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Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a
dismal prognosis. Early diagnosis, accurate prognosis, and personalized therapeutic interventions
are essential for improving patient outcomes. Biomarkers, as measurable indicators of biological
processes or disease states, hold significant promise in IPF management. In recent years, there has
been a growing interest in identifying and validating biomarkers for IPF, encompassing various
molecular, imaging, and clinical approaches. This review provides an in-depth examination of the
current landscape of IPF biomarker research, highlighting their potential applications in disease
diagnosis, prognosis, and treatment response. Additionally, the challenges and future perspectives
of biomarker integration into clinical practice for precision medicine in IPF are discussed.
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Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating lung disease
characterized by the excessive deposition of extracellular matrix (ECM) in the lung
parenchyma, leading to impaired gas exchange and respiratory failure.l: 2 Despite
advancements in our understanding of IPF pathogenesis, the exact mechanisms driving
disease progression remain elusive, making diagnosis and treatment decisions challenging.

Early and accurate diagnosis, along with the ability to predict disease progression, is vital
for optimizing patient management and ensuring timely initiation of appropriate therapies.l:
3-8 Bjomarkers play a pivotal role in enabling early and accurate diagnosis of IPF, as

they identify specific indicators in blood, sputum, bronchoalveolar lavage (BAL) fluid, or
exhaled breath, allowing clinicians to differentiate IPF from other lung conditions during
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their initial phases.* © Beyond diagnosis, biomarkers hold prognostic significance by
providing valuable insights into disease progression and potential responses to therapies,
enabling personalized treatment strategies. Biomarkers serve as objective measures to
monitor treatment effectiveness over time, facilitating timely adjustments in treatment plans
when needed. Biomarker sampling is less invasive than surgical lung biopsy. Thereby,

it is generally more acceptable to patients, including those hesitant about undergoing a
biopsy. The identification and validation of IPF biomarkers contribute to advancements in
precision medicine, where tailored treatments aligned with individual patient profiles lead
to enhanced outcomes and improved quality of life.10 In this review, we comprehensively
examine the current state of biomarker research in IPF, focusing on different biomarker
types and their potential applications in clinical practice. We explore the challenges and
opportunities in validating and integrating biomarkers into routine patient care, paving the
way for personalized medicine approaches in IPF.

Biomarkers in blood

Surfactant proteins (SP-A and SP-D) constitute essential elements of the lung’s surfactant
system, pivotal for maintaining lung function and integrity.11 In the context of IPF, damage
to the alveolar epithelium leads to elevated levels of SP-A and SP-D in the bloodstream.
These surfactant proteins have garnered attention as potential blood biomarkers for IPF.
Measuring levels of SP-A in the blood can help distinguish between patients with IPF and
those with other lung diseases or healthy individuals. Blood levels of SP-D are also useful
for differentiating IPF patients from those with lung infections or healthy people, but not
as effective for distinguishing from other non-IPF lung diseases. In Caucasian patients,
both SP-A and SP-D levels were effective in identifying IPF compared to non-IPF lung
diseases and healthy individuals. However, in Asian patients, only a higher level of SP-D
was significant in differentiating IPF patients from healthy individuals. In addition, high
levels of SP-A and SP-D in IPF patients are linked to a worse prognosis.12 It is important
to note that the specificity of SP-A and SP-D as exclusive biomarkers for IPF is limited, as
elevated levels can also be seen in other interstitial lung diseases (ILDs), thus potentially
reducing their diagnostic accuracy in certain cases.13

Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPSs) play
a critical role in lung ECM remodeling. In IPF, the equilibrium between MMPs and TIMPs
becomes disrupted, resulting in excessive ECM deposition and fibrosis. In clinical studies,
the level of TIMP-1 in the blood is mainly checked to help diagnose lung diseases and to
understand how severe the disease is. However, there has not been much focus on using
TIMP-1 as a way to predict how well patients will do after treatment. In cases of pneumonia,
the balance between MMP-9 and TIMP-1 in the blood improved after patients were treated
with antibiotics. Similarly, in patients with IPF, TIMP-1 levels went down after they were
treated with glucocorticoids. This suggests that TIMP-1 could be a useful blood marker for
checking how well treatments are working in lung diseases, especially lung fibrosis.14 1
Investigations have explored the feasibility of MMPs and TIMPs as blood biomarkers for
IPF. All analyzed MMP/TIMPs were present at significantly elevated levels in patients with
IPF compared to controls, with the exception of TIMP2. Multivariable analyses identified
MMP8, MMP9, and TIMP1 as the primary biomarkers for distinguishing IPF patients from
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control.16 Elevated levels of specific MMPs and TIMPs have been linked to disease severity
and prognosis.1” MMPs, especially MMP-7, are recognized for their role beyond diagnosis
in IPF. They are useful in predicting prognosis and transplant-free survival in patients with
IPF. MMP-7, in combination with other IPF markers, has shown positive results in both
diagnosis and prognosis in various studies. Additionally, MMP-7 is not the only MMP to
demonstrate potential as a diagnostic biomarker in IPF. A study on 300 IPF patients found
that most MMPs and TIMPs, except for TIMP2, were elevated in IPF patients compared to
controls. MMP8, MMP9, and TIMP1 were particularly effective in diagnosing IPF, while
MMP7, MMP12, MMP13, and TIMP4 could indicate disease severity.* 16 .18 However,
further validation is necessary to establish their clinical utility and predictive value.

Krebs von den Lungen-6 (KL-6), a high-molecular-weight glycoprotein produced by type

Il alveolar epithelial cells, is released into circulation in response to lung epithelial cell
damage.1® KL-6 has undergone extensive study as a blood biomarker for IPF. Increased
KL-6 levels are observed in IPF patients and have been correlated with disease severity and
lung function decline. Patients with severe or progressive ILD had significantly higher KL-6
levels than those with mild or non-progressive ILD. Higher KL-6 levels were also observed
in acute exacerbations of ILD and were associated with poorer outcomes, including higher
levels in deceased patients compared to survivors.29 In Japan, KL-6 is employed in clinical
practice as a diagnostic and monitoring tool for IPF.21 However, concerns exist about its
specificity, as elevated levels of KL-6 can also manifest in other lung conditions.?2

S100A12, a calcium-binding protein within the S100 protein family, is primarily released
by neutrophils and contributes to the inflammatory response. Blood levels of S100A12 are
elevated in IPF and are associated with disease severity and prognosis,® suggesting the
potential of SLI00A12 as a biomarker of IPF. Further research is imperative to definitively
establish its clinical usefulness and specificity in the context of IPF.

Procollagen I1l N-terminal peptide (PI1INP), a precursor molecule involved in type 111
collagen synthesis — an integral component of lung ECM - is a subject of study as a
potential IPF biomarker. In IPF, excess collagen deposition leads to fibrosis. Blood levels
of PIIINP have been explored as indicators of fibrosis in IPF. Heightened PIIINP levels are
correlated with the extent of fibrosis and disease progression,24 suggesting its potential as a
non-invasive means of assessing fibrosis degree in IPF patients.

Both galectin-3 (Gal-3) and periostin, proteins participating in diverse cellular processes,
such as inflammation and tissue repair, have been under investigation as blood biomarkers in
IPF.25 26 Galectin-3 levels have been tied to disease severity and prognosis. Elevated levels
of Gal-3 are linked with interstitial lung abnormalities and a restrictive pattern, characterized
by reduced lung volumes and impaired gas exchange. This indicates that Gal-3 may play a
role in the early stages of pulmonary fibrosis. Periostin is highly expressed in patients with
IPF, both in the lungs and in circulation. It is associated with areas of active fibrosis and

can predict lung function decline over time. Elevated periostin levels may be a significant
biomarker for disease activity in older IPF patients.2. 28
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MicroRNAs (miRNAs) and other noncoding RNASs are key players in gene regulation and
have been implicated in IPF pathogenesis. Certain miRNAs and noncoding RNAs, which
can be detected in the blood, have been observed to be dysregulated in IPF. Specifically,
research has shown that the downregulation of miR-29 family members is associated with
lung fibrosis. Despite this, miR-29 holds therapeutic promise for the treatment of pulmonary
fibrosis.2%-31 These molecules exhibit promise as potential blood biomarkers for IPF due

to their involvement in crucial disease pathways. However, their diagnostic and prognostic
value necessitates further validation.

