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Haoyu Zhang,1 Jie Zhang,4 Chunchao Zhu,1 Un Wai Choi,5 Aksara Regmi,5 Cheok I. Chan,5 Cara Kou Yan,5

Yan Gu,2,* Hui Cao,1,* and Zizhen Zhang1,7,*
SUMMARY

The prophylactic implantation of biological mesh can effectively prevent the occurrence of stoma-site inci-
sional hernia (SSIH) in patients undergoing stoma retraction. Therefore, our study prospectively estab-
lished and validated a mixed model, which combined radiomics, stepwise regression, and deep learning
for the prediction of SSIH in patients with temporary ileostomy. The mixed model showed good discrim-
ination of the SSIH patients on all cohorts, which outperformed deep learning, radiomics, and clinical
models alone (overall area under the curve [AUC]: 0.947 in the primary cohort, 0.876 in the external vali-
dation cohort 1, and 0.776 in the external validation cohort 2). Moreover, the sensitivity, specificity, and
precision for predicting SSIHwere improved in themixedmodel. Thus, themixedmodel can providemore
information for SSIH precaution and clinical decision-making.

INTRODUCTION

Colorectal cancer is the thirdmost common cancer and second leading cause of cancer-related deaths worldwide.1With the development of en-

teroscopic and imaging screening technologies, detection rates of early-stage colorectal cancer have improved.2 Meanwhile, laparoscopic and

robotic surgical techniqueshavemade itmore feasible toperformone-stageprocedures involvingprimary anastomosis and sphincter-preserving

surgery for patients with low and ultra-low rectal cancer. Temporary ileostomy is a classic surgical procedure performed to prevent anastomotic

leakage after bowel resection.3 Although its benefits include reduced rates of surgical site infectionand rapid recovery of intestinal function, it also

inevitably disturbs abdominal wall integrity and disrupts the tension balance.4 Abdominal wall defects resulting from ostomy or stoma reduction

procedures pose a significant challenge for gastrointestinal surgeons because of the high likelihood of stoma-site incisional hernia (SSIH)

development.5 SSIH can cause clinical symptoms, such as regional pain, abdominal mass, hernia content incarceration, intestinal obstruction,

and other potential complications, which have a significant impact on a patient’s quality of life and self-image.6 To address these issues, more

than35%of thepatientsundergo incisionalhernia repair surgery.4Toavoidadditional stigmacausedbyreoperation, theReinforcementofClosure

of Stoma Site (ROCSS) collaborative attempted toperformprophylactic biological mesh reinforcement, which has produced satisfactory results.7

In addition, other preventivemeasures such as enhancing nutrition after stoma closure, reducing the risk of infection, long-term use of abdominal

bands, weight control, and avoiding heavy lifting to reduce intra-abdominal pressure can effectively reduce the incidence of SSIH. Therefore, it is

crucial for surgeons to identify patients with high-risk SSIH based on their preoperative features and implement interventions as necessary.

Radiomics is an emerging technique for quantifying region of interest (ROI) characteristics with high-throughput radiomic features and has

been categorized into twomain groups: handcrafted and deep learning-based radiomics.8 It has been widely used and has shown promising

results in personalized diagnosis and treatment of patients with tumors. At present, themixedmodel, which combines the radiomic signature

and clinical characteristics, has greatly improved predictive power.9 However, its application in the field of postoperative complications is still

lacking, and the use of deep learning radiomics to predict SSIHs has yet to be reported.

In this study, we attempted to use radiomics to identify patients who are at high risk of SSIH by constructing amixedmodel and evaluating

its performance through internal and external validation sets. Thus, based on the prediction results, surgeons can pre-implant a biological

mesh to reduce the risk of herniation in at-risk patients.
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Table 1. Clinical characteristics of Renji cohort and external cohort 1

Characteristic

Renji cohort

p value

Huadong cohort

p valueNo-SSIH SSIH No-SSIH SSIH

Age

%65 112 (60.22%) 13 (38.24%) 0.017 17 (43.59%) 3 (50.00%) 0.769

>65 74 (39.78%) 21 (61.76%) 22 (56.41%) 3 (50.00%)

