at the steady
state. Therefore k− = k NC

NS
= keE1 .

Similarly the rate of the reaction C → S∗ is β and the one of the reaction S∗ → C
is βeE2 . Finally the rate of the reaction S → S∗ is α. On the other hand, due to the
lack of detailed balance, we will denote the rate of the reverse reaction S∗ → S as
αeE2−E1/Q, where Q is a coefficient which measures the lack of detailed balance. If
Q = 1 the reaction (84) has detailed balance. On the contrary, if Q > 1 energy is
spent in an irrerversible manner to transform S into S∗.
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Fig. 4 Reactions in the
proofreading mechanism due to
Hopfield. In the green dashed
line, we have the compartment
{C, S, S∗, ∅}

s

s*

c

P

∅

F

More precisely, we consider the ODEs

dC

dt
= −(k + β + μ)C + keE1 S + βeE2 S∗ + F(t)

dS

dt
= kC − (keE1 + α)S + α

Q
eE2−E1 S∗

dS∗

dt
= βC + αS −

(
α

Q
eE2−E1 + βeE2 + λ

)
S∗

dP

dt
= λS∗.

(86)

The equations for C, S, S
∗
are identical, except for the energies E1 and E2 which are

E1 and E2. The term F in (86) is an external source of substance C .
Changing the time unit, we can assume without loss of generality that k = 1 in

(86). The effective behaviour of the reactions C → P , C̄ → P can be described via
the corresponding response functions �, �̄. The response functions � and � can be
obtained taking F(t) = δ0(t).

Using the linearity and invariance under time translations of (86) we can rewrite
the total production until the time t in the form

d

dt
P(t) =

∫ t

−∞
�(t − s)F(s)ds

where�(t) = λS∗(t), where S∗ is computed solving (86) with initial valueC(−∞) =
S(−∞) = S∗(−∞) = 0 and F(t) = δ0(t). This is equivalent to solving (86) for t > 0
with initial conditions C(0) = 1, S(0) = S∗(0) = 0, P(0) = 0, F(t) = 0 for every
t > 0 respectively.

We will denote with P∞ the total quantity of product generated upon excitation by
a signal F(t) = δ0(t) of the molecule C and with P∞ the same quantity produced by
a signal of the molecule C . Then, the total production ratio is given by

P∞
P∞

=
∫∞
0 �̄(t) dt∫∞
0 �(t) dt

=
ˆ̄S∗(0)
Ŝ∗(0)

,
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Fig. 5 Plot of response function �(t) for α = μ = ε, β = ε2, Q = 1/ε2, λ = 2ε2, eE1 = 2, eE2 = 4/εs ,

eĒ1 = 8, eĒ2 = 16/εs where ε = 0.01, s = 1/2

where ˆ̄S∗, Ŝ∗ are the Laplace transforms of S̄∗, S∗. Taking the Laplace transform of
(86), evaluating z = 0 and solving the linear system leads to

P∞
P∞

=θ2
1 + β + βξ/αθ

1 + β + βξ/α

ξ2 + ξ((β + μ)λ/μβη + α/βQ + α) + (1 + β + μ)αλ/μβη

ξ2 + θξ((β + μ)λ/μβη + α/βQ + α) + θ2(1 + β + μ)αλ/μβη

θ :=e−(Ē1−E1), ξ := eE1 , η := eE2−E1 = eĒ2−Ē1 .

Note that θ ∈ (0, 1). Consequently, the above expression is greater than θ2 =
e−2(Ē1−E1). Let us mention that the optimal discrimination θ2 agrees with the one
originally obtained in Hopfield (1974) for constant flux solutions (i.e. assuming that
C or C are constant in time, hence ignoring the first equation in (86)).