The promise of blood biomarkers in diagnosing and managing IPF is offset by several
challenges. Many biomarkers are not exclusive to IPF and can also be elevated in other lung
disorders. The lack of specificity can lead to misdiagnosis. Standardization poses another
hurdle. Development of a standard protocol demands uniformity in sample collection,
processing, and analysis to ensure consistent and comparable outcomes across diverse
studies and laboratories. The future direction might involve utilizing panels of biomarkers to
enhance sensitivity and specificity, where the amalgamation of various biomarkers reflecting
distinct disease aspects can offer a more precise IPF evaluation.

Long-term, prospective studies are imperative to establish the predictive potential of blood
biomarkers in tracking disease progression and gauging therapeutic responses. Integration
with imaging techniques, particularly high-resolution computed tomography (HRCT),

holds promise for enhancing IPF diagnosis and monitoring by pairing blood biomarkers
with visual data.32 As comprehension of IPF’s heterogeneity deepens, the prospects for
personalized treatment strategies rooted in specific biomarker profiles become more feasible.
This trajectory aligns with the recognition that addressing the intricacies of IPF necessitates
collaborative efforts spanning research, clinical practice, and technological innovation [Table
1].

Biomarkers in exhaled breath

\olatile organic compounds (VOCSs) are a class of carbon-based chemicals that readily
evaporate at room temperature and can be detected in exhaled breath. These compounds,
either metabolic byproducts or derived from endogenous and exogenous sources within
the human body, are considered as potential indicators of diseases due to their ability to
reflect changes in the body’s physiology and metabolism.33 Diverse biochemical processes
in the human body can alter under certain diseases or conditions, leading to the production
of specific VOCs or changes in the concentrations of VOCs. Consequently, the VOC
profile in exhaled breath holds valuable insights into an individual’s health status, thereby
potentially serving as non-invasive biomarkers for detecting, monitoring, and managing
various respiratory diseases.34 3°

Nitric oxide (NO) is a colorless and odorless gas that acts as a vital signaling molecule
in diverse physiological processes. Within the respiratory system, specialized cells in the
airways, including endothelial cells lining blood vessels and respiratory airway epithelial
cells, produce NO through cell type-specific NO synthase, which plays a pivotal role

in lung function regulation and modulation of vascular tone. In healthy lungs, NO
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orchestrates bronchodilation by relaxing smooth muscles encircling airways, facilitating
efficient airflow.36 Additionally, NO serves as a vasodilator, promoting blood vessel
dilation, enhancing oxygen delivery, and improving circulation in lung tissues.3’ Distinct
levels of exhaled NO have been observed in patients with IPF compared to healthy
individuals, with elevated levels associated with increased lung inflammation. Moreover,
elevation of exhaled NO levels correlates with advanced IPF stages and compromised
lung function,38 suggesting its potential as a non-invasive marker for monitoring disease
progression and treatment response. In addition to NO, distinct alkanes, alcohols, ketones,
and aromatic compounds have been associated with IPF pathogenesis, highlighting their
potential diagnostic relevance.39: 40

Several challenges must be overcome to fully harness the capabilities of breath biomarkers.
Establishing standardized procedures for breath sample collection and storage is imperative
to ensure consistency and comparability across diverse studies and research centers.
Developing sensitive, specific, and cost-effective analytical techniques for measuring breath
biomarkers is vital for broad clinical adoption. Interpreting intricate breath biomarker data
necessitates advanced statistical methods and bioinformatics tools to differentiate disease-
specific patterns from noise and confounding factors. In sum, comprehensive, large-scale,
multicenter validation studies are essential to establish the reliability and reproducibility of
breath biomarkers as diagnostic or prognostic tools.

