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ABSTRACT

Combinatorial interactions among transcription
factors (TFs) are critical for integrating diverse intrin-
sic and extrinsic signals, fine-tuning regulatory
output and increasing the robustness and plasticity
of regulatory systems. Current knowledge about
combinatorial regulation is rather limited due to the
lack of suitable experimental technologies and bio-
informatics tools. The rapid accumulation of ChIP-
Seq data has provided genome-wide occupancy
maps for a large number of TFs and chromatin modi-
fication marks for identifying enhancers without
knowing individual TF binding sites. Integration of
the two data types has not been researched exten-
sively, resulting in underused data and missed
opportunities. We describe a novel method for dis-
covering frequent combinatorial occupancy patterns
by multiple TFs at enhancers. Our method is based
on probabilistic item set mining and takes into
account uncertainty in both types of ChlP-Seq data.
By joint analysis of 108 TFs in four human cell types,
we found that cell-type-specific interactions among
TFs are abundant and that the majority of enhancers
have flexible architecture. We show that several
families of transposable elements disproportionally
overlap with enhancers with combinatorial patterns,
suggesting that these transposable element families
play an important role in the evolution of combina-
torial regulation.

INTRODUCTION

In higher eukaryotes, transcription factors (TFs) rarely
operate by themselves, but rather directly or indirectly
interact with specific partner TFs or chromatin regulators

when binding to enhancers. It has been estimated that
roughly 75% of all metazoan TFs heterodimerize with
other factors (1). Classical examples of combinatorial
TF regulation include the paradigmatic ‘even-skipped
stripe 2’ enhancer for body patterning in fly (2) (involving
7 TFs and 34 sites in a 1.7-kb region), the endol6 gene
enhancer for endoderm specification in sea urchin (3)
(involving 19 TFs and 56 sites in a 2.2-kb region), the
Myf5 gene enhancer for muscle development in mouse
(4) and the Ifng gene enhancer for the production of inter-
feron gamma in human and mouse (5) (involving 6 TFs
and 4 sites in a 55-bp region). Our current knowledge
about combinatorial regulation, including rules governing
the molecular architecture, evolutionary, spatial and
temporal dynamics of enhancers, has relied heavily on
studies of these classical enhancers (6,7).

The rapid accumulation of ChIP-Seq data has provided
genome-wide occupancy maps for a large number of TFs.
By clustering these TF occupancy maps, several recent
studies have uncovered hundreds of genomic loci that
are co-occupied by multiple TFs in various species and
cell types (8-12), suggesting the abundance of combina-
torial regulation. However, given the number of TFs
in mammalian genomes [~2,000, (13)], our current
knowledge represents only the tip of the iceberg. On the
technical side, clustering-based approaches to finding
combinatorial TF occupancy patterns have a few short-
comings. First, most analyses use binary presentation of
binding peaks, which makes them vulnerable to noise in
ChIP-Seq data. Second, because most combinatorial regu-
latory events occur at enhancers, focusing enhancers will
enhance the signal-to-noise ratio. So far most clustering
studies have not incorporated such a constraint.

The discovery of unique chromatin signatures
associated with enhancers greatly facilitates enhancer
mapping without knowledge about the locations of indi-
vidual TFs (14-16). In addition, such an approach is
well suited for finding cell- and developmental-specific
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enhancers and providing information about enhancer
action in the native genomic context. Given the increasing
abundance of TF and chromatin modification ChIP-Seq
data, a better approach to finding combinatorial patterns
would be analyzing multiple TF ChIP-Seq data sets using
enhancers defined by chromatin signatures as the genomic
location constraint. An advantage of such an approach is
the reduction of spurious clusters of TF peaks at non-
enhancer sites and presumably non-functional.

We propose a novel probabilistic algorithm to discover
frequent combinatorial occupancy patterns (FCOPs)
involving multiple TFs at enhancers, taking into account
noise in both types of ChIP-Seq data. Our method differs
from previous DNA-motif-centered approaches by
directly using ChIP-Seq data and thus avoiding complica-
tions associated with DNA motif analysis (e.g. motif
quality, the need for binding site cutoff). To our best
knowledge, this is the first principled approach to
integrating TF occupancy and chromatin modification
ChIP-Seq data to study combinatorial TF interactions.

