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Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically
grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and
water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining
and environmental applications, as it can process mineral ores and alleviate the negative environmental
consequences derived from the mining processes. In this study, the first genome-scale metabolic re-
construction of A. ferrooxidans ATCC 23270 was generated (iMC507). A total of 587 metabolic and
transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were
incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance
analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a
number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using
three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux
distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were
determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular
Polysaccharide production. iMC507 serves as a knowledgebase for summarizing and categorizing the
information currently available for A. ferrooxidans and enables the understanding and engineering of
Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining ap-
plications.
& 2016 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The mining industry is a major force in the world economy,
occupying a primary position at the start of the resource supply
chain, supporting 14.4% of the world's total economy, while using
less than 1% of the global surface area (CIA, 2011). Production
patterns are driven by consumption, which continues to rise in
middle- to high-income countries, and is reaching unprecedented
levels in low-income countries, whose appetite for the world's
minerals reflects their rapid development (Fischer-Kowalski and
Swilling, 2011). However, extraction and processing are associated
with a number of sustainable development challenges, including
economic, environmental and social issues. For example, poor
waste management practice, one of the most conspicuous features
of the global mineral industry, can result in severe and long-term
r B.V. International Metabolic Engi
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environmental and social consequences. Furthermore, it can also
impose costs on mining companies by eroding share value, in-
creasing the risks of temporary or permanent shut down, exposure
to compensation, fines and litigation costs, lost future opportu-
nities and increased remediation and monitoring (Franks et al.,
2011).

A way to alleviate the negative consequences of mining is
through the application of microbial processes, referred gener-
ically as “biomining”. They do not require the high amounts of
energy used during roasting or smelting and do not produce sulfur
dioxide or other environmentally harmful gaseous emissions.
Furthermore, mine tailings and wastes produced from physico-
chemical processes when exposed to rain and air may be biolo-
gically leached, producing unwanted acid and metal pollution.
Tailings and wastes from biomining operations are less chemically
active, and the biological activity they can support is reduced by at
least the extent to which they have already been bioleached. From
an economical point of view, biomining has a clear advantage in
the extraction and recovery of precious and base metals from low-
neering Society. This is an open access article under the CC BY-NC-ND license
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grade ores, where many metals are not economically recoverable
by non-biological methods (Rawlings, 2002) (ores of copper,
nickel, cobalt, zinc and uranium). At least 20% of the copper pro-
duced worldwide today comes from bioleaching (Rawlings and
Johnson, 2007).

There are two major microbial mediated processes in biomin-
ing. The first is bioleaching, which is a strategy for metal recovery,
whose underlying mechanism is the oxidation of metallic and/or
sulfuric compounds by either enzymatic or mediated chemical
oxidation caused by the catabolism of microorganisms. Depending
on the mineral, chemical attack is by a combination of ferric iron
and acid (protons), whereas the role of the microorganisms is to
generate the ferric iron and acid. The second process is called
biooxidation. This strategy applies mainly to the recovery of gold
from difficult-to-treat arsenopyrites ores and concentrates. The
aim is to use biooxidation to decompose the mineral matrix and
expose entrapped gold (Rawlings et al., 2003). These processes are
mediated by a consortium of Gram-negative bacteria (Acid-
ithiobacillus, Leptospirillum, Sulfobacillus, Acidimicrobium) and ar-
chaeal genus (Ferroplasma, Sulfolobulus and Metallosphaers). There
are many factors that affect the microbial composition of ores,
such as, the type of mineral to be treated, temperature, and type of
reactor used. Industrial applications use both mixed populations
(Ishigaki et al., 2005) as well as isolated cultures (Falco et al., 2003;
Sand et al., 1992).

Bioleaching processes are extensively used in copper extrac-
tion. Typically, these processes can be summarized in three steps.
First, copper ores are pulverized and placed in heaps. Second, In
order to promote the microbial consortia metabolism for iron and
sulfur compound oxidation, the heaps are sprinkled with sulfuric
acid. In this step, the microbial consortia oxidizes Fe(II) to Fe(III).
And thirdly, the Fe(III) generated from the microbial metabolism is
used to oxidize Cu(I) to the more soluble form Cu(II). One of the
most important, and by far the best characterized members of the
bioleaching microbial consortia is Acidithiobacillus ferrooxidans
(Brandl, 2008; Edwards, 1990; Ingledew, 1982; Rawlings, 2002).
Formerly known as Thiobacillus ferrooxidans, it is a gram-negative,
highly acidophilic, chemolithoautotrophic γ-proteobacterium
(Rohwerder et al., 2003). For bioleaching, this organism is parti-
cularly important, since it drives Fe(II) oxidation thus allowing the
copper solubilization for further recovery by physic-chemical
means (Valdes et al., 2008).

Beyond its biomining capabilities, A. ferrooxidans offers excep-
tional opportunities to study life under extreme conditions. It ty-
pically grows at an external pH of 2 or lower using the oxidation of
ferrous ions (fe2) by oxygen (o2), producing ferric ions (fe3) and
water (h2o), while fixing carbon dioxide (co2) from the environ-
ment. It can also obtain energy by the oxidation of Reduced In-
organic Sulfur Compounds (RISCs), hydrogen (Drobner et al., 1990),
and formate (Pronk et al., 1991). A. ferrooxidans has the potential to
drive respiration by directly transferring electrons from electrodes
to the microorganism (Carbajosa et al., 2010; Li et al., 2010). Ex-
tracellular polymeric substances (EPS) production in A. ferroox-
idans is crucial for the bioleaching process. It has been demon-
strated that EPS activation in A. ferrooxidans, significantly increases
the pyrite bioleaching capacity (Gehrke et al., 1998). EPS aids the
process by mediating the bacterial adhesion to the sulfide mineral
surface, and by concentrating ferric ion in the mineral-micro-
organism interface by complexation with uronic acids or the EPS
residues, allowing the oxidative attack on the sulfur to take place
(Sand and Gehrke, 2006). Due to the lack of well-developed sys-
tems for genetic manipulations, the study and exploration of the
molecular biology and physiology of A. ferrooxidans has proven to
be deficient. In terms of the behavior of the complete system,
different aspects of metabolism, such as, iron oxidation, co2 up-
take and fixation, and the anaerobic metabolism of sulfur-coupled
iron reduction remain little described. Furthermore, this organism
has often proved to be the source of some confusion, because it
requires understanding of the consequences of both growing at
very acidic external pH and of using a relatively weak reductant
(ferrous iron) as the sole source of electrons for respiration (Fer-
guson and Ingledew, 2008). Several aspects regarding its energetic
metabolism remain weakly described in quantitative terms, such
as, how it balances the use of iron as both a micronutrient and as a
required energy source and how proton-driven membrane trans-
port and energy processes function in face of a proton motive force
across the inner membrane that is several orders of magnitude
higher, and how the large pH gradient is maintained across the
cytoplasmic membrane of A. ferrooxidans (Ferguson and Ingledew,
2008).