Despite the challenges, the potential of breath biomarkers, including VOCs and NO, in IPF
diagnostics and personalized treatment is promising. If successfully validated and integrated
into clinical practice, breath biomarkers could offer a range of advantages. Development

of a non-invasive and repeatable means of assessing disease status and treatment response
like breath biomarkers could mitigate the need for invasive procedures. The ability to detect
disease-specific breath signatures at early IPF stages could facilitate timely interventions and
potentially improve patient outcomes. Additionally, these biomarkers might identify patient
subgroups with diverse disease phenotypes, enabling personalized treatment strategies
tailored to individual needs. Initial studies on using VOCs as biomarkers for lung diseases
found overlaps in markers across different diseases, making it hard to identify disease-
specific biomarkers. Recent research suggests that a unique combination of VOCs, or
“breath-print, ” might better characterize specific lung diseases. Advanced techniques are
now being used to differentiate patients with various lung diseases from healthy individuals
based on these VOC profiles.*1: 42 Furthermore, breath biomarkers could play a pivotal role
in assessing therapeutic effectiveness over time, enabling adjustments in treatment plans
when necessary [Table 2].

Biomarkers in BAL fluids and sputum

BAL obtains cellular and fluid specimens from the bronchi and alveoli of the lower
respiratory tract, providing a pivotal diagnostic modality. This method offers invaluable
insights into lung cellular makeup and inflammation, particularly relevant for diseases
such as IPF. Chronic and uncontrolled inflammation propels the progression of lung
fibrosis. Differential cell counts in BAL fluids serve as a useful tool to assess the
myriad immune cells participating in the inflammatory response. These counts include
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neutrophils, macrophages, lymphocytes, eosinophils, and epithelial cells; variations in their
proportions serve as markers of inflammation intensity and presence.*3 Clinical applications
of BAL cell differentials in IPF are diverse, ranging from serving as a diagnostic aid by
identifying abnormal cellular profiles to differentiating IPF from other lung diseases.**
Changes in the cellular composition of BAL fluids can signify disease progression or

gauge treatment effectiveness.3 Moreover, specific cellular patterns can predict treatment
responsiveness. These differentials are foundational for drug development targeting the
disease mechanisms.#>: 46 Concurrently, the levels of signaling molecules like cytokines and
chemokines, specifically interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (I1L-8), and
tumor necrosis factor-alpha (TNF-a), are also monitored in BAL fluids to provide crucial
data for ongoing inflammation and therapeutic responses.*’

IL-17 cytokines, particularly IL-17A and IL-17F, are known for their proinflammatory
effects and contribute to disease progression by stimulating fibrocyte proliferation from
bone marrow and affecting tissue remodeling. IL-17A plays a significant role in bleomycin
(BLM)-induced pulmonary fibrosis by promoting neutrophil recruitment, inducing
epithelial-mesenchymal transition (EMT), and encouraging fibroblast proliferation.
However, it also inhibits autophagy, hindering fibrosis resolution. Key sources of 1L-17A,
like T helper cell 17 (Th17) and 8T cells, exacerbate fibrotic lung diseases, while the
roles of other immune cells like type 3 innate lymphoid cells (ILC3s), IL-17-secreting CD8
T cells (Tc17s), and invariant natural Killer T (iNKT) cells in pulmonary fibrosis are also
explored, although they appear less impactful compared to other type-17 immune cells.
This highlights the intricate interplay between different cytokines and immune cells in the
development and progression of pulmonary fibrosis.*8: 49 Several studies have identified a
link between the IL-17 family of cytokines and pulmonary fibrosis. In a mouse model where
pulmonary fibrosis was induced using BLM, there was a significant increase in 1L-17 levels
in the lungs, thoracic lymph nodes, and BAL fluid.50-52

Growth factors such as transforming growth factor-beta (TGF-£) and connective tissue
growth factor (CTGF) play critical roles in fibrotic activities by activation of fibroblasts

and ECM production.?3 % Additionally, surfactant protein D (SP-D), synthesized mainly by
alveolar type Il epithelial cells, serves as a potential biomarker for diagnosis and prognosis
as its elevated levels in BAL fluids indicate lung damage and correlate with IPF severity.
The ECM, especially specific components like collagen fragments, offers invaluable insights
into ongoing fibrotic processes and can be an indicator of treatment efficacy and disease
progression.>®