Sex

Male 120 (64.52%) 23 (67.65%) 0.725 23 (58.97%) 3 (50.00%) 0.679

Female 66 (35.48%) 11 (32.35%) 16 (41.03%) 3 (50.00%)

Parastomal hernia

Yes 15 (8.06%) 12 (35.29%) <0.001 6 (15.38%) 3 (50.00%) 0.048

No 171 (91.94%) 22 (64.71%) 33 (84.62%) 3 (50.00%)

Tumor size

%45 mm 119 (63.98%) 22 (64.71%) 0.935 25 (64.10%) 3 (50.00%) 0.507

>45 mm 67 (36.02%) 12 (35.29%) 14 (35.90%) 3 (50.00%)

Tumor distance from anal margin

<7 cm 108 (58.06%) 12 (35.29%) 0.014 18 (46.15%) 4 (66.67%) 0.349

R7 cm 78 (41.94%) 22 (64.71%) 21 (53.85%) 2 (33.33%)

Surgical methods

Laparoscopic 158 (84.95%) 27 (79.41%) 0.417 28 (71.79%) 5 (83.33%) 0.552

Open surgery 28 (15.05%) 7 (20.59%) 11 (28.21%) 1 (16.67%)

T stage

T1 19 (10.22%) 5 (14.71%) 0.761 3 (7.69%) 1 (16.67%) 0.832

T2 37 (19.89%) 5 (14.71%) 10 (25.64%) 3 (50.00%)

T3 50 (26.88%) 8 (23.53%) 22 (56.41%) 1 (16.67%)

T4 80 (43.01%) 16 (47.05%) 4 (10.26%) 1 (16.67%)

N stage

N0 102 (54.84%) 21 (61.76%) 0.745 21 (53.85%) 3 (50.00%) 0.390

N1 56 (30.11%) 9 (26.47%) 5 (12.82%) 2 (33.33%)

N2 28 (12.36%) 4 (11.43%) 13 (33.33%) 1 (16.67%)

M stage

M0 176 (94.62%) 31 (91.18%) 0.433 37 (94.87%) 5 (83.33%) 0.292

M1 10 (5.38%) 3 (8.82%) 2 (5.13%) 1 (16.67%)

BMI

%24 kg/m2 137 (73.66%) 18 (52.94%) 0.015 26 (66.67%) 2 (33.33%) 0.117

>24 kg/m2 49 (26.34%) 16 (47.06%) 13 (33.33%) 4 (66.67%)

Pre-chemotherapy

Yes 94 (50.54%) 22 (64.71%) 0.128 29 (74.36%) 2 (33.33%) 0.043

No 92 (49.46%) 12 (35.29%) 10 (25.64%) 4 (66.67%)

Pre-albumin

<40 g/L 76 (40.86%) 10 (29.41%) 0.208 25 (64.10%) 2 (33.33%) 0.152

R40 g/L 110 (59.14%) 24 (70.59%) 14 (35.90%) 4 (66.67%)

Wound infection

Yes 166 (89.25%) 27 (79.41%) 0.108 36 (92.31%) 6 (100.00%) 0.482

No 20 (10.75%) 7 (20.59%) 3 (7.69%) 0 (0.00%)

(Continued on next page)
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Table 1. Continued

Characteristic

Renji cohort

p value

Huadong cohort

p valueNo-SSIH SSIH No-SSIH SSIH

Stoma period

%6 months 83 (44.62%) 9 (26.47%) 0.048 28 (71.79%) 3 (33.33%) 0.283

>6 months 103 (55.38%) 25 (73.53%) 11 (28.21%) 3 (66.67%)

Hypertension

Yes 48 (25.81%) 12 (35.29%) 0.253 10 (25.64%) 0 (0.00%) 0.160

No 138 (74.19%) 22 (64.71%) 29 (74.36%) 6 (100.00%)

Diabetes

Yes 25 (13.44%) 4 (11.76%) 0.791 4 (9.30%) 1 (11.11%) 0.642

No 161 (86.56%) 30 (88.24%) 35 (90.70%) 5 (88.89%)