By applying our algorithm to a set of 108 TFs in four
human cell types, we identify a number of combinatorial
TF occupancy patterns that occur frequently in the
genome. Additional analyses of identified FCOPs reveal
that cell-type-specific TF interactions are abundant and
that the majority of enhancers have flexible architecture.
In addition, we show that several families of transposable
elements (TEs) play an important role in the evolution
of complex enhancers occupied by multiple TFs.

MATERIALS AND METHODS

Discover FCOP of multiple TFs by probabilistic frequent
itemset mining of uncertain data

Our method borrows idea from frequent itemset mining
(FIM) (17). In FIM, customers’ transaction data were col-
lected. Each transaction contains a list of products that
are called items. FIM discovers customer buying habits by
finding associations between different items that cus-
tomers place in their ‘shopping baskets’. An itemset is
frequent when it occurs in a minimal number of transac-
tions. Here we equate enhancers to transactions and the
set of TF binding sites in an enhancer to the itemset. By
this analogy, the problem of identifying FCOPs becomes
the problem of identifying frequent itemsets. To deal with
noise in ChIP-Seq data, we use occurrence probabilities
of Transcription Factor Binding Site (TFBSs) and enhan-
cers in our framework. Traditional FIM does not take
into account uncertainty associated with transactions
and items. Doing so gives rise to an uncertain transaction
database, in which the support of an itemset is uncertain
and is defined by a discrete probability distribution
function. We introduce a novel framework to mine such
a probabilistic transaction database.

Problem definition

Given are a set of ‘N’ enhancers predicted by CSI-ANN
(18), E = {ey,ez,- -+, ey}, cach of which has a probability
of being a true enhancer, p,,, and genome-wide binding
peaks of a set of ‘M’ TFs identified by ChIP-Seq,
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T ={t1,t2,- -+, ty}, respectively. For a TF binding peak
t; in enhancer e;, we use p; ., to denote the binding prob-
ability of the TF to the enhancer. For a given set of TFs,
T., € T, whose peak centers fall within the enhancer, e;,
we consider the itemset 7, as being supported by the
enhancer ¢; Given a minimum support threshold,
minSup, the goal of the algorithm is to exhaustively
search for non-redundant frequent combinatorial TF oc-
cupancy patterns X = {X1,Xs,---, X .} (X; € T and V X,
XiUX; # X;, where i # j,i,j =1,2... L), whose frequent-
ness probabilities satisfy a given threshold ‘o’

Probability calculation for enhancers and TF binding peaks

In traditional FIM, it is assumed that both transactions
and items of a transaction occur with certainty. However,
in our case, the information captured in transactions and
items has some degree of uncertainty because the existence
of an enhancer and/or a TF binding peak is inferred from
ChIP-Seq data. To deal with such uncertainties, we assign a
probability to each enhancer predicted by CSI-ANN and
each TF binding peak. Because the CSI-ANN algorithm
outputs probabilities of predicted enhancers, it is straight-
forward to use these probabilities directly. For TF ChlIP-
Seq data, given its better performance compared with other
peak callers, we first use MACS with its default parameter
setting to call binding peaks (19). To compute the prob-
ability of a TF binding peak, we use min-max normaliza-
tion to transform the MACS fold enrichment score into a
range of [0.5, 1]. We choose this range because peaks called
using default MACS parameter are relatively strong peaks.
We also tested the performance of our algorithm with the
normalization ranges of [0.3, 1] and [0.7, 1]. Our result
shows that the performance is not sensitive to the choice
of normalization range (Supplementary Figure S3). To
avoid peaks with extremely high fold enrichment that
could skew the normalized probability scores, we
truncate the fold enrichment score at 95 percentile and
set the probability score of such peaks to 1.

Algorithm to compute the frequentness probability of a
combinatorial pattern

Denote X as a combinatorial pattern observed in a set of
enhancers. Pr(X) is the probability of the pattern having
support k, k € {0, ..., N} and Ps.(X) is the probability of
the pattern having a support at least k. X is considered as a
frequent pattern when Psinsuy(X) > o. We consider two
types of uncertainties: those associated with enhancer pre-
dictions and those associated with TF binding peak calls.
If we only consider the uncertainties of TF binding peaks
in an enhancer (i.e. enhancer is certain), the probability of
a combinatorial pattern X supported by an enhancer e;
can be calculated as follows:

De(X) = ]_[[/_E yPie- Considering both types of
uncertainties, the overall probability of pattern X having
exactly k support can be calculated as

P= Y (H(pe[(mpe,)* I (1 —pe,.(mp&))

SCE,|S|=k \e;eS e,eE—-S
(1)

where p,, is the probability of being a true enhancer.
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Recall that we are interested in the probability that an
item set occurs in at least minSup transactions. In other
words, we need the probability that the support of X is at
least k. Denote this probability as P-x(X), which can be
computed by the following equation.