IPF patients, similar to those with chronic obstructive pulmonary disease (COPD), show
increased sputum counts of neutrophils, eosinophils, macrophages, and epithelial cells
compared to healthy subjects. These differences in sputum and gene-expression profiles
between IPF, COPD, and healthy individuals highlight the diagnostic and prognostic
potentials of these biomarkers.>8 The miRNA content of sputum-derived exosomes in IPF
has been found to be a promising source for biomarkers useful in diagnosis and assessing
disease severity.>’
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The landscape of BAL biomarker research is dynamic, featuring advancements such as
miRNA profiling, enhanced proteomics, metabolomics, and the incorporation of machine
learning and artificial intelligence. These burgeoning technologies have the potential to
revolutionize IPF diagnosis and treatment. The clinical utility and reproducibility of

these emerging biomarkers require validation through large-scale studies. Interdisciplinary
collaborations among researchers, clinicians, and technologists are essential for realizing the
full potential of BAL biomarkers in IPF management [Table 3].

Imaging biomarkers

HRCT is the cornerstone for diagnosing IPF.58 It offers detailed imaging of the lung
parenchyma and allows for the identification of specific patterns, such as honeycombing and
reticular opacities, associated with IPF. Several HRCT scoring systems have been developed
to semiquantitatively evaluate the extent and severity of fibrosis. These include the Wells
Score, which assesses fibrosis on a scale of 0—4 based on the involvement of the lung; the
Goh Score, which focuses on the extent of honeycombing, reticular changes, and ground-
glass opacities; and the Composite Physiologic Index (CPI), which is a combination of
HRCT findings and pulmonary function tests.>® These HRCT scoring systems have shown
a strong correlation with clinical outcomes, including survival. However, the caveats include
the requirement of experienced radiologists for interpretation, time-consuming process, and
exposure of patients to radiation.

Quantitative HRCT aims to overcome the limitations of subjective scoring by employing
computer algorithms to analyze lung images.®° Techniques such as texture analysis evaluate
pixel distribution to quantify heterogeneity in lung tissues, while lung density measurements
utilize histograms to assess density changes in lung tissue. Quantitative HRCT analysis
provides an objective and reproducible measure of disease severity but requires sophisticated
software and expertise in image analysis.5!

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) offers metabolic
insights into pulmonary fibrosis by showing glucose uptake in active fibrotic regions. This
modality provides an idea of metabolic activity, which is often increased in fibrotic tissue,
and is helpful for differentiating IPF from other ILDs.%2: 63 However, it is expensive and not
widely available, and exposes patients to higher levels of radiation compared to HRCT.

Other imaging options include magnetic resonance imaging (MRI) and combined PET/CT.
MRI has shown promise in depicting pulmonary perfusion and inflammation but is less
effective for detailed anatomical study.54 Combining PET with CT improves anatomical
localization of metabolic changes but increases radiation exposure and cost.53 65

Challenges and future perspectives in the realm of imaging biomarkers include the lack

of standardization across different imaging modalities, ethical considerations regarding
radiation exposure, and the need for multidisciplinary expertise for interpretation.
Integration of artificial intelligence in image analysis could make evaluations more
standardized and accessible. Longitudinal studies are needed to validate the predictive value
of these imaging biomarkers for clinical outcomes.
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Gene-expression profiling and genomic biomarkers

Microarray analysis and RNA sequencing (RNA-seq) are robust tools employed for
transcriptomic profiling, which facilitate the quantitative assessment of gene-expression
levels in a given biological sample.®8 These methodologies offer critical insights

into the genes actively transcribed in specific tissues or cell types under particular
conditions.®” While microarray analysis uses DNA probes that hybridize with the sample’s
RNA to measure gene-expression levels of known genes, RNA-seq directly sequences
complementary DNA (cDNA) molecules, providing a more comprehensive and quantitative
view of the transcriptome, including the identification of novel transcripts and alternative
splicing events.58