COPD

Yes 11 (5.91%) 19 (55.88%) <0.001 0 (0.00%) 1 (11.11%) 0.010

No 175 (94.09%) 15 (44.12%) 39 (100.00%) 5 (88.89%)

Stoma size

%25 mm 125 (67.20%) 22 (64.71%) 0.776 15 (39.53%) 1 (22.22%) 0.299

>25 mm 61 (32.80%) 12 (35.29%) 24 (60.47%) 5 (77.78%)

Trans or lateral rectus abdominis (stoma)

Trans 92 (49.46%) 22 (64.71%) 0.102 20 (51.16%) 3 (44.44%) 0.953

Lateral 94 (50.54%) 12 (35.29%) 19 (48.84%) 3 (55.56%)
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RESULTS
Clinical characteristics

The detailed clinicopathological characteristics of the patients and SSIH outcomes in the primary cohort (n = 220) and external cohort 1

(n = 45) are listed in Table 1. The flow of patient inclusion is displayed in Figure 1. The incidence of SSIH one year after the closure was

15.5% (Renji Cohort) and 13.3% (Huadong Cohort), respectively. Chi-squared tests showed that the two cohorts from different institutions

had similar and well-balanced characteristics. Correlations between clinical features are shown in Figure S1A. Based on the stepwise regres-

sion analysis, we identified five variables in the best clinical model. High-risk SSIH was significantly associated with larger stoma size, older

age, parastomal hernia, pre-chemotherapy, and chronic obstructive pulmonary disease (COPD).

Radiomics feature selection and signature building

After assessing the reproducibility (inter-class correlation coefficient [ICC] > 0.75) and correlations (R < 0.90), 1,255 features from soft tissue

(ROI-1) and 1,170 features from muscle (ROI-2) were selected. Bar diagrams are shown in Figure S1B. We then integrated the radiomics fea-

tures of muscle and soft tissue into a comprehensive model and employed least absolute shrinkage and selection operator (LASSO) regres-

sion to evaluate the features correlated with SSIH (Figures S2A and S2B). The top 10 ranking features are shown in Figure S2C. To avoid over-

fitting, we constructed a radiomics model with features whose absolute coefficient values were greater than 0.015 (Table S2). The radiomics

characteristics of both categories are shown in Figure S3.

Three different types of supervised learningmethodswere used in the construction of the radiomicsmodel: support vectormachine (SVM),

random forest (RF), and an artificial neural network (ANN). In 10 cross-validations, all models had similar area under the curve (AUC)

(Figures S4A and S4B). Then, we developed an ensemble model by combining the three models based on their respective weights. The

Kolmogorov-Smirnov test, which was used for model optimization, defined the optimal threshold as 0.231. The Kolmogorov-Smirnov (KS)

value was 0.61, revealing good discrimination ability of the model (Figure S4C). Finally, a confusion matrix was constructed to assess the per-

formance of the mixed model (Figure S4D). This suggests that the radiomic model has high specificity (64/73, 0.877) and modest sensitivity

(10/15, 0.667). However, the precision was unsatisfactory (10/19, 0.526).

Deep learning model construction

Considering the limited number of cases in our study, we eventually used the lightweight convolutional neural network MobileNetV2 for

transfer learning. The deep learning model showed good accuracy, with an AUC of 0.748 (95% confidence interval [CI] = 0.613–0.870)

and a KS value of 0.499, suggesting good predictive power (Figures S5A and S5B). The confusion matrix shows that although this model
iScience 27, 111235, November 15, 2024 3



Figure 1. Flowchart of this multi-cohort study
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has high specificity (51/73, 0.699) and sensitivity (11/15, 0.733) after adjusting for the best threshold using the Kolmogorov-Smirnov test, it

still has some shortcomings in terms of precision (11/33, 0.333) (Figure S5C). The class activation maps of the four patients are shown in

Figures S5D and S5E. We can intuitively observe that the soft tissue and muscle sections of patients have higher intensities than those

of patients without SSIH.