Based on the complete genome sequence of A. ferrooxidans
(Valdes et al., 2008), several studies have provided insights into its
physiological properties, including the most relevant parts of the
metabolism (Esparza et al., 2010; Ferguson and Ingledew, 2008;
Osorio et al., 2013; Valdes et al., 2008). However, from this
knowledge it is not possible to either predict or quantitatively
describe the physiological outcome from the annotated sequence
alone. Only small scale metabolic models for A. ferrooxidans (Hold
et al., 2009; Sepúlveda et al., 2011), have been proven successful
on describing the main aspects of its metabolism. However, these
models lack the ability to capture the complex physiological
characteristics, behavior and metabolic capabilities of the cell as a
whole integrated system. In order to overcome this difficulty and
fully explore metabolic genotype-phenotype relationships, im-
plementation of constraint-based reconstruction and analysis
(COBRA) methods for A. ferrooxidans have been employed. The
“cornerstone” of this method is represented by the genome-scale
network reconstruction (GENRE) (Thiele and Palsson, 2010) that is
built systematically using genome annotation, “omics” data sets
and legacy knowledge. Genes, proteins, reactions and metabolites
that participate in the metabolism are identified, categorized and
systematically interconnected, enabling a mechanistic description
of metabolic physiology. A GENRE combined with constraints-
based methods can be used to formulate mechanistic predictions
of metabolic physiology that can be used in a prospective manner
to elucidate new biological knowledge and understanding, as well
as design and engineer the cellular metabolism (McCloskey et al.,
2013). Several workflows have been implemented to predict me-
tabolic phenotypes, by integrating high-throughput data sets with
COBRA methods (Bordbar et al., 2014).

In this work, a GENRE was reconstructed, validated and ana-
lyzed to better understand key metabolic capabilities of A. fer-
rooxidans ATCC 23270 (see Fig. 1). A systematic workflow for the
elucidation of proton translocation stoichiometry of key enzymes
based on physiological data was implemented under three differ-
ent aerobic chemolithoautotrophic conditions: using ferrous ion,
tetrathionate and thiosulfate as electron donors. The electron
transport system and central carbon metabolism was character-
ized and studied. Furthermore, in order to determine the potential
production of extracellular polymeric substances in A. ferrooxidans,
a retrospective model-driven analysis was performed.
2. Methods

2.1. Network reconstruction process

The reconstruction software Insilico Discovery™, version 3.3
(Insilico Biotechnology AG, Stuttgart, Germany), was used to build
and curate the first draft of the A. ferrooxidans genome-scale net-
work. First, the specific Pathway/Genome Database (PGDB) for A.
ferrooxidans ATCC 23270, version 14.1, was downloaded from



Fig. 1. General workflow to generate, validate and further analysis of iMC507: (A) the workflow detailing the iterative model building procedure used to generate iMC507.
The reconstruction process was initiated based on the annotated genome generated by PathoLogic. Manual curation and reconstruction was performed by using the Insilico
Biotechnology software aided by the KEGG and MetaCyc databases. Publications and literature sources were used to refine the network content, assigning a specific
confidence score to each reaction. The reconstructed network in conjunction with the BOF, were used to formulate a minimum medium for the three different metabolism
studied. (B) Proton translocation for 8 different membrane reaction and GAM stoichiometry were estimated using a genetic algorithm. Experimental data for growth under
three different electron donors and FBA was used to decipher the model parameters that best represent cell behavior. Based on these results the iMC507 network was
validated with physiological data for growth under ferrous ion, tetrathionate and thiosulfate. (C) To study the most relevant aspects of the electron transfer metabolism and
carbon fixation, a retrospective model analysis was performed by using iMC507. Further analysis on EPS secretion potential for growth-coupled production through knock-
outs was performed.
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BioCyc (Caspi et al., 2012), where based on the annotated genome
sequence, the PathoLogic program (Dale et al., 2010; Karp et al.,
2010) automatically infers metabolic pathways, assigns enzymes
to reactions they catalyze, and infers transport reactions among
others capabilities. The draft genome accounts for 3217 protein-
coding genes, of which 64% were assigned a putative function
(Valdes et al., 2008). Next, in order to connect the database with
the reconstruction platform, four different files were generated by
Insilico Biotechnology AG (Stuttgart, Germany) from the original A.
ferrooxidans ATCC 23270 PGDB. The generated files specify differ-
ent kinds of metabolic interaction levels, such as, metabolites,
reactions, genes and operons. At the beginning, most gene-pro-
tein-reaction (GPR) association assignments were made from the
annotated genome and the model was reconstructed on a pathway
basis manually. In general, the reconstruction process was im-
plemented to minimize the number of grouped, or lumped, reac-
tions in the network reconstruction. During the manual curation
process online database, KEGG (Kanehisa et al., 2006), MetaCyc
(Caspi et al., 2012) and BRENDA (Schomburg et al., 2002), were
extensively used. The ORFs that encode the proteins included were
integrated into the GPRs associations for the reactions in which
they participate. GPR associations were also determined directly
from biochemical evidence presented in journal publications and
reviews. Transport reactions were added to the network from the
genome annotation or from physiological data. All reactions in-
cluded in the model were both elementally and charge balanced.
Reaction reversibility was determined from thermodynamic con-
siderations. Confidence scores were assigned for each reaction,
based on the available evidence of its presence in the model
(Thiele and Palsson, 2010). Biochemically characterized enzymes
received a confidence score of 4. If genetic knockout information
or physiological evidence was available, a score of 3 was assigned.
A score of 2 was assigned to reactions for which indirect evidence
or sequence homology information was available. During gap-
filling and evaluation of the network functionality some reactions
were added with a confidence score of 1. It is worthwhile to
mention that throughout the entire manuscript, metabolites and
reactions are named after the corresponding model abbreviations
(see Supplementary Tables 1 and 2).

2.2. Generation of the Biomass Objective Function (BOF)

In order to simulate a cell that strives to maximize biomass
production from available media substrates, a detailed and precise
biomass reaction is needed for realistic metabolic network analy-
sis. The BOF is a linear equation consisting of the fractional molar
amounts of metabolites that constitute the dry weight content of
the cell along with a growth associated maintenance (GAM)
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reaction to account for non-metabolic growth activity (e.g., energy
required for macromolecular synthesis), represented in the BOF as
ATP hydrolysis reaction. In addition to the BOF, a non-growth as-
sociated maintenance (NGAM) reaction (which is an independent
ATP hydrolysis reaction) was used as an energy “drain” on the
system during the linear programming calculations, and accounts
for non-growth cellular activities (e.g., turgor pressure). The A.
ferrooxidans BOF was formulated according to the procedures de-
scribed elsewhere (Thiele and Palsson, 2010). Biosynthetic mac-
romolecule fractional content was obtained from experimentally
reported values when possible, if not, the corresponding fractional
content was estimated as reported in iAF1260 (Feist et al., 2007).
Experimental values for proteins (60%) (Kuenen, 1979) and in-
organic ions (0.3%) (Sublette, 1988) were found in the literature.
Assuming a linear behavior between genome size and DNA cell
fractional content in different organisms, the corresponding DNA
fractional content for A. ferrooxidans was estimated from a corre-
lation specified in Supplementary Table 4. RNA fractional content
was estimated according to the genome composition. The re-
maining glycogen, murein, LPS, phospholipids and soluble pool
content was extrapolated from the BOF formulated for Escherichia
coli (Feist et al., 2007). This approach has been shown to be a valid
assumption when comparing the same gram-negative cell mor-
phology (Feist et al., 2014). It is worthwhile mentioning that from
a mathematical perspective, growth rate and unmeasured uptake
rate predictions are relatively insensitive to biomass macro-
molecular weight fraction variations (Feist et al., 2007).

The relative fraction of amino acids was obtained from previous
studies (Sublette, 1988). The nucleotide content for DNA and RNA
was estimated based on the genome composition. The relative
fraction of fatty acids (Mykytczuk et al., 2010), phospholipids
(Shively and Benson, 1967), LPS (Mayer et al., 1989) and inorganic
ions (Sublette, 1988) was taken from experimental data reported
for Acidithiobacillus. EPS production was modeled as a biomass
independent reaction, and fractional precursor content was ob-
tained from experimental results (Harneit et al., 2006). The GAM
reaction stoichiometry and the NGAM flux were estimated by
using a genetic algorithm and previously reported experimental
results. A detailed description of the iMC507's biomass reactions is
shown in Supplementary Tables 3 and 4.