Transcriptomic profiling has been a cornerstone in revealing gene-expression patterns
associated with IPF.69 Comparisons of gene-expression profiles from patients with IPF with
those from healthy individuals or those with other lung diseases have identified differentially
expressed genes that are characteristic of IPF.”0 The knowledge gained has provided
invaluable insights into the molecular mechanisms underlying IPF, highlighting dysregulated
genes involved in inflammation, fibrosis, ECM remodeling, and epithelial-mesenchymal
transition, among others. Such profiling has led to the identification of promising therapeutic
targets and biomarkers for IPF.71. 72

Recently developed single-cell sequencing and spatial transcriptomics offer a more nuanced
understanding of cellular heterogeneity within tissues. Single-cell sequencing allows for

the exploration of gene-expression profiles at the level of individual cells, offering crucial
information about distinct cell populations. This is particularly important for dissecting

the complex cellular landscape in tissues like the lungs.”3: 74 Spatial transcriptomics
integrates traditional tissue imaging with transcriptomic profiling, allowing for the spatial
localization of different cell types and associated gene-expression patterns within specific
tissue regions.”? Integrative analysis of data from various omics technologies, such as
genomics, transcriptomics, proteomics, and epigenomics provides a comprehensive view

of the molecular landscape in IPF, enabling identification of key molecular pathways and
interactions that contribute to the disease. Multi-omics integration can help associate genetic
variations with changes in gene expression, protein levels, and epigenetic modifications,
thereby enriching our understanding of functional networks and regulatory mechanisms
implicated in IPF pathogenesis.”®

The need for sophisticated bioinformatics tools and a substantial number of well-
characterized samples pose significant challenges for the development of genomic
biomarkers, particularly for rare diseases like IPF. Nevertheless, genomic biomarkers

offer promising avenues for the advancement of personalized medicine. Technological
advancements are likely to render genomic profiling increasingly feasible for routine clinical
application, both in terms of cost and accessibility. Integration of genomic data with clinical
parameters, imaging biomarkers, and traditional clinical measurements could pave the

way for personalized treatment plans, optimizing therapeutic outcomes for IPF patients.

The application of genomic biomarkers in clinical trials holds the potential to streamline
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patient selection, treatment monitoring, and adverse effect detection, thereby fostering more
efficient and targeted drug development processes.

Proteomic and metabolomic biomarkers

Mass spectrometry-based proteomics is an advanced analytical technique that enables

the identification and quantification of proteins within biological samples.”® This method
measures the mass-to-charge ratio of ions, delivering detailed data on the mass and
abundance of these peptides. The proteomics approach has proven exceptionally promising
in the realm of biomarker discovery and validation for IPF.”” By comparing proteomes from
IPF patients with those of healthy controls, distinctive protein biomarkers associated with
the disease have been identified. These biomarkers not only signal the presence, severity,
and progression of IPF, but they also illuminate the molecular pathways that are implicated
in its pathogenesis. Similar to gene-expression profiling analysis, proteomic data can be
amalgamated with data from other omics technologies, providing a multi-layered, molecular
understanding of IPF. Validation of these proteomic biomarkers in independent patient
cohorts is critical to confirm their clinical utility and reproducibility. Targeted proteomics
strategies such as selected reaction monitoring (SRM) or parallel reaction monitoring (PRM)
can be employed to quantify these candidate biomarkers with high specificity and sensitivity
in larger patient samples.”8