Mixed model construction and validation

The workflow of mixedmodel construction and validation is illustrated in Figure 2. Logistic regression was performed based on the prediction

results from clinical, radiomics, and deep learningmodels, and the final nomogramwas built (Figure 3A). The risk score distribution was signif-

icantly different between the two groups in both the internal and external validation cohort 1 (Figures 3B, 3C, and 3H). The mixed model not

only achieved amaximumAUCof 0.947 (95%CI = 0.850–0.997) but also showed the best discriminating ability in the Kolmogorov-Smirnov test

(Figures 3D and 3E). The KS value of the mixed model was 0.851, which means that it performed much better than the radiomics (0.610) and

deep learning models (0.499). The confusion matrix revealed that the model had high specificity (67/73, 0.918) and sensitivity (13/15, 0.867).

Furthermore, the precision (13/19, 0.684) showed a distinct improvement (Figure 3G). Based on the DeLong test, the mixed model showed a

significantly higher AUC than the clinical and deep learning models (Table S3). Because we adjusted the threshold of the mixed model ac-

cording to the Kolmogorov-Smirnov test, the calibration curve was no longer suitable for evaluation.We could only implement decision curve

analysis (DCA) to compare the clinical availability and benefits of all models (Figure 3F). This reveals the net benefit of different threshold

probabilities. Fortunately, the best performances of the three models were achieved at different threshold ranges (Radiomics Model (RM):

0–0.5, Deep learning Model (DM): 0.5–0.7, Clinical Model (CM): 0.7–1). When the three models are merged into a mixed model, it made sig-

nificant gains in each point.

Based on the results derived from the training set, we noted that the features required for this model were independent of the tumor con-

dition. Therefore, we considered whether the model could be extended to non-tumor patients. We further validated our mixed model in two

external validation cohorts: external validation cohort 1, which consisted of patients with colorectal cancer (CRC) fromHuadong Hospital (Ta-

ble 1), and external validation cohort 2, which consisted of non-tumor patients (Table S1). Surprisingly, themixedmodel achieved a high AUC

in both patients with CRC (Figure 3I) and non-tumor patients (Figure S6B). However, the precision remained high (Figures 3J and S6C).

DISCUSSION

In this retrospective study, we developed and validated a mixedmodel that combines clinical features, radiomics, and deep learning to accu-

rately predict SSIH based on preoperative computed tomography (CT) images. Patients who undergo temporary ileostomy are often at

increased risk of developing complications such as incisional hernia formation after abdominal stoma closure.7 Accurate prediction of
4 iScience 27, 111235, November 15, 2024



Figure 2. Workflow of mixed modeling for predicting SSIH in temporary ileostomy patients
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SSIH before stoma closure is crucial for timely prevention measures such as prophylactic biological mesh reinforcement. Therefore, we con-

structed a nomogram as an easy-to-use, preoperative, and individualized diagnostic tool for SSIH.

The development of incisional hernia is an early complication of classical laparotomy,10 and the rate of incisional hernia increases with

longer follow-up.11 Lambrichts et al. conducted a meta-analysis of 33 clinical studies involving patients with SSIH after stoma closure.12

The study included 4,679 patients, among whom the overall rate of SSIH was 6.5%. Another study revealed that the combined clinical and

radiological SSIH rate was 34% (20/59), with a median time from closure to imaging of 10 months. Notably, imaging alone produced a detec-

tion rate of 31% (18/59), which was significantly higher than the clinical hernia detection rate of 14% (8/59).13 In this study, we combined phys-

ical examinations and CT scans within one year to assess the presence or absence of SSIH in the patient population.