2.3. Modeling simulations

In order to mathematically represent the reconstructed meta-
bolic network, a stoichiometric matrix (Smxn) was generated,
where m is the number of metabolites and n is the number of
reactions. Each entry Sij, represents the stoichiometric coefficient
for the corresponding ith metabolite in the jth reaction. More
details can be found elsewhere (Thiele and Palsson, 2010). Flux
Balance Analysis (FBA) (Orth et al., 2010) was utilized for pre-
dicting growth and analyzing the reaction flux (vj) through the
metabolic network. Based on the stoichiometry matrix, a linear
programming (LP) problem is solved by maximizing the BOF re-
action (vBOF) under steady-state criteria. Additionally, reactions are
constrained by setting an upper (ub) and lower bound (lb), which
define the maximum and minimum allowable flux of the reac-
tions. The general LP problem can be represented as:

∑ = ∀ ∈

≤ ≤ ∀ ∈
∈

v

s t S v i M

lb v ub j N
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. . 0
BOF

j N ij j

j j j

=
=
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N

Set of metabolites in the network
Set of reactions in the network

For reversible reactions and for reactions containing
metabolites present in the extracellular space the lb and ub con-
straints were set to �1000 and 1000, respectively. For irreversible
reactions and reactions containing metabolites that are not in the
medium, meaning that the metabolite could leave the cell but not
enter the system, lb and ub constraints were set to 0 and 1000
respectively. Based on the inorganic electron donor, three different
A. ferrooxidans's aerobic chemolithoautotrophic metabolisms were
studied. Specifically for ferrous ion, tetrathionate and thiosulfate,
by using as a unique carbon source carbonic acid (h2co3). Flux
variability analysis (FVA) was used to find the minimum and
maximum flux for reactions in the network, while maintaining a
predefined flux state of the network. More details about the FVA
method can be found elsewhere (Mahadevan and Schilling, 2003).
In this work, FVA was used to find the minimum and maximum
flux through each reaction while supporting 100% of the maximal
growth rate. Linear programming calculations were performed
using Insilico Discovery™, version 3.3 (Insilico Biotechnology AG,
Stuttgart, Germany) and the MATLABs version 8.1.0.604 (The
MathWorks Inc., Natick, MA) linked to the COBRA Toolbox 2.0
(Schellenberger et al., 2011). The linear programming package
GUROBI version 5.5.0 (Gurobi Optimization Inc., Houston, TX) was
used as a solver.

2.4. Minimal medium formulation

A synthetic minimal medium was determined based on the
biomass composition specifically determined in the BOF. Biomass
constituents were grouped in two different sets. The first group
corresponds to inorganic ions. By assuming that inorganic ions do
not impose a growth restriction, the corresponding exchange re-
actions were allowed to freely enter and leave the network by
setting lb and ub to �1000 and 1000, respectively. For carbon
based biomass constituents, a manual gap filling procedure was
performed. Biomass components were sequentially added to the
BOF individually and further FBA was performed for BOF max-
imization. If the optimization leads to a positive flux through the
biomass reaction, a subsequent component was added to the BOF
and simulation was re-ran. For optimizations resulted in no flux
through the biomass reaction, the network was updated by adding
the needed reactions able to sustain growth. This process was
repeated until all biomass constituents were added to the BOF.
Simulations were performed under aerobic chemolithoautotrophic
conditions (external oxygen reaction exchange lb and ub were set
to �1000 and 1000) and using h2co3 as a unique carbon source
for the three major electron donors: fe2, tetrathionate (ttton) and
thiosulfate (tsul). In order to avoid operation of the rusticyanin
complex for tetrathionate and thiosulfate simulations, CYT2 reac-
tion bounds were set to 0. GAM and NGAM were not considered
for the gap filling procedure and determination of minimal media.
Three different minimal synthetic media were generated accord-
ing to the specific electron donor related to the corresponding
metabolism (Supplementary Table 1). Metabolism specific simu-
lations were performed by using the previously determined media
conditions, which define A. ferrooxidans aerobic chemolithoauto-
trophic growth, using 3 three different electron donors. The me-
tabolisms studied were abbreviated based according to the specific
electron donor: specifically for aerobic ferrous ion (FIM), tetra-
thionate (TTM) and thiosulfate (TSM) metabolism.

2.5. Genetic algorithm for proton translocation stoichiometry esti-
mation and sensitivity analysis

The proton translocation stoichiometry for ATPS5rpp (ATP
synthase), NADHI (NADH dehydrogenase, ubiquinone-8), CYTAA32
(cytochrome c oxidase, aa3-type), CYTAA31 (cytochrome c oxidase,
aa3type), CYTRED (bc1 complex), CYTBC1 (cytochrome oxidase
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bc), CYTBO3 (cytochrome oxidase bo3, ubiquinol-8), CYTBD (cy-
tochrome oxidase bd, ubiquinol-8) (see Fig. 3), the GAM reaction
stoichiometry and NGAM flux were estimated based on the ana-
lysis outlined in Fig. 1B. A genetic algorithm was implemented in
order to adjust the model parameters based on previously re-
ported experimental results (Boon, 1996; Eccleston and Kelly,
1978; Hold et al., 2009) using three different electron donors (i.e.
fe2, ttton, and tsul) under aerobic chemolithoautotrophic meta-
bolic conditions. In total 20 different experimental points speci-
fying the growth rate, h2co3 uptake rate, o2 uptake rate (only for
FIM), and the corresponding final electron donor (fe2, ttton or tsul)
were used for simulations (see Supplementary Table 5). For the
proton translocation reactions, upper and lower bounds on the
number of allowable protons able to cross the periplasmic mem-
brane were estimated. These bounds were estimated based on
Mitchell's chemiosmotic theory and also obtained from experi-
mental data (Cox et al., 1979) (see Supplementary Note 1). Bounds
on GAM were set according to reasonable reported values re-
garding similar analysis. Furthermore, to reduce the number of
unknown variables, the NGAM was set as 2.5% of the GAM (Feist
et al., 2006). In order to initialize the genetic algorithm, first, 20
different metabolism-specific models were generated by setting
the corresponding metabolism constraints and the specific ex-
perimental h2co3 uptake rate. Second, the corresponding reaction
to evaluate, and initial values for proton translocation and GAM
reactions stoichiometry were set for each one of the 20 models.
Initial parameter lower and upper bounds for genetic algorithm
initialization were set randomly inbetween the corresponding
minimum lower and maximum upper allowable bound space.
Third, genetic algorithm performance variables were defined, such
as: crossover function, mutation function and stopping criteria.
After models and genetic algorithm initialization, the algorithm
started. For each round, FBA was utilized for optimizing growth
and quantitative phenotypic evaluation. Fitness was calculated by
comparing FBA predictions with previously reported experimental
results (Supplementary Table 5), specifically for o2, fe2, ttton and
tsul uptake rate and growth rate, for each one of the 20 models.
The coefficient of determination (R2) was evaluated for each da-
taset (R2Set1 (fe2), R2Set2 (ttton) and R2Set3 (tsul)), and the
average (R2m) was used for fitness evaluation. The objective
function for the genetic algorithm was the minimization of (1-
R2m). MATLABs version 8.1.0.604 (The MathWorks Inc., Natick,
MA) genetic algorithm was used for all simulations. Once proton
translocation, GAM and NGAM stoichiometry were estimated, a
metabolism specific sensitivity analysis for each estimated variable
was performed. For each metabolism, the estimated parameters
were independently varied from the optimal values. According to
the variation, FBA was used to calculate the corresponding R2Set1,
R2Set2 and R2Set3 deviation, observed from the FBA predictions
and experimental results.