Pa(N)= Y (H(pe,(mpe,.)* I1 (1—pe,.(X>*pe,.)>

SCE,|S|>k \e;eS e,cE—-S
(2)

With a large number of enhancers and TF binding
peaks, computation of P>;(X) by brute-force enumeration
is inefficient. The time complexity is exponential with
respect to the number of transactions. Here we adopt a
dynamic programming-based algorithm first proposed
by Bernecker et al. (20) to compute the frequentness prob-
ability recursively. Briefly, define Py ;(X) as the probability
that k of / enhancers contains pattern X and P (X) as
the probability that at least k of / enhancers contains the
pattern. Then,

Pj) = pe(X) * po, % Poj_1-1(X)

3)
+(1 _pé‘i(X) *pei) * PZ/»’,lfl(X)

where
PZ()JZIVOSZSN,S.I’ICIszJ:OVk>l (4)

Starting from Equation (4), we can recursively calcu-
late  Ppinsup(X) using Equation (3) till k= minSup,
/= N. By definition, the initial values of the dynamic
programming matrix are Psop=1 and Ps1p=0.
Using this dynamic programming scheme, the
computation of the frequentness probability requires
at most O(N*minSup) = O(N) time and at most O(N)
space.

Automatic determination of pattern-specific minimal
support threshold

Because different TFs have different numbers of binding
sites in the genome, it is expected that patterns involving
TFs with more binding sites have more support than
patterns involving TFs with fewer binding sites.
Therefore, a universal minimal support is not appropriate
for computing frequentness probability. Instead, we deter-
mine pattern-specific minimal support thresholds that
have the same frequentness probability in randomized
input data. Such a probability is analogous to a P-value.
In this sense, all pattern-specific minimal support
thresholds are ‘normalized’ to have a P<0.01. We
generate a set of permutated background transactions
based on the binding frequencies of the specific TFs
involved in a pattern. We do so by randomly
redistributing the peaks of a TF across the set of enhan-
cers. In this way, the number of binding peaks for each TF
is unchanged in the permutated data, but the correlation
among TFs is destroyed. For a given pattern and a range
of minimal support thresholds, we then compute a set of
frequentness probabilities in the permutated data as the
P-values. We pick the final pattern-specific minimal
support threshold as the one that gives a P-value of
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0.01. As an example, minimum support thresholds for
pairwise patterns calculated this way are shown in
Supplementary Figure S4. We also calculated minimum
support thresholds for higher-order patterns.

See Supplementary Methods for the rest of method
descriptions.

RESULTS

A large fraction of enhancers are occupied by multiple
TFs

Using CSI-ANN (18) and cell-type-specific histone
modification ChIP-Seq data, we predicted 16 128,
23 731, 23 586 and 3 1327 enhancers in GM12878,
K562, HepG2 and HI cells, respectively. This set of pre-
dictions has high quality, as roughly 70% of them overlap
with at least one of three other genomic marks for enhan-
cers: distal DHS, sequence conservation and distal p300
site (Supplementary Figure S1).

To assess the extent of combinatorial TF binding at
enhancers, we overlapped TF binding peaks with the set
of predicted enhancers. We obtained ChIP-Seq data from
ENCODE for 62, 65, 44 and 39 TFs for GM 12878, K562,
HepG2 and H1 cells, respectively (Supplementary Figure
S2 and Supplementary Table S1). Figure 1A shows the
cumulative distributions of enhancers that contain
various number of distinct TF binding peak(s) within
the 1kb enhancer window. As can be seen, 61, 69, 72
and 39% of enhancers are occupied by at least two TFs
for GM 12878, K562, HepG2 and H1 cells, respectively,
suggesting that combinatorial binding is prevalent.