The value e−2(Ē1−E1) is achieved if

α → 0,
β

α
→ 0,

α

βQ
→ 0,

λ

μη
→ 0,

λ

βη
→ 0, ζ := αλ

μβη
→ 0 (87)

assuming that ξ is of order 1. Notice that the first three limit expressions in (87) imply
that α, β → 0 as well as Q → ∞. The first two limits expression above imply that
the reaction transforming S in S∗ is slow, but faster than the reaction transforming
C in S∗. Furthermore, Q → ∞ yields that detail balance is strongly violated in the
reaction (84).

In order to ensure that the last three limits expressions in (87) hold we can either
assume λ

μ
� β

α
and λ � β and η of order 1. Alternatively, it is possible to obtain all

the formulas in (87) also with η → ∞, we refer to the examples later for this case.
Note that μ → 0 is not required. However, if μ is of order one, most of the signal C
will be lost in times of order 1 (or shorter) due to the term −μC in (86).

In addition, we can also compute the total production P∞ under the assumptions
(87). We then obtain
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Fig. 6 Reactions in the
proofreading mechanism due to
Hopfield, without the
degradation of C

s

s*

c

P

F(t)

P∞ = λŜ∗(0) = 1 + β + βξ/α

1 + β + μ + ξ(μβη/λ + β/α + μ/α + ξμβη/λα + ημ/Qλ)

= ζ

ξ2
(1 + o(1))

where ζ is defined as in (87) and goes to zero and ξ is of order 1. We thus observe that
the quadratic discrimination is obtained in the proofreading mechanism at the cost of
having a very small fraction of molecules of C generating the product P .

Wenowconsider specific formsof the response functions for someparticular scaling
limits of the chemical coefficients. More precisely, we set

α = ε, β = ε2, Q = ε−2, μ = ε,
λ

η
= ε2+s, (88)

for some s ∈ (0, 1] and for ε → 0. In this case, we have as ε → 0

P∞
P∞

= θ2
(
1 + O(εs)

)
,

P∞
P∞

= εs

ξ2

(
1 + O(εs)

)
.

In Fig. 5we plot the response function� in the case s = 1/2, ε = 0.01 andλ = 2ε2,
η = 2ε−1/2 together with (88). Notice that the response function � that we obtain
from this model is not an exponential function. This means that the dynamics is non-
Markovian in general. However, as time tends to infinity� approaches an exponential
function. This suggests that the system could be considered to be Markovian for times
large enough.

The degradation term −μC in the equation for dC/dt is usually not included in
the standard (time-independent) Hopfield problem as in Hopfield (1974), see Fig. 6.
Here, since we consider a time-dependent model, the degradation term is needed to
be able to discriminate, in terms of production of P , the molecule C and the molecule
C . Indeed, in the absence of degradation, every molecule C or C would synthesize
the product P . Although, the molecule with more affinity will be much faster than the
other one in the production of P , as we explain now. We compute the average time
needed for the molecule C to produce P . This is given by

123



Description of chemical systems by means of response functions Page 45 of 56    31 

T =
∫∞
0 t�(t)dt∫∞
0 �(t)dt

where �(t) = λS∗(t) and where S∗ is computed from Eq. (86) with μ = 0 and with
C(0) = 1, S(0) = S∗(0) = 0. Notice that, since d

dt (C + S + S∗) = −λS∗, then
∫ ∞

0
�(t)dt = λ

∫ ∞

0
S∗(t)dt = C(0) = 1,

hence T = ∫∞
0 t�(t)dt . Moreover,

T =
∫ ∞

0
t�(t)dt = λ

∫ ∞

0
t S∗(t)dt = −

∫ ∞

0
t
d

dt
(C(t) + S(t) + S∗(t))dt .

Integrating by parts and using the fact that C, S, S∗ decay exponentially as time tends
to infinity, we obtain that

T =
∫ ∞

0
(C(t) + S(t) + S∗(t))dt = Ĉ(0) + Ŝ(0) + Ŝ∗(0).