2.6. Reaction essentiality analysis

Reaction essentiality analysis was performed for FIM, TTM and
TSM. The analysis consists of the sequential independent reaction
removal from the model, followed by FBA simulations for growth
maximization. For each simulation the h2co3 uptake rate was set
to 2.34 mmol/g DW/h. Reactions were removed by setting the
corresponding lb and ub to 0. Simulations predicting growth rates
higher than 0 were defined as non-lethal reaction knock-outs.
Lethal knock-outs were clustered in terms of subsystems and
further analysis was performed.

2.7. Reaction knock-down simulations

Reaction knock-down simulations were performed only for
aerobic chemolithoautotrophic FIM. The h2co3 uptake rate for
each simulation was set to 2 mmol/g DW/h. fe2 and o2 were freely
allowed to enter and leave the cell. In order to analyze the growth-
rate and EPS production due to metabolic co2 production and
independent reaction flux constriction, 12 different simulations
were calculated for each of the reactions in the model. Those
conditions where defined by two parameters. First, each reaction
was allowed to proceed by constraining the optimal flux at 0%,
25%, 50%, 75% and 100%. When constraining reaction flux at 0%, all
reactions were freely allowed to proceed according to the corre-
sponding directionality. On the contrary, reaction fluxes con-
strained at 100% mean a knock-out. The others constraining per-
centages represent the knock-down ratio from the optimum. Ad-
ditionally, a co2 transport was incorporated and constrained in the
same manner. By constraining this transport reaction, metaboli-
cally produced co2 was allowed to leave the cell at 0%, 50% and
100%. FBA was used to maximize BOF, and for each reaction and
condition, the corresponding growth rate and EPS production rate
were saved.

2.8. Reaction knock-out simulations

Based on the genome-scale reconstruction, model-driven
growth-coupled designs through reactions knock-outs for EPS
production were calculated. These growth-coupled designs could
be difficult to achieve and may require multiple knock-outs. A
number of algorithms, such as OptKnock (Burgard et al., 2003),
OptGene (Patil et al., 2005), RobustKnock (Tepper and Shlomi,
2010), and GDLS (Lun et al., 2009), have been proposed for de-
signing production strains through gene knock-outs. Still, the
search for knock-out phenotypes is computationally extensive,
since the solution of one or more mixed-integer linear problems
(MILP) are involved. This means that the time taken to solve MILPs
arising from network reconstructions becomes prohibitive. Instead
of formulating a MILP, an exhaustive search over all single, double,
and triple knockout mutants was performed. A major benefit of
this strategy is that it finds all growth-coupled designs instead of a
single mutant returned by most of the MILP based algorithms.
Reaction knock-out simulations were performed only for aerobic
chemolithoautotrophic ferrous ion metabolism. The h2co3 uptake
rate for each simulation was set to 2.34 mmol/g DW/h. fe2 and o2
were freely allowed to enter and leave the cell. Furthermore, a
metabolic co2 transport reaction step was added to the model.
Single, double and triple knock-outs were simulated. First, in order
to decrease the number of simulations, a subset of reactions was
determined. Specifically, all non-lethal reactions were taken into
account for the simulations. In total 180 reactions were used for
this analysis. Second, from this subset of reactions, all possible
combination knock-outs for single, double, and triple deletions
were determined. Third, for each deletion combination, FBA was
used to optimize growth. Finally, in order to obtain EPS production
associated to growth, knock-out combinations associated with
phenotypes able to grow and simultaneously produced EPS were
saved. Knock-out reactions were simulated by setting the ub and
lb to 0.
3. Results

The results are presented following the scheme shown in Fig. 1.
First, a description on the content included in the genome-scale
metabolic reconstruction of A. ferrooxidans and then conversion
into a computational model is described. Second, by using a ge-
netic algorithm in conjunction with experimental data, the GENRE
was validated and proton translocation stoichiometry for key
metabolic reactions was estimated. Third, a retrospective model-
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driven analysis describing A. ferrooxidans key metabolic cap-
abilities and potential applications for EPS production was studied.

3.1. Acidithiobacillus ferrooxidans ATCC 23270 genome-scale meta-
bolic network reconstruction and unique metabolic capabilities

A genome-scale metabolic reconstruction of A. ferrooxidans
ATCC 23270, iMC507, was generated by performing a bottom-up
reconstruction approach (Fig. 1A). The final reconstruction cap-
tures all major known metabolic pathways and contained 507
genes, 587 metabolic and transport reactions, and 573 nonunique
metabolites, which were distributed over 42 subsystems and three
different cellular compartments: extracellular, periplasm and cy-
toplasm. In general, the reconstruction accounts for 16%, 69%, and
92% of the initial automated database genes, reactions, and me-
tabolites respectively. Reactions were subdivided into 13 high-le-
vel functional categories based on the major metabolic roles of the
cell. The largest number of reactions was involved in the bio-
synthesis of amino acids, cofactors and prosthetic groups. In total,
79% of the reactions have a GPR association (see Supplementary
Fig. 2A). The transport functional category shows the lowest
number of GPR associated reactions, only 24%. Another 50% of
transport reactions were associated with outer membrane porin
transport, no GPR association was assigned. The high number of
transport reactions with no gene assignments, points to the fact
that further work is needed to characterize the biochemical
foundations involved in the transport of molecules in A. ferroox-
idans. Almost all genes were specific for each functional category.
In the case of metabolites, this is completely the opposite
(see Supplementary Fig. 2B-C), showing that almost all metabo-
lites are shared among the different functional categories.

Since A. ferrooxidans has the ability to grow under extremely
low pH and on sources of electrons that yield scarcely sufficient
energy for ATP synthesis and other endergonic processes vital for
the cell (Ferguson and Ingledew, 2008), a detailed characterization
of the electron and hydrogen transfer pathways through all three
cellular compartments was crucial for enabling the systems ana-
lysis of the energetic processes and understanding it's unique
capabilities. An extensive effort was made to construct the most
reliable model that exceeds previously published work in detail
and coverage (Hold et al., 2009). Together with reconstructing the
main carbon and precursor metabolism for biomass, the re-
construction process was focused on describing the energy me-
tabolism regarding three different electron donors: ferrous ion
(FIM), tetrathionate (TTM) and thiosulfate (TSM) metabolism. All
major metabolic subsystems are outlined in Supplementary Fig. 1,
specifying the reaction name and the corresponding gene asso-
ciation. Furthermore, a detailed characterization and analysis of
the energy metabolism can be found in the Supplementary Note 2.

The number of essential reactions for growth under aerobic
FIM, TSM and TTM was determined using FBA (see Section 2). The
results of such calculations are presented in Supplementary Fig. 6.
These results have to be interpreted with caution, since calcula-
tions were based on the assumption that all enzymes are ex-
pressed. Transcriptomics or proteomic data would considerably
improve the results by constraining the internal fluxes. Approxi-
mately 68% of all possible single reaction deletions would be lethal
for the organism under aerobic FIM, TTM and TSM. In general,
when comparing the percentage of knock-out reactions non-es-
sential for growth, for all studied subsystems, no considerable
fluctuations were observed under FIM, TSM, and TTM. The only
substantial difference between these three metabolisms on reac-
tion essentiality was observed for oxidative phosphorylation and
sulfur metabolism, where in both cases the number of knock-out
reactions being non-essential for growth was higher for TSM and
TTM compared to FIM. Also a higher percentage of knock-out
reactions non-essential for growth are associated to Carbon and
Energy metabolism compared to amino acid and related molecules
metabolism. This shows how flexible the carbon and energy me-
tabolism and how rigid for amino acid and related molecules
metabolism are in A. ferrooxidans due to knock-out perturbations.
It is interesting to note in Supplementary Fig. 6 that the majority of
the reactions in the sulfur metabolism are non-essential during
growth with all electron donors tested. This behavior was ex-
pected when using fe2, where the sulfur and iron metabolism can
work independently from each other. Nevertheless, when using
ttton and tsul as a sole electron source, approximately 80% of the
reactions were assigned as non-essential. Most of the reactions
assigned to the sulfur metabolism are specifically associated to the
RISC metabolism. This metabolism is responsible for oxidizing a
range of different sulfur compounds through many different me-
tabolic routes, thus providing the cell with sufficient electrons for
growth. Based on the latter, the network shows a flexible behavior
when simulating growth by using RISCs as a sole electron source.
This allows re-routing the fluxes when reaction deletions asso-
ciated to the sulfur metabolites are performed, and explains the
high percentage of non-essential reactions in the sulfur metabo-
lism. When using ttton and tsul as electron donors, approximately
80% of the reactions in the oxidative phosphorylation where as-
signed as non-essential for growth. After analyzing the reactions
involved in this metabolism, approximately 50% correspond ex-
clusively to the fe2 metabolism. This set of reactions under which
RISC conditions become non-essential, explains the high percen-
tage on non-essential reactions in the oxidative phosphorylation
for ttton and tsul.