Metabolomics, the study of small molecules or metabolites resulting from cellular processes,
complements proteomic analysis. Lipidomics, a subfield of metabolomics, is dedicated

to the comprehensive scrutiny of lipids. In IPF, changes in metabolic profiles are often
induced by cellular stress, inflammation, and tissue remodeling. Both metabolomics and
lipidomics have revealed metabolic pathways that are disrupted in IPF.”%: 80 Detecting
altered levels of specific metabolites or lipids in biological samples could identify invaluable
biomarkers for the diagnasis, prognosis, and therapeutic response in IPF. The fusion of

data from proteomics, metabolomics, and genomics facilitates a systems biology analysis

of IPF. This integrative approach enables a more thorough comprehension of the intricate
molecular interactions and regulatory networks in the disease. For instance, by connecting
data on differentially expressed proteins with altered metabolite profiles, investigators can
correlate protein expression changes to subsequent metabolic disturbances in IPF.81: 82 The
inclusion of genomic data enriches this picture, adding a layer of understanding concerning
the genetic factors that may influence protein and metabolite levels.83 This comprehensive
understanding could lead to the discovery of new therapeutic targets and underpin the
development of precision medicine strategies for IPF.

Emerging biomarkers

Epigenetic modifications are heritable changes in gene expression that do not involve
alterations to the DNA sequence itself. These changes play a critical role in regulating

gene activity and can be influenced by environmental variables. Epigenetic alterations

are implicated in both the disease’s initiation and progression in IPF. Specifically, DNA
methylation, which involves the addition of methyl groups to cytosine residues in DNA, can
result in gene silencing. Abnormal patterns of DNA methylation have been observed in IPF,
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particularly affecting genes associated with fibrosis, inflammation, and EMT.84-87 Histone
modifications, which are chemical changes to histone proteins, can alter chromatin structure
and gene expression. These changes have been found to contribute to the dysregulation of
pro-fibrotic and inflammatory genes in IPF.88. 89 The exploration of epigenetic modification
as potential biomarkers holds promise for elucidating disease mechanisms and identifying
therapeutic targets.

Exosomes and other extracellular vesicles (EVs) are minute membrane-bound vesicles
secreted by cells. They encapsulate a diverse array of biomolecules, such as proteins, nucleic
acids, and lipids, thus reflecting the molecular composition of their originating cell. The
ability to isolate these vesicles from blood and other bodily fluids renders them attractive
candidates for non-invasive biomarker discovery.%%: 91 In IPF, circulating exosomes and EVs
display unique miRNA, messenger RNA (mRNA), and protein profiles linked with fibrosis
and inflammation.92 93 Analysis of the molecular cargo within these vesicles can offer
valuable insights into disease activity and progression.

Contrary to prior beliefs that the lung is a sterile environment, recent research has revealed
the existence of a lung microbiome. Changes in this microbiome have been associated with
IPF disease severity and progression.?* Metagenomic studies, which sequence the collective
genetic material from a sample of microorganisms, can help identify microbial signatures
related to IPF.95 Understanding the interactions between the lung microbiome and the host
offers new avenues for identifying potential biomarkers for disease monitoring.

Transition of biomarkers from bench to bedside

Biomarkers are critical tools for predicting the trajectory and mortality in IPF. Combined
with clinical assessments, biomarker data enable the development of predictive models for
estimating individual risks associated with disease progression and mortality.10

Blood-based biomarkers such as SP-D, KL-6, and MMPs are particularly noteworthy.
Elevated levels of SP-D and KL-6 have been linked with a worse prognosis, while increased
levels of MMPs indicate heightened fibrotic activity and accelerated disease progression.
Genetic variations, specifically mucin 5B (MUC5B) and telomerase reverse transcriptase
(TERT), have been identified as risk factors contributing to the onset and progression of

IPF. Imaging features (e.g., honeycombing and traction bronchiectasis) discerned through
HRCT also serve as predictors for adverse outcomes and mortality. Functional measures,
such as forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide
(DLCO), are other reliable biomarkers for tracking disease progression and survival®® [Table
4].