Performing the Laplace transform in (86) we deduce that

T = (λ + βηeE1)(keE1 + α) + α
Q ηkeE1 + (k + β)

αη
Q + k(λ + βηeE1)

λ(βkeE1 + αk + αβ)

We compare T with T under the following assumptions

λ � βηeE1 , α � keE1 , βeE1 � k,
α

Q
� βeE1 , eE1 � 1

and deduce that

T

T
≈ e−2(Ē1−E1).

This is in agreement with the results in Hopfield (1974) for solutions with constant
fluxes.

7.2 A linear polymerizationmodel

In this section we describe a simple (linear) polymerization model which includes a
kinetic proofreading mechanism. Polymerization processes are ubiquitous in biology.
Some of the most important examples of polymerization in biochemistry are the tran-
scription of DNA in mRNA and the translation of mRNA into polypeptides. Some
of the most widely studied mathematical models of this last process can be found in
MacDonald and Gibbs (1969), MacDonald et al. (1968), Pipkin and Gibbs (1966).
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Most of the models of polymerization used in biology that we are aware of are
Markovian. On the other hand, in all the polymerization models mentioned above
kinetic proofreading mechanism and error correcting reactions take place whenever a
monomer is incorporated to the polymer (see Pigolotti and Sartori (2016)). Hence, as
explained in Sect. 7.1, it is natural to formulate a polymerization model for these pro-
cesses in which the addition of monomers takes place in a non-Markovian manner. We
will describe in this section a very simple polymerization model using the formalism
of response functions to describe each polymerization step. Notice that we do not try
to include in this model the simultaneous reading of a single mRNA strain by several
ribosomes, as it has been done in MacDonald and Gibbs (1969), MacDonald et al.
(1968), Pipkin and Gibbs (1966). Nevertheless we remark that the model considered
here is the non-Markovian version of the model in Pipkin and Gibbs (1966).

We assume that polymers are characterized by their length � and that polymers
interact only with monomers. When a monomer binds to a polymer a sequence of
kinetic proofreading reactions starts. After these reactions take place a monomer of
size �+1 is formed. Due to the proofreadingmechanisms the reaction (�) → (�+1) is
non-Markovian and, hence,wewillmodel it using the formalismof response functions.

Let n�(t) be the number of polymers of length � at time t . Then n� increases in time
due to the flux I� of polymers from size � − 1 to size � and decreases due to the flux
I�+1 of polymers from size � to size � + 1. Namely, for � ≥ 1, we have

∂t n�(t) = I�(t) − I�+1(t), � ≥ 1 (89)

where

I�(t) =
∫ t

−∞
�(t − s)I�−1(s)ds, � ≥ 2. (90)

Here, to simplify the analysis, the response function � is assumed to be independent
on �. Moreover, we assume that

∫∞
0 �(s)ds = 1.

We now study the long-time behaviour of n�. To this end we assume that there
is a constant flux of monomers entering the system, that is I1(t) = 1 for all t ≥ 0.
Furthermore, we assume that n�(0) = 0 for every � ≥ 1. Taking the Laplace transform
to all the terms of Eq. (90) we deduce that

Î�(z) = �̂(z) Î�−1(z) for � ≥ 2 and Î1(z) = 1

z
.

It follows that Î�(z) = �̂(z)�−1 Î1(z) = 1
z �̂(z)�−1. Applying the Laplace transform

also to all the terms in Eq. (89), we deduce that zn̂�(z) = Î�(z) − Î�+1. Hence

n̂�(z) = 1

z2

(
�̂(z)�−1 − �̂(z)�

)
= 1

z2
�̂(z)�−1

(
1 − �̂(z)

)
.

In order to obtain the long-time asymptotics for n� we need to consider the asymptotics
of n̂� for z small. For z small the function �̂(z) can be approximated by 1−μz where
μ = ∫∞

0 s�(s)ds. Then
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n̂�(z) = 1

z2
�̂(z)�−1

(
1 − �̂(z)

)
≈ 1

z2
(1 − μz)�−1μz = μ

z
(1 − μz)�−1 ≈ μ

z
e−μz�

as z goes to zero. Inverting the Laplace transform of μ
z e

−μz� we obtain that n� behave
like a wave front of the form n�(t) ≈ μχ[�μ,∞)(t) for large times. Notice that this
solution describes a front of concentration in the space of polymer size propagating
with speed 1/μ. A more detailed description of the solution near the edge of the front
needs a more precise analysis that we will not pursue here.