It should be noted that the macromolecular fraction values in
the BOF for glycogen, murein, LPS, phospholipids and the soluble
pool were extrapolated from iAF1260. These similarities might
lead to redundancies when comparing gene essentiality results.
These redundancies reflect the similarities in the BOF between
both species, which in this case where assumed to be valid spe-
cifically for glycogen, murein, LPS and phospholipid metabolism,
due to the similar gram-negative cell morphology. On the other
hand, reaction essentiality redundancies for reactions contained
within the pathways producing soluble pools, should be carefully
considered, since no evidence regarding the soluble pool content
in A. ferrooxidans was found.

Based on the available experimental evidence, a confidence
score was assigned to each reaction in the metabolic network. On
completion, the GENRE had an overall average confidence of 2.02.
In fact, 19% of all reactions in A. ferrooxidans included in iMC507
have been very well or well-studied, while 58% were fundamen-
tally based on the genome annotation and 18% of all reactions
reflects that no evidence is available, but the reaction is required
for modeling. Future research efforts should be directed towards
this latter group, which is described in Supplementary Fig. 3.
Furthermore, in order to increase the accuracy and utility of the
model, BOF should be reevaluated in future efforts, since some of
the precursors were determined based on previous work non-re-
lated to A. ferrooxidans genome-scale models, specifically iAF1260.
According to the latter, problems might arise when conditionally
essential metabolites are inappropriately included in the BOF,
leading to false reaction essentiality and growth-coupled design
predictions.

3.2. GENRE proton translocation stoichiometry estimation and net-
work validation

A. ferrooxidans's proton translocation metabolism and trans-
membrane enzyme configuration, has been studied during many
years. Nevertheless, accurate quantitative estimation of the para-
meters involved in the proton translocation process has not been



Fig. 2. Parameter estimation and validation of the carbon fixation and electron donor pathways results: based on the genetic algorithm model parameter estimation results,
three graphs representing the experimental phenotypic data (represented in squares) and the model-predicted growth conditions (represented in lines) on ferrous ion (A),
tetrathionate (B) and thiosulfate (C) as electron donors and using oxygen as an electron acceptor are shown. The corresponding R2Set (1:fe2, 2:ttton and 3:tsul) for each
predicted/experimental dataset pair are shown. A R2Set sensitivity analysis for ferrous ion (D), tetrathionate (E) and thiosulfate (F) metabolism was performed. Proton
translocation predicted stoichiometry values were varied along the y axis and the corresponding R2Set variation from the optimum was calculated and plotted each one of
the proton translocated stoichiometry predicted reactions as a violin graph. In this case R2Set represents the prediction error for each studied metabolism independently.
The maximum calculated R2Set due to parameter variations was reported and represented as a red line. For sake of simplicity GAM denotes the stoichiometry on the atp
reaction consumption in the BOF due to growth associated maintenance. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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accurately described. In these work, a model driven systems ap-
proach was implemented and used for estimating the previously
described parameters (see Section 2). Based on the genetic algo-
rithm results and further analysis (see Supplementary Note 3),
proton translocation stoichiometry for ATPS5rpp, CYTAA31, NAD-
HI, CYTBC1, CYTAA32, CYTRED, CYTBO3 and CYTBD were set to 5,
0, 5, 5, 1.3, 0.5, 1.8 and 1.8 [hþ/2e�] respectively. GAM stoichio-
metry was set to 139 and NGAM to 3.48. Based on this solution, for
all 7 adjusted curves (Fig. 2A, B and C), an average R2 equal to 0.92
was calculated. Under the simulated conditions, iMC507 exhibited
a growth rate, oxygen uptake rate and the corresponding electron
donor uptake rate practically identical to the experimental results.
This result shows the predictive potential and preciseness of CO-
BRA methods for simulation of cellular outcomes by using addi-
tional constraints. In order to analyze the predicted proton
translocation and GAM stoichiometry sensitivity on the specific
R2Set (1:fe2, 2:ttton and 3:tsul), independent perturbations were
imposed for each parameter as a factor from the local optimal
solution and a further R2Set was calculated by using FBA. R2Set
variations were represented as a violin plot along the y-axis, and
the highest calculated value for each studied parameter was re-
ported and represented as red lines. Since CYTAA31 proton
translocation stoichiometry was calculated as 0, variations were
performed not as a factor from the optimal solution, but instead
the direct proton translocation value corresponding to the y-axis
was set for overall R2Set sensitivity analysis (Fig. 2D). The most
sensitive and constrained reaction in the metabolism is ATPS5rpp.
Under FIM (Fig. 2D), when setting the proton translocation and atp
consumption stoichiometry in the GAM reaction to 0, in the y-axis,
no significant changes in the overall R2 were observed for NADHI,
CYTBC1, CYTBD/CYTBO3 and GAM. Furthermore for these reac-
tions, when increasing the parameters by approximately 100%
(factor equal to 2), no considerable decrease in the R2 was ob-
served. Specifically for reactions NADHI and CYTBC1, when
increasing the number of translocated protons, FBA predictions
shows an increase in reaction CYTAA31 flux, thus calculating fer-
rous ion and oxygen uptake rates greater than the experimental
results, displacing the R2Set ratio to 0 (see Fig. 3 for flux visuali-
zation). For reaction CYTBD/CYTBO3, proton translocation was
modeled leaving the cytoplasm. When the proton translocation
stoichiometry is increased, FBA predicts that less oxygen and fer-
rous ions are needed to balance the cytoplasmic hydrogen in re-
action CYTAA31. When GAM is increased, FBA predicted that
ATPS5rpp needs to generate more ATP to fulfill the GAM and
NGAM demand. Similarly, as the generation of ATP by ATPS5rpp is
associated with a net flux of protons inside the cell, CYTAA31
needs to balance the cytoplasmic protons by increasing oxygen
and ferrous ion uptake rates, deviating the R2Set ratio. Due to the
existence of uphill and downhill pathways, electrons can be di-
verted for biomass production (through reaction CYTBC1) and for
balancing cytoplasmic protons (through reaction CYTAA31). For
TTM and TSM, the same kind of behavior regarding R2Set devia-
tions and cytoplasmic proton balance was observed. But, different
reactions were involved in the process. Electrons for biomass
production are taken by the NADHI reaction, and electrons for
balancing the cytoplasmic protons are used in CYTBD/CYTBO3 or
CYTAA32 reactions. It is worthwhile drawing attention to the fact
that for TSM (Fig. 2F), better solutions for proton translocation and
GAM stoichiometry values, compared to TTM (Fig. 2E) were found,
specifically for ATPS5rpp, NADHI, CYTAA32, CYTRED, and GAM.
This is shown by the displacement of the maximum R2Set value
from the line equal to 1 (no changes from the local optimum).
Furthermore, TSM showed more degrees of freedom in compar-
ison to TTM, since R2Set solutions might be achieved at higher
perturbations. It is worthwhile to notice that all of these predic-
tions were performed assuming an external pH equal to 2. Since
thermodynamic bound on proton translocation stoichiometry
changes depending on the pH difference between the cytoplasm