Method overview

We introduce a probabilistic algorithm for identifying
frequent combinatorial occupancy patterns by multiple
TFs at enhancers, termed FCOP in this study
(Figure 1B). Our method is motivated by the concept of
FIM (21). However, unlike traditional FIM, our method
considers the probabilities of both transactions and items
as a way to deal with uncertainties in ChIP-Seq data. Our
method has the following three components: (i) calcula-
tion of probabilities associated with enhancers (transac-
tions) and TF binding peaks (items); (ii) automatic
determination of pattern-specific minimum support
threshold; and (iii) calculation of frequentness probability
of candidate FCOPs using an uncertain transaction
database and dynamic programming. The input data
consists of genome-wide location information for enhan-
cers and multiple TFs and probability values that are
associated with each type of sequence. The only adjustable
parameter of our method is the frequentness probability
threshold for frequent combinatorial patterns, o. A higher
o value will give rise to a set of predictions with higher
specificity but lower sensitivity. To pick a default value for
the parameter, we ran our method with a range of o
values. We found that o value of 0.5 gives a balanced
sensitivity and fraction of supported predictions
(Supplementary Figure S5). This default value was used
for the following analyses. Software implementing our
method is freely available to academic use on request.
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Figure 2. ROCs of our and traditional FIM-based methods. ROC curves are computed using the set of gold standard interactions.

Performance comparison with alternative algorithms

A couple of groups have used traditional FIM to identify
frequent TF combinatorial patterns (22,23). Both
approaches used TF binding sites defined by DNA motif
scan instead of ChIP-Seq peaks as items. For transactions,
Morgan et al. used 100-bp windows across the genome
and Sun et al. used a contiguous DNA sequence that
contain binding sites of all TFs under consideration for
a given pattern. No confidence measure for either TF
peaks or enhancers was used in either previous studies.

We compared the performance of traditional FIM and
our method using Receiver Operating Characteristic
(ROC) Curve. To evaluate the performance of the
methods, we manually curated a set of gold standard TF
interactions identified using experimental protocols. To
make the comparison meaningful, we used the same set
of transactions and items as the input, i.e. enhancers and
TF binding peaks described earlier in the text. As shown
in Figure 2A, our method has significantly higher area
under the curve values than the traditional FIM Jall
P<22x 107", statistical test using the method of
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DeLong et al. (24)]. We note that the area under the curve
values in these plots are the lower bounds of the actual
values because of the limited coverage of the gold
standard set of interactions.

Predicted FCOPs in four cell types

Using the default frequentness probability threshold of
0.5, we discovered 320, 300, 194 and 62 FCOPs in
GM 12878, K562, HepG2 and HI cells, respectively. The
fraction of TFs involved in FCOPs ranges from 35.5% for
GM12878 cell to 70.4% for HepG2 cell. Likewise, the
fraction of enhancers that support FCOPs ranges from
30.1% for K562 cell to 67.7% for HepG2 cell (Table 1).
On average, each FCOP is supported by 1025, 1086, 1062
and 991 enhancers in GM 12878, K562, HepG2, and HI
cells, respectively (Supplementary Table S4). These
numbers are much higher than the minimum numbers of
support used during the FCOP search, suggesting that the
discovered FCOPs are not due to random chance
(Supplementary Figure S6).

We further corroborated our predictions using evolu-
tionary conservation and known experimentally derived
TF interactions. Interestingly, for all four cell types, a
large portion of the frequent TF patterns are supported
by enhancers that are significantly more conserved than
the full set of enhancers in the genome (P <0.01,
hypergeometric test, Supplementary Figure S7). For
instance, 20.4% of enhancers that support FCOPs in
GM12878 cell are more conserved than the full set of en-
hancers in this cell type. These fractions are 34.8%, 35.3%
and 50% for K562, HepG2 and H1 cells, respectively. This
higher level of conservation is likely due to the require-
ment of conserving multiple TF binding to the enhancers.
Besides a higher conservation level, all four sets of dis-
covered patterns are significantly enriched for known TF
protein—protein interactions (P < 0.05, one-sided binomial
test) (Table 1), providing additional supporting evidence
for the discovered patterns.