7.3 A linear chemical model of adaptation

An important concept in Systems Biology is the one of adaptation. A system shows
adaptation if it reacts to gradients (in time or space) of a chemical, rather than to
absolute values of each concentration. One of the earliest models of adaptation is the
Barkai–Leibler model of bacterial chemotaxis, see (Alon 2019; Barkai and Leibler
1997). Other models of adaptation can be found in Ferrell (2016), Tang et al. (2010).

In this section we present a very simple model showing adaptation. This model can
be thought as a linear version of the classical Barkai–Leibler model. This model is
suited for a RFE reformulation as we have an input function, a compartment where
reactions take place and an output. Although, in this case the definition of response
function has to be slightly different from the one in the previous sections. Indeed, we
will prove that the integral of the response function is equal to 0. This is necessary
to induce adaptation as it forces the system to return to its initial state, if the signal
remains constant for sufficiently long time.

The system of ODEs we consider is the following

dX

dt
= aY − bX + s(t)

dY

dt
= 1 − X

with a, b > 0. Here X measures the quantity of active receptors. It increases when
the signal s(t) starts. Instead, Y is the response regulator protein. The output of this
system will be the quantity of active receptors. We remark that the constant source
term in the second equation could be the limit value of the Michaelis-Menten law in
the saturation regime.

It is convenient to make the change of variables ξ = X − 1 in the above equation,
hence

dξ

dt
= aY − bξ − b + s(t)

dY

dt
= −ξ (91)

Notice that the steady state of Y is reached when X = X = 1. We stress that X does
not dependent on the signal s. This is a necessary property to have adaptation.
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We now reformulate Eq. (91) using the formalism of response functions. We can
think about {ξ,Y } as a compartment. The output of the chains of reactions taking
place in the compartment is bξ , while the input is s(t) − b. The dynamic inside the
compartment {ξ,Y } is driven by the following subsystem of ODEs

d

dt

[
ξ

Y

]
= A

[
ξ

Y

]

where A =
[−b a
−1 0

]
. We compute the response function �. Applying Theorem 2.4

together with Lemma 2.6 we deduce that �(t) = (b, 0)eAt e1.
Assuming that b2 > 4a we deduce that the matrix A has two real eigenvalues

λ± = 1
2

(
−b ± √

b2 − 4a
)
, where λ− < λ+ < 0 corresponding to the eigenvectors

v± =
[

1
−λ∓

a

]
.

As a consequence�(t) = C+eλ+t +C−eλ−t .Using the fact that�(0) = b we deduce
that

C+ = bλ+√
b2 − 4a

and C− = − bλ−√
b2 − 4a

.

Hence,�(t) = b√
b2−4a

(
λ+eλ+t − λ−eλ−t) . Then we have the following dependence

of X on s(t)

X(t) = 1 + 1

b

∫ t

0
�(v)(s(t − v) − b)dv.

Notice that
∫∞
0 �(v)dv = 0. As a consequence, if s(t) → k as t → ∞ with k > b,

then X(t) → 1 as t → ∞. This form of the response function is the one that might be
expected from a system exhibiting adaptation, i.e. the output converges to a constant
value if the signal s(t) approaches a constant value.