In patients with colon cancer, the situation regarding SSIH is complex. Prophylactic colostomy for colorectal cancer can cause a local tissue

defect in the abdominal wall, and stoma closure often involves a spindle-shaped incision, which means that a portion of the tissue around the

stomamust be removed, inevitably resulting in fascial defects and excessive suture tension. Moreover, incisions in these patients are suscep-

tible to hematoma, infection, or poor healing.14 Postoperative abdominal bloating, elevated intra-abdominal pressure, enteritis, and intes-

tinal dysbacteriosis caused by chemotherapy and radiotherapy are significant risk factors for SSIH.15 Elective incisional hernia repair is the

most efficient way to achieve a complete cure. However, for patients with colon cancer, surgeons must consider the additional risks of recur-

rence and metastasis associated with SSIH. Therefore, the best treatment for these patients is the prevention of SSIH. Fortunately, prophy-

lactic implantation of a biological mesh during stoma closure can significantly reduce the incidence of SSIH.7 Although it may take longer to

perform this procedure during surgery, complications such as seroma, anastomotic leakage, and length of hospital stay did not significantly

differ. On the other hand, implementing this procedure universally for all patients may escalate healthcare expenses and elevate the likeli-

hood of surgical site infections. Especially for patients with colorectal cancer, undergoing numerous surgeries within a brief time frame could

potentially influence the progression of the tumor. The impact of using biological patches on patients’ relapse-free survival rates and the po-

tential increase in peritoneal metastasis risk remains to be further studied. Therefore, it is imperative to screen potentially high-risk popula-

tions for appropriate precision medicine treatments.

Our mixed model has the potential to assist gastrointestinal surgeons in selecting patients suitable for appropriate preventive measures.

Moreover, DCA demonstrated that using our mixed model to guide prophylactic mesh implantation could significantly benefit patients

compared to both non-implantation and all-implantation schemes. This study was performed on two ROIs from a single CT image rather

than combining muscle and soft tissues into one ROI. After using LASSO regression analysis to shrink the SSIH candidates, the radiomic fea-

tures extracted from the soft tissues were preserved. This suggests that preoperative soft tissue conditions should be carefully considered for

these patients, instead of focusing solely on abdominal wall muscle defects. It is evident why the ‘‘first-order’’ in soft tissue features plays a

great role in analysis as abdominal fat thickness is closely related to BMI, which is an essential risk factor for SSIH.16 Additionally, peristomal

infection, adjacent soft tissue edema, and inadequate blood supply at the surgical site may increase the risk of SSIH. Although we cannot
iScience 27, 111235, November 15, 2024 5
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Figure 3. Mixed model and its performance

(A) Mixed nomogram with clinical model, radiomics model, and deep learning model. The points of three independent models are obtained based on the top

‘‘points’’ bar with scale of 0–100. Then, the mixed model will output a predicted probability based on the final point, which is calculated by summing the three

points.

(B) Three-dimensional point plots show the scores of the two types of patients according to three different model assessments.

(C) The pirate plot shows the scores of the mixed model for the two subgroups.

(D) AUC curve of four prediction models.

(E) The KS curve is used to assess the risk-differentiation ability of the mixed model.

(F) Decision curve analysis for guiding prophylactic patch implantation using the mixed model, clinical, radiomics, deep learning model, none-implantation, and

all-implantation scheme.

(G) The mixed model confusion matrix.

(H) The pirate plot in external cohort 1.

(I) AUC curve of four prediction models in external cohort 1.

(J) The external cohort 1 confusion matrix.
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directly establish a relationship between a specific imaging feature and these factors, radiomics can capture the differences caused by them

through gray-level changes in CT images.

We believe that imaging can be used not only for the analysis of tumor tissues but also for the prediction of complications in non-tumor

patients. At present, most radiomics researchers still focus on the tumor area as ROIs; however, we believe that it can play a more impor-

tant role.
Limitations of the study

In general, our model achieved excellent performance. However, this study has some limitations. First, the sample size of the study, partic-

ularly for patients with SSIH, was relatively small, which may have affected the precision and sensitivity of our model to some extent. Further

prospective studies involving large populations are warranted. Second, although the enrolled patients were treated with standard and ho-

mogenized treatments, there may have been differences between the procedures performed by different surgeons. Third, we used 2D fea-

tures froma single slice rather than 3D features. However, some researchers have reported that better reliability performedon 2D images than

on 3D images may limit the representativeness of the entire stoma and potentially affect some features.17 Finally, although our model per-

formed well in non-tumor patients, its precision could still be improved, suggesting that there may be remaining high-risk factors that were

not considered.
Conclusions

In conclusion, a mixed nomogram had good predictive ability for SSIH in patients with temporary ileostomy, which could provide basic in-

formation for individual diagnosis and treatment.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Clinical data and CT images Shanghai Jiaotong University, Renji Hospital N/A