Cell-type-specific TF interactions are common

Cell-type-specific interactions among TFs play a critical
role in differential gene expression (25). But systematic
investigation of this important issue is limited. Taking
advantage of our set of predicted FCOPs, we asked to
what extent they are cell-type-specific. For simplicity, we
focused on pairwise interactions within FCOPs. We first
expanded predicted combinatorial patterns into all

Table 1. Summary statistics of predicted combinatorial TF patterns in
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possible TF pairs. In total we obtained 668 frequent TF
pairs in the four cell types. To avoid complication due to
missing data, we focused on the set of 54 TFs that are
shared by at least two cell types in the ChIP-Seq data.
There are 14, 20 and 20 TFs that are shared by 4, 3 and
2 cell types, respectively (Supplementary Figure S2).
Among these shared TFs, we predicted 282 interactions
that occur in the FCOPs. Only 44 pairs (15.6%) are shared
by two cell types and no pair is shared by >2 cell types.
For the shared pairs, they are supported by strong
evidence of co-occurrence frequencies in the relevant cell
types. For instance, the co-occupancy by JunD and REST
is observed at 11.9 and 3.8% of enhancers that support
the respective FCOPs in K562 and HepG?2 cells. In stark
contrast, co-occupancy by the same two factors is not fre-
quently observed at enhancers in GM 12878 and H1 cells
(Figure 3). By the same token, for the unique pairs, they
are supported by the lack of co-occupancy in cell types in
which no interactions are predicted (Supplementary
Figure S8).

Even for TF pairs that occur in more than one cell
types, the sets of target genes co-regulated by the TF
pairs in different cell types may differ for multiple
reasons, such as relative arrangement of the two TFs, add-
itional regulators that may be involved and different chro-
matin context of the involved enhancers. Thus, we asked
to what extent genes regulated by the same TF pairs are
involved in the same biological process. We performed
Gene Ontology enrichment analysis on the target genes
of the enhancers supporting 44 TF pairs shared between
2 cell types. We found 21 TF pairs (47%) whose target
gene sets do not have any shared GO biological process
terms (Supplementary Table S5). In other words, although
47% of the TF pairs are shared by two cell types, genes
controlled by them have different functions in the two
cell types.

In summary, our result suggests that pairwise TF inter-
actions are fairly dynamic across cell types. Even for TF
interactions that occur in multiple cell types, the sets of
co-regulated genes could differ substantially in different
cell types, leading to diverse regulatory outputs.

The majority of combinatorial patterns have flexible
architecture

The spacing and arrangement of TF binding sites in an
enhancer affects its regulatory activity, which is known as
the cis-regulatory grammar of enhancers. Two models of

four cell types

Statistics GM12878 Hl HepG2 K562
Number of predicted patterns 320 62 194 300

Number of supported pairwise interactions (%) 109 (5.8) 80 (10.8) 68 (7.2) 166 (8.0)
Number of supported patterns (P-value) 183 (0) 21 (5.9E-9) 35 (4.0E-9) 100 (8.2E-59)
Number of TF pairs, triplets and quadruplets 38, 210, 72 61, 1,0 111, 79, 4 137, 154, 9
Number of TFs in patterns (%) 22 (35.5) 21 (53.9) 31 (70.4) 41 (63.1)
Number of enhancers in patterns (%) 7076 (56) 13391 (64.6) 13838 (67.7) 9073 (30.1)

A TF set is considered to be supported by known TF interactions if any of the pairwise interactions between two TFs in the TF set was supported by

known TF interactions. P-values are calculated using binomial distribution.
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enhancer architecture have been proposed based on a
number of studies. At one extreme, the enhanceosome
model postulates that a strict pattern of TF binding site
arrangement is required for proper enhancer function
(26,27). A well-known example of this model is the inter-
feron beta gene (IFN-B) in which there are fixed binding
order and site spacing among the six TFs, ATF-2, c-Jun,
IRF-3, IRF-7, p50 and RelA (5). On the other hand, the
billboard model states that (28) binding sites in enhancers
are flexibly disposed without a strictly defined overall
architecture. Many developmental enhancers have such
billboard features (29). A well-known example of bill-
board enhancer is the even-skipped stripe 2 enhancer for
body patterning in fly (2).

To better understand the relative abundance of enhan-
cers belonging to each model and the general architectural
features of enhancers, we conducted a couple of systematic
investigations, taking advantage of our set of predicted
FCOPs.