8 Specific examples and applications: non-linear case

In this section we present some examples of non-linear RFEs. We will not analyse
the mathematics of the models presented here in full detail. The aim of this section
is to explain how to apply the formalism of response functions in order to describe
the interactions of different parts of a biochemical system, modelled by non-linear
ODEs containing non-linearities of the form of mass action, or Michaelis-Menten. In
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Fig. 7 Type 1 coherent Feed
Forward loop

AND
Y Z

x
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particular, for these types of models it is possible to describe the response of a given
compartment to a given set of inputs Ii by means of functionals of the form

R(t) =
∑
i

∫ t

−∞
Ii (s)ψi (t − s)ds

+
∑
i

∑
j

∫ t

−∞

∫ t

−∞
Ii (s1)I j (s2)ψi j (t − s1, t − s2)ds1ds2

+
∑
i

∑
j

∑
k

∫ t

−∞

∫ t

−∞

∫ t

−∞
Ii (s1)I j (s2)Ik (s3)ψi jk (t − s1, t − s2, t − s3)ds1ds2ds3

+ . . . .

(92)

The main new feature of the non-linear models (92) compared to the linear ones of the
form (1) is that the response can contain information about the correlations in time of
the inputs Ii .

It is interesting to mention that RFEs of the form (92) containing only linear and
quadratic terms of the inputs can yield a much richer set of responses than the linear
RFEs. In Sect. 8.1 we show that one of the most common network motifs appearing
in metabolic networks, Alon (2019), yields a response function of the form

R(t) =
∑
i

∫ t

−∞
Ii (s)ψi (t − s)ds

+
∑
i

∑
j

∫ t

−∞

∫ t

−∞
Ii (s1)I j (s2)ψi j (t − s1, t − s2)ds1ds2.

Moreover, we will see that these type of response functions allow to describe the most
distinguished features associated to this particular network motif.

Furthermore, in Sect. 8.2 we formulate equations that describe a non-Markovian
polymerization model.

8.1 Feed forward network

We can illustrate the usefulness of the theory of RFEs computing the RFEs for a
specific biochemical network, namely the so-called Coherent Type 1 Feed Forward
Loop (C1FFL). This network motif has been found often in manymetabolic networks,
we refer to Alon (2019) for an extensive description of this motif.

We assume that a signal S activates a protein X , which promotes the production of a
protein Y . Then the proteins X and Y jointly produce Z . This motif can be represented
as in Fig. 7, using the logic formalism of the AND/OR-gates.
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The main feature of the C1FFL is that it yields a delay in the production of Z ,
upon activation of the signal S. Instead, when the signals S stops, the production of
Z stops immediately. Therefore, using the terminology of Alon (2019), this network
is a sign-sensitive delay element. In this section, we will show a class of response
functions exhibiting sign-sensitive delay. The biological advantage of this mechanism
is that it avoids to produce an immediate response to a fast fluctuating input signal.
We present now a system of ODEs representing the C1FFL and we examine the REFs
type of equations that describe the relation between the input and the output of the
system.

A possible way of modelling the C1FFL is with the following system of ODEs

dX

dt
= S − aX

dY

dt
= X − bY

dZ

dt
= XY − cZ , (93)

where a, b, c are positive constants. From this system of equation we deduce that

X(t) =
∫ t

−∞
e−a(t−s)S(s)ds, Y (t) =

∫ t

−∞
e−b(t−s)X(s)ds. (94)

Using (94) we obtain

Y (t) =
∫ t

−∞
e−b(t−s)X(s) =

∫ t

−∞
e−b(t−s)

∫ s

−∞
S(v)e−a(s−v)dvds

= e−bt
∫ t

−∞

∫ t

v
es(b−a)dsS(v)eavdv= 1

b − a
e−at

∫ t

−∞

(
1 − e(v−t)(b−a)

)
eavS(v)dv.

Finally, from the equation for Z we infer that

Z(t) =
∫ t

−∞
X(s)Y (s)e−c(t−s)ds

= e−ct
∫ t

−∞
e(c−2a)s

[∫ s

−∞
eavS(v)dv

]⎡
⎣
∫ s

−∞

(
1 − e(b−a)(w−s)

)

b − a
ewa S(w)dw

⎤
⎦ ds.