IPF is inherently heterogeneous, with patients experiencing varying rates of disease
progression and response to treatment. Biomarkers enable clinicians to identify progressive
phenotypes, which are crucial for tailoring disease management and therapeutic
interventions to individual needs.%” Biomarkers also assist in risk stratification and may
serve as early warning indicators for acute exacerbations, a serious and often deadly
complication of IPF. A multidimensional approach to risk stratification in IPF, which
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combines clinical assessments with imaging findings and multi-omics data, allows for

more accurate and personalized prognostication. Personalized risk profiles, informed by
this integrative approach, can guide whether more aggressive therapeutic approaches

are warranted or whether a more conservative treatment plan should be adopted.?8 By
synthesizing these various sources of information, a comprehensive, personalized, and data-
driven treatment plan can be formulated, enhancing the efficacy of treatment and the quality
of patient care in IPF.9°

Rigorous validation is essential for the transition of biomarkers from research to clinical
practice. The translation of biomarkers to clinical settings occurs in several phases: initial
exploratory studies identify potential biomarkers; validation studies assess the performance
and reproducibility of biomarkers in larger patient cohorts; clinical utility studies evaluate
the impact of biomarkers on patient management and treatment choices; and finally,
biomarkers must receive regulatory approval before being integrated into routine clinical
practice for the diagnosis, prognosis, and treatment of IPF.

Conclusion

At present, the diagnosis of IPF is heavily dependent on clinical evaluations and
radiographic observations, which often result in delayed diagnosis and initiation of
treatment.100 Over the past several years, considerable research efforts have been focused
on the identification and application of biomarkers for precise diagnosis, prognosis, and
management of IPF. Biomarkers offer the potential for improved diagnostic accuracy and
the ability to identify IPF in its early stages. This early detection facilitates timely medical
intervention, which could significantly enhance patient outcomes. Furthermore, biomarkers
exhibit potential in prognosticating the trajectory of the disease and mortality among IPF
patients. By evaluating the severity of the disease and recognizing progressive phenotypes,
biomarkers enable clinicians to customize treatment regimens for individual patients. This
tailored approach could optimize therapeutic strategies, monitor treatment responses, and
ultimately improve the quality of life for those afflicted with IPF.

Beyond their roles in diagnosis and prognosis, biomarkers offer invaluable insights into the
intricate pathogenic mechanisms underlying IPF. Factors such as inflammation, immune
system dysregulation, fibroblast activation, and dysregulation of stem cell-mediated lung
regeneration are critical contributors to the development and progression of IPF. Biomarkers
serve as pivotal tools in decoding these complex processes, thereby creating pathways for
the development of targeted therapies and innovative treatment modalities.

Despite the considerable advancements in biomarker research, certain challenges remain.
The standardization and reproducibility of biomarker assays are vital for ensuring consistent
and dependable results across varied research endeavors and clinical settings. Moreover, it
is essential to validate the clinical utility and relevance of these biomarkers through studies
involving large and diverse patient cohorts. To overcome the challenges of standardization
and reproducibility in biomarker research for clinical applications, it is essential to establish
rigorous standardization protocols for biomarker assays, including uniform procedures for
sample collection, processing, and analysis. Utilizing advanced analytical techniques and
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technologies can improve accuracy and sensitivity in biomarker detection. A comprehensive
analysis of biomarkers from multiple tissue specimens using various technologies and

a multidimensional approach integrating genomics, proteomics, and metabolomics will
provide a more robust understanding. Validating these biomarkers in large and diverse
patient cohorts is crucial to assessing their clinical utility. Collaborative efforts between
academic, clinical, and industry partners, along with adherence to regulatory guidelines, are
imperative to ensure the generalizability and applicability of biomarkers in clinical settings,
thereby enhancing patient outcomes in conditions like IPF.

Looking to the future, the role of biomarkers in IPF management is highly

promising. Emerging technologies in genomic profiling, single-cell sequencing, and spatial
transcriptomics are expected to further our understanding of the disease and lead to the
discovery of new biomarkers. Integrating multiple biomarkers with clinical data could
revolutionize risk stratification and treatment decision-making, marking a significant stride
toward personalized medicine for IPF patients.

In summary, biomarkers are becoming indispensable in managing IPF. Their transformative
impact on diagnosis, prognosis, and personalized treatment strategies is undeniable. As
research continues to evolve, biomarkers are poised to become a routine aspect of IPF
management, improving patient outcomes and offering hope to those affected by this
challenging lung disease.

This work was supported in part by NIH grants HL139584 and HL156973.
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