We first asked what fraction of our combinatorial
patterns involves TFs with preferred binding site
spacing. To this end, we first performed de novo motif
finding for each TF wusing its ChIP-Seq data (see
Supplementary Methods). Next, using the set of motifs
and the SPAMO tool (30), we identified TF pairs in com-
binatorial patterns that have a preferred binding site
distance that is statistically overrepresented in the set of
enhancers supporting the combinatorial patterns. Of the
179 frequent TF pairs in GM12878 cell, 31 of them
(17.3%) have preferred binding site distance (SPAMO
P <0.05). These numbers are 101 of 279 (36.2%), 80 of
190 (42.1%) and 26 of 64 (40.6%) for K562, HepG2 and
H1 cells, respectively (Figure 4A, Supplementary Table
S6). Most TF pairs have only one preferred distance and
95% of the binding site distances are shorter than 126 bp
(Supplementary Figure S9). The short distance between
TF pairs suggests physical interactions among them. For
all TF pairs with preferred binding distances, 23.3% are
supported by known TF physical interactions, compared
with 16.4% for TF pairs without preferred binding site
distance. Taken together, our result suggests that the
majority of TFs in combinatorial patterns do not have
preferred binding site spacing requirement.

Besides preferred binding site distance, we also
investigated preferred binding order among TFs in com-
binatorial patterns. For each pattern, of all possible
orderings of the involved TFs, we identified preferred
orderings as those that are overrepresented in the set
of supporting enhancers (see Supplementary Methods
for details). At a P-value cutoff of 0.01, we found that
33.4, 28.7, 21.7 and 8.1% of combinatorial patterns
exhibit a preferred binding order for GM12878, K562,
HepG2 and HI1 cells, respectively (Figure 4B and
Supplementary Table S4).

Enhancers belonging to the enhanceosome model have
both strict TF binding order and binding site spacing. We
next examined what fraction of combinatorial patterns has
such stricter architecture. To this end, we considered a
pattern belonging to the enhanceosome model if it has
a preferred TF binding order and at least one TF pair in
the pattern has a preferred binding site distance. In total,
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Figure 4. The majority of enhancers do not have strict architectural requirements. (A) Fraction of frequent TF pairs that have preferred binding site
spacing in enhancers. Preferred binding site spacing is determined using the SPAMO tool. (B) Fraction of frequent combinatorial patterns in which

member TFs have preferred binding order in the enhancers.

we found that 18.4, 17, 15.5 and 3% of the patterns fall
into the enhanceosome model in GM 12878, K562, HepG?2
and HI cells, respectively (Supplementary Table S4).

In conclusion, our systematic analysis suggests that
enhancers with strict architecture only accounts for a
small fraction. Both the binding site distance and order
of arrangement among the bound TFs are flexible for
the majority of complex enhancers that involve multiple
bound TFs.

Many combinatorial patterns have significant overlap
with TEs

TEs in the human genome are significantly associated with
TF binding sites. In several cases their expansion in the
genome led to a substantial rewiring of the regulatory
network (31-34). However, almost all studies so far
focused on binding sites of individual TFs and little is
known about the extent of overlap between TEs and com-
binatorial TF binding sites. To address this issue, we
searched for TEs that significantly overlap with FCOPs.
We examined 29 families of TEs belonging to four major
classes, DNA transposon, long-terminal repeat (LTR)
retrotransposon, long interspersed element and short
interspersed element. When compared with all enhancers
in the genome, we found a remarkable enrichment of a
number of TE families among enhancers that support
FCOPs (P <0.01, hypergeometric test, Supplementary
Table S4). As an example, we found that the combinator-
ial pattern [NR2F2, STATS5A, TALI] significantly
overlaps with the ERVL family of LTR retrotransposon
(Figure 5A and B). Figure 5C summarizes the fractions of
combinatorial patterns that significantly overlap with the
four major classes of TEs. For both K562 and H1 cells,
LTR retrotransposons overlap with the largest fractions
of FCOPs. For HepG2, all four classes of TEs contribute
roughly equal fraction of overlap with FCOPs. Besides the
most frequently overlapping TEs, it is also worth knowing
which TF combinations most frequently overlap with
TEs. The top three FCOPs that have most significant
overlap with TEs are [JUND, TAL1, TEAD4], [CEBPB,
TALI1, TEAD4], [STATS, TALI1, TEAD4] for K562 cell,
[CEBPB, FOXAIl, HNF4A], [FOXAl, FOXA2,
HNF4A], [HDAC2, HNF4A, HNF4G] for HepG2 cell

and [BCL11A, SP1], [NANOG, SP1], [NANOG, TCF12]
for H1 cell.