Using Fubini, we deduce that

Z(t) =
∫ t

−∞

∫ t

−∞
K (t − v, t − w)S(w)S(v)dwdv (95)
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Fig. 8 Plot of kernel K (η, ξ) in the case a = c = 5, b = 1

where

K (η, ξ) =
∫ 0

−min{η,ξ}
e(c−2a)se−a(ξ+η)

(
1 − e−(b−a)(ξ+s)

)
b − a

ds, ξ, η ≥ 0.

Note that

1 − e−(b−a)(ξ+s)

b − a
≥ 0

in the domain of integration. See Fig. 8 for a plot in the case a = c = 5, b = 1.
In order to gain insights on the RFE (95) we consider a limit situation. To this end,

we assume that a � 1 and that c � 1. This means that we assume that the time scales
1/a and 1/c are much smaller than the characteristic time scale in which the signal S
changes. Therefore, (93) implies that for a � 1 and c � 1

X(t) ≈ 1

a
S(t), Y (t) ≈ 1

a

∫ t

−∞
e−b(t−s)S(s)ds

and

Z(t) ≈ 1

a2c
S(t)

∫ t

−∞
S(s)e−b(t−s)ds.

Assume that S has maximum value Sm . Then, the function Z(t) reaches values of
the order of magnitude of its saturation value S2m/a2cb for times of order 1/b. This
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motivates to define the function S such that S(t) = S(tb) and to make the time
rescaling τ = bt . We also introduce the new variable ξ(τ ) = a2bcZ(τ )/S2m . Then for
τ of order 1 we have

ξ(τ ) ≈ S(τ )
∫ τ

−∞
S (s) e−(τ−s)ds =

∫ τ

−∞

∫ τ

−∞
K0(τ − s, τ − v)S (s) S(v)dsdv

(96)

where

K0(s1, s2) = e−s1δ0(s2)χR∗(s1).

The kernel K0 is not symmetric, but we can rewrite (96) as

ξ(τ ) ≈
∫ τ

−∞

∫ τ

−∞
K 0(τ − s, τ − v)S (s) S(v)dsdv (97)

where

K 0(s1, s2) = 1

2

(
e−s1δ0(s2)χR∗(s1) + e−s2δ0(s1)χR∗(s2)

)
.

We can examine now the response of the system to two signals, namely to S1(τ ) =
χ[0,∞)(τ ) and S2(τ ) = χ(−∞,t](τ )with t > 0. Some care is needed to consider signals
that are characteristic functions. In practise, the signals S1 and S2 must be understood
as functions that change their values in time scales that are much larger than 1/ba and
1/bc. Notice that the response to the signal S2 yields ξ(τ ) = 0 for every τ > t . So
when the signal S2 suddenly stops, the level of ξ decays instantaneously. On the other
hand, in the case of the signal S1 ξ reaches its saturation 1 after times τ of order 1.
This is the expected behaviour for the C1FFL system.

We conclude this section by stressing that most of the network motifs in Alon
(2019) can be formulated and analysed using non-linear RFEs including terms of the
form (11), as we did in this section for the C1FFL.

8.2 A nonlinear polymerizationmodel

We formulate now a non-Markovian, non-linear polymerization model that has some
analogies with the classical Becker-Döring equations. The Becker-Döring equations
are a classical polymerization model that has been extensively studied as a model of
phase transitions (see for instance (Hingant and Yvinec 2017)). The main difference
between our model and the classical polymerization models is that in our case the
addition of a monomer takes place in a non-Markovian way.

More precisely, we consider a population of polymers which can have different
clusters sizes �. As in Sect. 7.2, we assume that polymers grow due to attachment of
a monomer and we assume that the reaction (�) + (1) → (� + 1) is non-Markovian.
More precisely, we assume that, when a monomer and a polymer of size � bind, they
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do not form immediately a polymer of size �+ 1. Instead we assume that the addition
of a monomer takes place by means of a chain of reactions that we do not try to model
in detail, but that we represent with RFEs. Each of the reactions inside the chain can be
assumed to be Markovian, but, as we have extensively seen in this paper, the relation
between the inputs (in this case a monomer of size � and one of size 1) and the output
(which in this case is a monomer of size �+1) is typically non-Markovian and should
be described using the formalism of response functions in this setting.