Fig. 3. Electron transfer flux distribution predicted for ferrous ion, tetrathionate and thiosulfate metabolism: A flux map illustrating the electron transfer metabolism for
ferrous ion (FIM), tetrathionate (TTM) and thiosulfate (TSM) metabolism. Reactions are specified in capital letters, while metabolites in lowercase letters and yellow circles.
Arrows indicate the direction of enzymatic activity and the arrow thicknesses are proportional to the flux through each reaction (a thicker arrow has a larger flux). Light blue
arrows represent the electron flow in the network. Visually undetectable fluxes for being so small were increased by a corresponding factor specified next to the corre-
sponding reaction in the map. The diagram shows the energy-conserving ion translocating reactions, each labeled with the stoichiometry of the translocated ion. Proton
translocation stoichiometry predicted reactions are shown in brown. The different colored regions correspond to the tree modeled spaces: cytoplasm (light blue), periplasm
(yellow) and the extracellular space (white). For each network the corresponding standard reduction potential (in mV) associated with a specific transformation was
specified. The uptake of h2co3 for each simulation was constraint at 2 mmol/g DW/h, and the corresponding electron donor was allowed to freely enter the system. FBA was
performed for FIM, TTM and TSM. Due to flux similarities results, TTM and TSM were plotted together. For TTM, reactions, metabolites and fluxes we potted according to the
previous description. In the case of TSM, reaction fluxes different from the ones obtain in TTM, were plotted in orange. For TTM and TSM, an additional flux distribution,
called as parallel solution, was plotted. This solution was obtained when constraining CYTBO3 and CYTBD ub and lb to 0. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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and the periplasm, different results might be obtained when
changing the pH conditions.

3.3. iMC507 model-driven analysis of electron transfer and central
carbon metabolism

The electron transfer metabolism in A. ferrooxidans is mostly
distributed in the periplasmic membrane. Depending on the
electron donor, different reactions might be involved in the elec-
tron transfer process. In this work FIM, TTM and TSM were stu-
died. As shown in Fig. 2A, B and C, the experimentally measured
h2co3 uptake rate range varies depending on the final electron
donor. When inspecting dependencies between the carbon uptake
rates with the rest of the measured variables, it is clearly shown
that all of them correlated linearly. In order to compare the flux
states under different electron acceptors, and normalize the h2co3
uptake for each studied condition, FBA was performed by setting
the h2co3 uptake rate at 2 mmol/g DW/h, and optimizing the BOF.
The corresponding electron donor was allowed to freely enter the
system. It is reasonable to use this specific value of carbon uptake
rate for FBA simulations since it lies in the feasible uptake rate
range for all electron donor conditions.

In the case of FIM, results indicated (Fig. 3) that the flow of
electrons is split at the rusticyanin branch point, which has actu-
ally been suggested as the balancing point for nadh and ATP re-
quirements in the cell by adjusting the flow of electrons (Elbehti
et al., 2000). Most of the electron flow from ferrous ion goes to
oxygen via cytochrome oxidase (CYTAA31) which generates a
proton motive force by consuming hydrogen for the oxygen re-
duction. Specifically 3% of the electrons goes to the formation of
nadh by the CYTBC1 and NADHI reactions. nadh is further utilized
by GAPD1 (i.e. in the Calvin cycle) for carbon fixation. This result is
consistent with a previous report (Ferguson and Ingledew, 2008)
that shows that less than 5% of electrons go to NADHI. Further-
more, for simulations under oxygen limitation (Supplementary
Fig. 11), this behavior remains valid. It has been demonstrated that
before ferric compounds start precipitating in the form of jarosite,
growth on ferrous ion tends to increase the culture pH (Qiu et al.,



M.A. Campodonico et al. / Metabolic Engineering Communications 3 (2016) 84–9692
2005; Yarzabal et al., 2004). This ferrous ion oxidation might be
due to A. ferrooxidans metabolism. In fact, a net inward proton flux
through the extracellular membrane was calculated. Predictions
show that the majority of the inward proton flux into the cyto-
plasm goes through the ATPS5rpp, specifically 67% of all protons
entering the periplasm. The remaining proton flux is mainly dis-
tributed in equal amounts between NADHI and CYTBC1. In the
cytoplasm, approximately 50% of all incoming protons are used for
oxygen reduction through CYTAA31 and the rest mainly for ana-
bolic processes. Furthermore, as shown in Supplementary Fig. 7,
growth is only achievable under alkalization conditions. A sensi-
tivity analysis using FVA also supports this fact (Supplementary
Fig. 10, reaction Htex), where no proton outward flux was
calculated.

For TTM and TSM a completely different set of periplasmic
membranes for transferring electrons into the Calvin cycle and for
proton motive force generation were found to be active in the
metabolic network. TTM and TSM flux distributions have been
outlined in Fig. 3. In these cases, ttton is hydrolyzed by tetra-
thionate hydrolase (4THASE2) generating sulfate (so4), which is
excreted by the system, and tsul which is used by the thiosulfate-
quinone oxireductase complex (TSQOC) to transfer electrons into
the quinone pool. The 4THASE2/TSQOC cycle plays an important
role at the beginning of the electron transfer system by first in-
corporating the electrons coming from tsul into the metabolism,
and second transferring electrons from water to ttton, recycling
the water generated by either CYTBO3/CYTBD or CYTRED in con-
junction with CYTAA32. Interestingly, discrepancies showed that
TSM produces less protons and sulfate through reactions Htex and
SO4tex, specifically 40% and 13% less than TTM, respectively. Fur-
thermore, based on a sulfur molar basis, approximately 12% less
sulfur in the form of tsul is needed to sustain growth for TSM. This
demonstrates that in terms of electron transfer efficiency TSM is
more efficient than TTM. This is due to the amount of electrons
that each electron donor is able to give on a sulfur molar basis,
where tsul showed twice as many of electrons per sulfur. Fur-
thermore, for TTM, water is needed to overcome the electron de-
ficiency in order to sustain growth. Specifically for TTM, 70% of all
incoming electrons from water goes to TSQCO via thiosulfate, the
rest are excreted in the form of sulfate. Basically the tetrathionate/
thiosulfate/sulfate complex worked as a shuttle electron transfer
system to deliver electrons from water to the quinone pool. At this
point, the rest of the network behaves similarly for TSM and TTM,
where electrons are diverged analogous to the FIM, to a “RISC
uphill pathway” through NADHI, and to a “RISC downhill pathway”
through CYTBO3/CYTBD or CYTRED in conjunction with CYTAA32.
Due to the existence of a FBA alternate optimum, for the “RISC
downhill pathway” different cytochrome oxidase combinations
might work as well as CYTBO3/CYTBD. By knocking-out the
CYBO3/CYTBD reactions, the parallel solution regarding the CY-
TRED/CYTAA32 system was calculated and outlined in Fig. 3. Ac-
cording to the flux distribution results both systems worked si-
milarly. Furthermore, the total amount of proton translocation
stoichiometry of both systems is the same (i.e. 1.8 protons trans-
locating through the periplasmic membrane). Approximately 10%
of all incoming electrons from TSQCO go to NADHI. The rest, just
like the FIM are used to balance the cytoplasmic protons and
generate proton motive force through the cytochrome oxidases. It
is well known that during growth A. ferrooxidans acidifies the
media when using RISCs compounds as electron donors (Roh-
werder and Sand, 2007). This fact is represented by predicting a
flux of protons outside the external membrane through the
transport reaction Htex under TSM and TTM. In a different man-
ner, FVA analysis showed that Htex feasible bounds able to sustain
growth are within the positive range of the scale (Supplementary
Fig. 10), demonstrating that in order to sustain growth, the system
only has to produce protons, which are generated by 4THASE. The
same kind of behavior was described in Supplementary Fig. 7,
where growth was only possible under acidification media
conditions.