Fudan University, Huadong Hospital N/A

Software and algorithms

Python Python software https://www.python.org/

Rstudio R software https://rstudio.com/products/rstudio/

ITK-SNAP ITK-SNAP (version 3.8.0) http://www.itksnap.org/pmwiki/pmwiki.php

Mendeley Data https://doi.org/10.17632/pm36fhmxyr.1
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We collected CT images of prophylactic terminal ileostomy performed at Renji Hospital, Shanghai Jiao Tong University and Huadong Hos-

pital, Fudan University. Search for the keywords "colorectal cancer" and "ileostomy" in the electronic medical records system. These SSIH

cases at the two hospitals were diagnosed between January 2017 and May 2018. In external validation cohort 2, we included patients with

non-colorectal cancer ostomy from Renji Hospital. We excluded patients who had no plain CT or only enhanced CT scan prior to ostomy

closure. Meanwhile, patients who had no regular follow-up after ostomy restoration are also excluded. The detailed flow of the dataset is

shown in Figure 1. Details of the study participants are shown in Tables 1 and S1. The data is not available and only the image file is used.

This retrospective study was approved by the Shanghai Jiaotong University School of Medicine, Renji Hospital Ethics Committee (No.

KY2022-087-B) and informed consent was obtained from patients.
METHOD DETAILS

Patients and datasets

All patients were enrolled if theymet all the inclusion criteria and were excluded if theymet at least one of the following exclusion criteria. The

inclusion criteria were as follows: (1) ageR18 years, (2) accepted curative resection of colorectal cancer (primary cohort and external cohort 1),

prophylactic ileostomy + stoma closure operation (all cohorts), (3) complete clinical information and imaging data, and (4) diagnosis of SSIH

within one year postoperatively. The exclusion criteria were as follows: (1) no imaging examination performed before the stoma closure oper-

ation, (2) follow-up time of less than one year or loss, and (3) other abdominal operations performed during the study period. For patients

undergoing routine review in Renji or Huadong hospital, SSIH was determined by physical examination and CT imaging diagnosis. For pa-

tients in other hospitals, the patient’s medical records including physical examination and CT scan results were obtained through telephone

follow-up.4

Eligible patients were enrolled from two centers in China and divided into four cohorts: a training cohort, an internal validation cohort,

external cohort 1, and external cohort 2 (Non-tumor patients: Patients with terminal ileostomy due to inflammatory bowel disease, intestinal

perforation or trauma). The training cohort was used to construct the mixed model. The internal validation cohort and external cohort 1 were

used to test the validity of themodel in colorectal cancer patients, and external cohort 2 was used to test the validity in patients with ostomies

for other reasons. The modeling pipeline is illustrated in Figure 2.
Radiomics and clinical features extraction

The clinical characteristics of the patients are shown in Table 1. Parastomal hernia, distance from the anal margin, and trans-or lateral rectus

abdominis (stoma) were determined by experienced radiologists based on preoperative CT images. The T and N stages were determined

using pathological findings as the gold standard. Other data were collected by reviewing patients’ medical records.

All patients underwent abdominopelvic CT before stoma closure. The regions of interest (ROIs) were manually delineated on the CT im-

ages by two experienced radiologists using the ITK-SNAP software (version 3.8.0; http://www.itksnap.org). In principle, only the slide with the

widest separation from the abdominal wall was visually chosen to delineate themuscle and soft tissue regions. For all ROIs, themedial bound-

ary was the medioventral line, and the lateral boundary was set by the midaxillary line. When disagreements arose, a third reviewer made the

final decision. After threemonths, 30 patients were randomly selected, and the ROIs were delineated by two additional radiologists. The data-

set was used to assess the reproducibility of intra-and internal reader radiomics features.