The main assumption of this model is that there exists an intermediate state after
the attachment of a monomer to a polymer of size � that describes the transient state
until the polymer can be considered to have size �+ 1. We denote the density of these
intermediate states with w�. The equations describing the dynamics of the system of
polymers is the following

dn�

dt
= −n1n� + n�+1 − n� + I�

dw�

dt
= n1n�−1 − I�

dn1
dt

= 2n2 −
∞∑
�=2

n1n� − 2n21 +
∞∑
�=2

n�+1 + S,

where S is a source of monomers. The flux I� is given by

I�(t) =
∫ t

−∞
�(t − s)n1(s)n�−1(s)ds � ≥ 2.

Notice that S = d
dt

(∑∞
�=1 �n� +∑

�=2 �w�

)
.

In contrast with the model described in Sect. 7.2, here we have that the influx of
polymer of size � depends on the history of the number of monomers of size � and of
size 1, namely on all the values of n� and n1 in the time interval (−∞, t].

9 Conclusions

In this paper we propose to use the formalism of RFEs to model complex biochem-
ical systems. As explained in this paper, the interactions between different parts of
biochemical systems can be non-Markovian. Since the RFEs can be thought as non-
Markovian equations they are well suited to model these interactions. The formalism
of RFEs has been already extensively used in biology, in the context of population
dynamics and epidemiology (see for instance (Diekmann et al. 1998)).

In this paper we study under which conditions it is possible to reformulate a given
model of ODEs as RFEs. We analyse mainly linear RFEs that are conservative, i.e.
they conserve the total number of elements, although we consider also non-linear and
non-conservative examples. Many applications in biology lead to non-linear models
(see Sect. 8), or non-conservative models (see for instance (Zilman et al. 2010)). It
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would be interesting to extend the approach presented in this paper to these cases, as
it has been done in Population Dynamics and Epidemiology.

Another possibility would be to consider space dependent response functions. This
would allow to consider space dependent models. See for example (Galstyan et al.
2020) for an extension of the proofreading model that propose spatial gradients as a
way to improve specificity.

As explained in Sect. 3, the structure of the biochemical reactions of the system
impose constraints on the response functions. In particular we proved that systems sat-
isfying the detailed balance condition are associated to completely monotone response
functions. This opens the possibility of deriving the properties of biochemical systems
from the (experimentally measurable) properties of the response functions.

Writing a model using RFEs allows to describe complex systems of reactions by
means of some operators (linear or non-linear) that are characterised by a set of
response functions. It is therefore relevant to determine if the behaviour of a biochem-
ical system described by a specific system of ODEs can be captured by a REF with
response functions having generic features (for instance that are completely mono-
tone). This would allow to verify the robustness of the behaviour of the system as
done in Population Dynamics and Epidemiology. An issue that is not considered in
this paper is to describe the interactions between different biochemical circuits. This
would require to consider a combination of many RFEs models.

We conclude by stressing that one of the questions addressed in this paper, on the
relation between ODEs and RFEs, have some analogies with the one addressed in
Diekmann et al. (2020) and in Diekmann and Inaba (2023) for models appearing in
Population Dynamics and Epidemiology. The main difference is that in these papers
are studied the conditions on the response functions (or kernels) of the renewal equation
that allow a reformulation of the system as ODEs. Instead, in Sect. 2.3 we start from
the ODEs models (well suited for systems of biochemical reactions) and we rewrite
them using the RFEs formalism, that includes a renewal equation. As expected, the
class of kernels we obtained with this procedure is the same one for which it is shown
in Diekmann et al. (2020) and Diekmann and Inaba (2023) that a reformulation of
the REs as ODEs is possible. In particular, it is the class of kernels that correspond to
Markovian interactions between the compartments, see Sect. 4.
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