When broken down into individual TE families, for
each cell type, the top three TE families that overlap
with most FCOPs are ERVL, ERV1, L2 for K562 cell,
Alu, ERVL, L1 for HepG?2 cell and ERV1, ERVL-MaLR,
ERVL for H1 cell (Figure 5C inset). This result suggests
that ERV families overlap with a disproportionate
fraction of combinatorial binding patterns. ERV
(endogenous retrovirus) is a major family of LTR retro-
transposons. They are thought to have played an import-
ant role in the evolution of mammalian genomes. Among
the four cell types, H1 cell stands out in that all TEs that
overlap with combinatorial patterns belong to ERV
families, suggesting the prominent role of ERVs in
shaping the transcriptional regulation network of
embryonic stem cells.

DISCCUSSION

Our method integrates both histone modification and TF
ChIP-Seq data in a probabilistic framework. The histone
modification data are used to generate constraints in the
form of enhancers. Furthermore, the histone modification
signature used here has been shown to be associated with
active enhancers (16,35). Thus, by focusing on combina-
torial TF peaks in active enhancer regions, we reduce the
chance of finding spurious clusters of TF peaks in the
genome. To evaluate the added benefit of the histone
modification data, we ran our algorithm by replacing the
enhancers with moving windows of the same size across
the genome. We found that the performance decreased
significantly (Supplementary Figure S10).

An alternative to our FIM-based approach is clustering
analysis. It has been used to conduct joint analysis of
ChIP-Seq peaks of multiple TFs (8,9,11). The advantage
of clustering analysis is its relative simplicity. However,
they do not directly address the noise in the underlying
ChIP-Seq data. Second, for most clustering algorithms,
determining the number of clusters is a difficult problem.
Finally, the statistical significance of resulting clusters
is typically not assessed in clustering analysis. In compari-
son, our method addresses all three issues. It treats
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Figure 5. Overlap between combinatorial patterns and repetitive elements. (A) Three examples of overlap between the TFs NR2F2, STATSA, TALI
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1 kb enhancer window is plotted. (C) Fraction of combinatorial patterns that overlap with four major classes of transposable elements. DNA, DNA
transposon; LTR, long-terminal repeat retrotransposon; LINE, long interspersed element; SINE, short interspersed element. Inset, breakdown of

overlap into TE families.

ChIP-Seq data probabilistically. It is deterministic in
terms of number of discovered patterns. Finally, it deter-
mines the statistical significance of candidate frequent
patterns.

By analyzing a compendium of 108 TF ChIP-Seq data
sets in four cell types, we found that the majority of en-
hancers have flexible architecture in terms of the arrange-
ment and spacing of constituent TF binding sites. Among
the four cell types, we found that embryonic stem cell
(H1), rather than the terminally differentiated cells, has

the largest fraction of enhancers with flexible architecture.
This is reminiscent of the observation in fly that many
developmental enhancers tend to have a more flexible
architecture than enhanceosome (29). In this sense,
the architectural difference may reflect different func-
tional requirements of the two classes of enhancers.
Enhanceosomes may represent a type of regulatory
switches that are mainly responsible for generating gene
expression patterns that are relatively simple, whereas
enhancers with flexible architecture may be responsible
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for generating complex patterns of expression such as
those during development.

We demonstrate that LTR/ERV retrotransposons
overlap with a disproportionate fraction of combinatorial
TF binding regions, especially in H1 embryonic stem cells.
This is interesting given that ERV elements have been
observed to contribute to the rewiring of transcriptional
regulatory networks in ESCs and placenta (36-38). The
unusual high percentage of ERV-derived combinatorial
patterns in H1 cells is likely a consequence of the permis-
sive chromatin state found in ESCs (39,40). It has been
suggested that the manipulations that were initially
exerted by the ancestral viruses on their hosts to bypass
these antiviral control mechanisms have also facilitated
their co-option into enhancer elements (41). Along this
line, it has been shown that stem cell potency fluctuates
with endogenous retrovirus activity in mouse (42).

In summary, we introduce a powerful computational
method for uncovering combinatorial interactions
among TFs. As the amount of genome-wide localization
data continues to accumulate for various regulatory
proteins, our method will prove increasingly useful for
dissecting combinatorial gene regulation by the action of
TFs as well as other types of regulatory proteins.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [43-50].
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