All images were resampled using Python (3.7.1) to isotropic voxels of 13 13 1 mm3 before radiomic feature extraction using the B-spline

interpolation function in the SimpleITK package (2.1.1.2). Quantitative radiomics features (first-order, shape, texture, wavelet, and Laplacian of
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the Gaussian filter) were extracted from these ROIs using the open-source Pyradiomics package (Version 2.1.1). We extracted 1316 radiomic

features (32 first-order statistical features, 75 texture features, and 1209 wavelet and log decompositions) from each ROI.

Architecture of radiomics models

Feature selection and signature building were performed using the Renji cohort. The radiomic model was built according to the following

steps: (1) the intra-and inter-class correlation coefficients (ICCs) were calculated based on the re-segmentation dataset, and features with

ICCs<0.75 were removed. (2) Spearman’s correlation analysis was used to analyze the correlation of the remaining features, and if the corre-

lation coefficient between two features was greater than 0.9, only one of the features was retained, (3) the least absolute shrinkage and se-

lection operator (LASSO) logistic regression algorithm, 20 with penalty parameter tuning conducted by 10-fold cross-validation, was then

applied to select the SSIH-related features, (5) threemodels, support vectormachine (SVM), artificial neural network (ANN), and random forest

(RF), were constructed based on features whose absolute coefficient values were greater than 0.015, and (6) based on the accuracy of the

model, we assigned a weight to each model. The three models were combined into a final mixed model based on their respective weights.

The Kolmogorov-Smirnov test was used to determine the best threshold for the mixed model to achieve the best predictive power.

Deep learning image processing

In contrast to the original MobileNet, the MobileNetV2 architecture is based on an inverted residual block with thin bottleneck layers. It uses

the expansion layer to expand the dimension, lightweight depthwise convolutions to filter features, and finally the projection layer to

compress the data, which has the effect of drastically reducing the computation and model size. After standardization, all images with a

size of 224 3 224 pixels and three color channels were input into the model. Approximately 60% of the randomly selected data were used

as a training set and enhanced by methods such as horizontal shifting. The batch size of the model was set to 8.

Owing to the size of the data, transfer learning helps to directly obtain the official network model architecture that has been built, and the

trained weight parameters are applied to themodel. Starting with aMobileNetV2model based on ImageNet-trained weights, there were 154

layers in this network. The first 120 layers, including the weight parameters, were frozen, whereas the rest could be changed to optimize the

network. A flattened and a fully connected layer (FC) were added to flatten the output results and perform feature extraction. The dropout

layer was designed to prevent overfitting so that the neurons could be removed from the network with 50% probability. Finally, the softmax

function was used to predict the results of binary classification.

Models

To train the model sufficiently, focal loss was chosen as the loss function to solve the class imbalance. Exponential decay was applied in the

process. Before each epoch, the learning rate was reset to the initial learning rate of 0.0001, and then the decay started again, while the decay

step and rate were set to 50 and 0.96, respectively. The accuracy, loss and areas under the curve (AUC) of the training and validation set would

be output asmetrics. EarlyStopping, based on val loss, was also added to prevent overfitting. TheAUCof themixed deep learning, radiomics,

and clinical models were compared for all cohorts. Multiple comparisons of the ROCs were performed using the DeLong test. A confusion

matrix was used to describe the overall performance. Decision curve analysis was conducted to evaluate the clinical practicability and net

benefits of the mixed model in predicting high-risk patients with SSIH. We further validated our mixed model in Huadong colorectal cancer

(external cohort 1) and non-tumor patients who underwent stoma closure (external cohort 2) using the AUC and confusion matrix.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was set at p < 0.05 (two-sided). We compared two groups using the t-test for continuous variables and the chi-square

test or Fisher’s exact test for categorical variables. Stepwise regressionmodels were used to estimate the odds ratio (OR) and 95% confidence

interval (CI) and to identify independent prognostic clinical variables for SSIH in the primary cohort. Logistic regression coefficients were used

to generate mixed models and nomograms.
10 iScience 27, 111235, November 15, 2024
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