The central carbon metabolism was modeled by integrating the
carbon fixation, Calvin cycle, glycolysis and incomplete TCA
pathways. Since FIM, TTM and TSM shared similar reactions and
pathways, only FIM was studied in detail. For this, different FBA
simulations were performed to quantitatively describe and study
the fluxes involved in central carbon metabolism (see Supple-
mentary Note 4). In general, simulations showed a high flux ac-
tivity through the Calvin cycle, which incorporate co2 by using the
RUBISCO reaction. The predicted fluxes directionality and reactions
were in concordance with previously reported expression analysis,
which described the genes and pathways involved in A. ferroox-
idans co2 fixation (Esparza et al., 2010). Furthermore, due to net-
work rigidity in terms of carbon metabolism, and in order to re-
present the effect of carbon leaking through the cell due to me-
tabolic co2, transport reactions allowing the metabolic co2 trans-
port through the periplasmic (CO2tpp) and extracellular (CO2tex)
membrane were added to iMC507.

3.4. EPS production potential analysis

Extracellular polymeric substance production in A. ferrooxidans
is determinant for increasing the pyrite bioleaching capacity
(Gehrke et al., 1998). It basically allows the oxidative attack on the
sulfur to take place (Sand and Gehrke, 2006), by mediating the
bacterial adhesion to the mineral surface. In order to understand
EPS production and further synthetically design strains able to
couple EPS production to growth, a retrospective model driven
analysis was performed. First, using FBA, the effect of the in-
dividual reaction knock-down on the predicted growth rate and
EPS production was analyzed. Based on Fig. 4A, specifically in the
first column, EPS production increases when reaction knock-down
increases, This means that the more the metabolic network is
constrained, a higher EPS production and a lower growth rate is
calculated for a specific set of reactions in the network. This effect
is directly related to the network rigidity in terms of how the cell
metabolizes the carbon atoms. Since, no evidence of side carbon
formation in A. ferrooxidans has been found, the metabolic net-
work was modeled in a way that can only export carbon through
the BOF or EPS reactions. Thus, whenever the network is per-
turbed, the only possible option to overcome the network im-
balances is by re-routing the fluxes towards EPS production. For
this reason, and in order to allow certain flexibility for the net-
work, a metabolic co2 export reaction was added and its effect on
the overall system simulated. The results of these simulations are
outlined in Fig. 4A and B, specifically the second and third column,
where the EPS production clearly decreases when allowing the cell
to export metabolic co2. This demonstrates the preference for the
cell for producing co2 instead of EPS when the network is in-
ternally perturbed. Based on this result, reactions can be clustered
in 4 different groups. From right to left the first group contains
only non-essential reactions, where no matter the perturbation on
reactions, the cell still grows and no EPS is generated. The second
group is defined only by two reactions, FUM and MDH, which are
responsible for perturbing the network in a way that EPS is pro-
duced coupled to growth, independently of the presence of the
co2 external transporter or the degree of reaction knock-down.
This reaction knock-out allows the insilico design of A. ferrooxidans
strains for growth-coupled EPS production, which is crucial for
increasing the bioleaching capacity (see Supplementary Note 5 for
detailed explanation). The third group, is represented by reactions
where perturbations generate a network imbalance that produces
EPS when no co2 external transporter was added (Fig. 4 first



Fig. 4. Individual reaction Knock-down and external metabolic co2 transport flux constraint effect on growth rate and EPS production: A) A graph describing the effect of
constraining the hypothesized external metabolic co2 transport flux together with the individual reaction knock-down effect for all reactions on the predicted growth rate
and EPS production is outlined. For each simulation, growth rate (specified in light blue bars in sub-graph on the left hand side y-axis) and EPS flux (specified in red bars in
sub-graph on the right hand side y-axis) were plotted. In each sub-graph the corresponding biomass and EPS production rate was plotted for each one of the reactions (x-
axis) in the model. Simulations were executed by adding an external co2 transport and constraining it in 0, 50% and 100% from the maximum capacity (x-axis), all reactions
in the model were constraint between 0, 25, 50, 75% and 100% from their optimum capacities (y-axis). For each simulation the carbon uptake rate in the form of h2co3 was
set to 2 mmol/g DW/h, oxygen and ferrous ion uptake rate were left unconstrained, and FBA was ran to maximize the flux through BOF. B) A set of graphs describing the
production envelopes for reactions FUM and ASPK under the same conditions described previously. EPS (left y-axis in red lines) and co2 (right y-axis in green lines) were
plotted as a function of growth rate (x-axis). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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column), and does not generate any EPS when the co2 transporter
is allowed to work at its full capacity (Fig. 4A, third column). The
fourth group contains reactions which are essential for growth
when the external co2 is constrained (Fig. 4A, first and second
column). Based on this categorization, two reactions, FUM and
ASPK, were chosen for computing their production envelopes
(Fig. 4B). According to these results it is clearly shown (see Fig. 4B
for FUM and ASPK, first column) how rigid the network behaves
when no external co2 transport is added, where no production
envelope is generated. Instead only production lines were ob-
tained. This demonstrates how tightly coupled the EPS production
and growth are under these conditions. Production envelopes
shown in Fig. 4B, specifically in the second and third columns,
show how the production envelopes are generated, allowing the
network to export co2. EPS growth coupled production appear-
ance, can be appreciated for the FUM reaction, which is in-
dependent from the external co2 transport. On the other hand, for
reactions defined in the second group, and represented by ASPK in
Fig. 4B, no growth coupled design through reaction knock was
Fig. 5. Growth-coupled EPS production strain design results: A) A graph that shows th
combinations that were calculated during the analysis. The EPS production rate is shown
envelopes were characterized and described in different colors according to the region
associated with the each characterized region. For each region the information about the
designs was incorporated. C) A bar plot showing the number of instances that each react
subsystem associated with the corresponding reaction. D) A pie chart descrying the majo
of the references to color in this figure legend, the reader is referred to the web version
seen, still for certain knock-down values, EPS production is still
coupled to growth. Furthermore, in both cases, a tradeoff between
EPS and metabolic co2 production exists whenever the network is
perturbed and co2 allowed to leave the network.

Furthermore, analysis on the EPS growth-coupled potential for
additional double and triple knock-outs was evaluated. Results
from this analysis are shown in Fig. 5. A total of 134 growth-cou-
pled designs were calculated (Supplementary Table 7). Two of
them correspond to single knock-outs, 12 to double knock-outs
and the rest to triple knock outs. Out of the 134 growth-coupled
designs, 4 different production envelopes were identified, which
described the Pareto frontier in the EPS flux vs. the biomass flux
plane. The four different regions were plotted in Fig. 5A. Ap-
proximately 72% of all the calculated designs correspond to region
2 (blue). Most of the knock-out designs in region 2 correspond to
triple knock-outs (Fig. 5B). Region 3 shows the higher theoretical
EPS achievable flux, a total of 12 designs were calculated, and all of
them correspond to triple knock-outs. In all of the calculated de-
signs two different reactions were always found, either fumarase
e EPS production envelopes for A. ferrooxidans wild type (black) and different KO
in the y-axis and the growth rate is given on the x-axis. Four different production
s described in B. B) A bar plot describing the number of growth coupled designs
number of knock-outs reactions associated with the corresponding growth coupled
ion in the y-axis was found in all growth coupled designs. Bar colors represents the
r subsystems associated with the predicted knock-out reactions. (For interpretation
of this article.)
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(FUM) or malate dehydrogenase (MDH), which described the
production enveloped in region 1. Actually, each of them was
found independently 67 times among all designs (see Fig. 5C),
representing the reactions with more instances among all growth-
coupled design reactions. Despite the latter, the subsystem with
more reaction instances in growth-coupled designs is the Nu-
cleotide Salvage Pathway (see Fig. 5D), which does not contain
MDH nor FUM that are part of the citric acid cycle.
4. Discussion

A fundamental goal in biology is to understand and predict the
genotype-phenotype relationships in the cell. COBRA methods
organize biochemical, genetic and genomic knowledge into a
mathematical framework which enables the quantitatively de-
scription of metabolic physiology. In this work, the first genome-
scale metabolic reconstruction of Acidithiobacillus ferrooxidans
ATCC 23270, iMC507 is presented. The bottom-up metabolic net-
work reconstruction of iMC507 represents a comprehensive
knowledge base that summarizes and categorizes the information
currently available for A. ferrooxidans, and serves as a framework
for computational analysis. Based on experimental evidence to-
gether with the model-driven analysis performed in this in-
vestigation, i) key electron transfer reaction proton translocation
stoichiometry were predicted, ii) quantitatively phenotypic de-
scription of specific organism key properties (i.e. uphill vs down-
hill pathway and effect of growth rate due to proton exchanged) in
the electron transfer metabolism under aerobic growth and using
ferrous ion, tetrathionate and thiosulfate as electron donors was
determined, iii) quantitative phenotypic description of central
carbon metabolism for aerobic growth and using ferrous ion was
determined, and iv) based on the knock-down and knock-out
analysis, several growth-coupled designs able to produce EPS
were calculated and evaluated for further experimental
implementation.

iMC507 represents the first genome-scale reconstruction of A.
ferrooxidans specie and accounts for 507 ORFs (16%) of the current
A. ferrooxidans genome annotation. iMC507 represent a major
advance compared to the small scale metabolic network models
previously developed, which only account for 62 reactions in the
first case (Hold et al., 2009) and 190 in the second case (Sepúlveda
et al., 2011). iMC507 average confidence score was equal to 2.02.
This means that most of the network content was based on gen-
ome annotation. In fact only 58% of the reactions were based on
the genome annotation and 19% of all reactions in iMC507 have
been very well or well-studied. The next step in the expansion of
the A. ferrooxidans metabolic network will required research ef-
forts directed to poorly described pathways. The current knowl-
edge reflects the traditional use of A. ferrooxidans as a chemo-
lithoautotrophic ferrous ion and RISCs oxidation-model bacterium,
where subsystems such as co2 fixation, sulfur metabolism, oxi-
dative phosphorylation, and EPS biosynthesis have been well
studied. In contrast, metabolisms involved in amino acid fixation,
central carbon, transport reactions, among others are poorly de-
scribed and in need of further characterization.

Since its discovery A. ferrooxidans has been extensively studied
under chemolithoautotrophic aerobic condition, by using mainly
ferrous ion and RISCs compounds as electron donors. In this study
the proton translocation stoichiometry for key enzymes involved
in the ferrous ion and RISCs metabolism together with the GAM
and NGAM values were predicted. Specifically for the CYTAA31
reaction (cytochrome c oxidase aa3-type), involved in ferrous ion
metabolism, much debate has been generated during the years
whether it actually translocates protons across the membrane.
Based on the genetic-algorithm base approach, no proton
translocation stoichiometry for this reaction was predicted. Fur-
thermore, ATP synthase proton translocation stoichiometry was
determined, showing how COBRA methods in conjunction with
experimental phenotypic data can be useful for elucidation of
chemiosmotic parameters of the cell.

A quantitatively phenotypic description of specific organism
key properties in the electron transfer metabolism (i.e. uphill vs
downhill pathway and effect of growth rate due to proton ex-
changed) under aerobic growth and using ferrous ion, tetra-
thionate and thiosulfate as electron donors was determined. For
FIM, a complete and accurate description of the electron transfer
metabolism was performed, showing that most of the electrons
(i.e. more than 90%) go to the proton neutralization by o2 reduc-
tion into water through CYTAA31. The rest of the electrons go di-
rectly to the Calvin cycle via the “uphill pathway”. Furthermore,
media alkalization, a characteristic behavior during ferrous iron
growth was also predicted. With these results model prediction
capacity was validated for FIM. More interesting was the study of
TTM and TSM, where the TSM efficiency over the TTM was
quantitatively demonstrated. Furthermore, a “RISC uphill pathway”
and a “RISC downhill pathway” were described and quantitatively
characterized. In this work the central carbon metabolism was
outlined by incorporating three major pathways: the Calvin cycle,
glycolysis and the incomplete TCA cycle. The junction point was
determined by 3-phosphoglyceric acid, which connects glycolysis
with the Calvin cycle. The Calvin cycle showed a higher flux ac-
tivity compared to the rest of the central carbon metabolism,
mainly to sustain the co2 fixation through the RUBISCO reaction.
Based on the simulations, results showed how rigid the metabolic
network is in terms of the carbon metabolism backbone. Thus, in
order to allow more degrees of freedom, regarding the internal
carbon fluxes a metabolic co2 transport was hypothesized and
incorporated into the metabolic network. Result showed that in-
stead of producing EPS, the network prefers to generate co2. Al-
though these results are reasonable, no experimental evidence
regarding metabolic co2 evolution, or small compound secretions
(i.e. ethanol, lactate, acetate, etc.) has been reported.

EPS production sensitivity was evaluated by inspecting two
variables. The first was EPS production due to individual reaction
knock-down, and the second was the presence or absence of a
metabolic co2 transport. Overall, when no metabolic co2 was al-
lowed to leave the cell, by increasing the knock-down strength, a
subset of perturbed reactions was identified to promote EPS pro-
duction. Due to the network rigidity in terms of carbon metabo-
lism, this result was expected. On the other hand, when metabolic
co2 was allowed to leave the cell, EPS production was observed
only when FUM and MDH were perturbed. Furthermore, when
these reactions were knocked-out, growth coupled EPS production
was observed. Evidence regarding the incomplete TCA cycle dis-
ruption leading to EPS overproduction (Sepúlveda et al., 2011),
validates this results since FUM and MDH are reactions present in
the incomplete TCA cycle. The evaluation of all possible single,
double and triple knock-outs for growth coupled design was per-
formed. In total 134 growth-coupled designs were found. In all of
the predicted designs either FUM or MDH were found to be in-
volved. Due to the lack of by-product formation reactions, these
network disruptions, re-routes the formate utilization towards the
fatty acid biosynthesis, and further EPS production. Growth cou-
pled designs, such as those produced here, provide an extra tool
for metabolic engineers by allowing the use of selection pressure
to achieve a desired production state. Nevertheless, due to the lack
of genetic tools that allows the knock-out implementation in A.
ferrooxidans, it is not possible to implement the design experi-
mentally yet. Still, competitive inhibition might be used in order to
disrupt the metabolism as utilized elsewhere (Sepúlveda et al.,
2011).
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As the field of constraint based modeling and analysis con-
tinues to expand by incorporating different cellular processes and
interactions into the genome-scale space (e.g. transcription and
translation in Escherichia coli (O’Brien et al., 2013) and Thermotoga
maritime (Lerman et al., 2012)), iMC507 will serve as a key com-
ponent for the quantitative study of A. ferrooxidans and related
organisms by providing an extensive map of the cellular meta-
bolism, enabling the incorporation of different datasets (e.g.
transcriptomics, proteomics, fluxomics, metabolomics) for im-
proving the computational outcome of the cellular metabolism.
Furthermore, iMC507 represents a useful tool for the A. ferroox-
idans community, by unifying and describing our knowledge of
this unique species and providing a computational platform for
further analysis and hypothesis formulation for environmental and
biotechnological applications.
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