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Epigenetic alterations to Polycomb 
targets precede malignant 
transition in a mouse model of 
breast cancer
Ying Cai1, Jhih-Rong Lin1, Quanwei Zhang1, Kelly O’Brien1, Cristina Montagna1,2 &  
Zhengdong D. Zhang1

Malignant breast cancer remains a major health threat to women of all ages worldwide and epigenetic 
variations on DNA methylation have been widely reported in cancers of different types. We profiled 
DNA methylation with ERRBS (Enhanced Reduced Representation Bisulfite Sequencing) across four 
main stages of tumor progression in the MMTV-PyMT mouse model (hyperplasia, adenoma/mammary 
intraepithelial neoplasia, early carcinoma and late carcinoma), during which malignant transition 
occurs. We identified a large number of differentially methylated cytosines (DMCs) in tumors relative to 
age-matched normal mammary glands from FVB mice. Despite similarities, the methylation differences 
of the premalignant stages were distinct from the malignant ones. Many differentially methylated 
loci were preserved from the first to the last stage throughout tumor progression. Genes affected by 
methylation gains were enriched in Polycomb repressive complex 2 (PRC2) targets, which may present 
biomarkers for early diagnosis and targets for treatment.

DNA methylation is one of the epigenetic marks that regulate gene expression1. Alterations in DNA methylation 
are commonly observed in various cancer types2–5 and a well-known signature of the cancer genome is global 
hypomethylation accompanied by promoter hypermethylation of some tumor suppressor genes6–11. Some genes 
in tumors showed distinct hypomethylation compared to normal cells10 and cancer progenitor cells with such 
DNA methylation alterations may help to predict cancer risks11. Global hypomethylation has been proposed 
as a mechanism driving chromosomal instability and elevated mutation rates12,13 and hypermethylation caused 
gene suppression, such as HAND2, is suggested to contribute to cancer development14; hence DNA methylation 
abnormalities have been considered to play a causal role in tumorigenesis15.

Despite extensive profiling of gene expression and DNA methylation changes in breast cancer, not much is 
known about the dynamics of DNA methylation during cancer progression. It is almost impossible to monitor 
tumor progression by following the same patients, a task that can be easily fulfilled by using mouse models with 
almost identical genetic backgrounds. A better understanding of DNA methylation dynamics in breast carcino-
genesis is not only vital to explain transcriptional deregulation of gene expression during tumor progression, but 
also adds to the understanding of tumor class and subtypes16,17 and prognosis18. Abnormal DNA methylation has 
been reported in breast carcinoma with subtype specific patterns19. In particular, the more aggressive luminal B 
subtype shows higher DNA methylation when compared with other subtypes and normal tissues19,20; and reduced 
gene expression correspondingly20.

Human breast cancer begins with premalignant atypical ductal hyperplasia (ADH), moves to the ductal car-
cinoma in situ (DCIS), and progresses to invasive ductal carcinoma (IDC)21,22. Despite extensive evidences sug-
gesting that ADH and DCIS are precursors of IDC, DNA methylation biomarkers identified at the early stages 
of breast cancer are limited. This represents a significant gap of knowledge in the field since such biomarkers 
may explain the biological basis of tumor progression and helps to predict outcomes. A recent study analyzing 
DCIS and IBC (invasive breast carcinoma) samples identified only 18 CpG loci associated with survival and 
prognosis of breast cancer patients18. Another study using FEA (flat epithelial atypia), ADH, DCIS, and IDC 
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found increased number of genes with elevated promoter methylation during the progression23. Although it has 
been discovered that normal tissue adjacent to breast cancer already exhibited numerous DNA methylation alter-
ations24, how those alterations change during progression is not well defined yet. Thus, it is apparent that early 
DNA methylation changes are relevant to breast carcinogenesis but their characterization is lacking. It is critical 
to comprehensively examine DNA methylation during the early stages of breast cancer progression.

The MMTV-PyMT transgenic mouse is an ideal model to study tumor progression because primary tumors 
evolve from pre-malignancy to an invasive malignant tumor through four stereotypical stages of progression 
(hyperplasia, adenoma/mammary intraepithelial neoplasia (MIN), early carcinoma and late carcinoma). Breast 
tumors in the PyMT mouse share both morphological and transcriptional similarities with human breast tum-
ors25, and generally cluster with the human luminal B subtype26,27. Previous cytogenetic profiling also showed 
similarity of breast tumor from PyMT mice to human breast carcinoma on the level of chromosomal structural 
and numerical abnormalities28,29.

For the first time, we report the dynamics of DNA methylation deregulation from early hyperplasia to late 
carcinoma across the four main stages of breast tumor progression. We performed ERRBS (Enhanced Reduced 
Representation Bisulfite Sequencing), which quantitatively measures DNA methylation at the base-pair resolu-
tion and increases coverage on CpG sites relative to RRBS3. We observed, as expected, a global hypomethylation 
and a shift towards hypermethylation as the tumors progressed. We found genes with promoter hypermethylation 
enriched in Polycomb repressive complex 2 (PRC2) targets throughout tumor progression. These shed lights on 
the mechanisms of abnormal DNA methylation, using the PyMT mouse model of breast cancer progression.

Results
DNA methylation profiles of the PyMT mouse model unveil DNA methylation changes precede 
malignant transition.  We first profiled DNA methylation alterations in hyperplasia, adenoma/MIN, early 
carcinoma and late carcinoma samples from the PyMT mice and normal tissues from FVB controls with principal 
component analysis (PCA). After removing two outlier samples, the PyMT samples clearly separated from the 
FVB controls, as shown in Fig. 1. In addition, the tumor samples separate across their temporal stages, whereas 
the controls remain within one cluster. This pattern is consistent with the PCA results from gene expression pro-
files of this mouse model as we reported previously30. Only biological covariates but not technical ones contribute 
to PCs (Supplementary Fig. S1), suggesting the variance observed here was not due to batch effect but was of 
biological meanings.

As tumors progressed from hyperplasia to late carcinoma, the number of DMCs (methylation differ-
ence ≥10% and q-value < 0.01, Methods) increased for both hyper- and hypo-methylation, but hypometh-
ylated loci were consistently more frequent (Table 1 and Fig. 2A). Interestingly, we observed a shift toward 
hypermethylation by roughly 3% (30.0% in hyperplasia to 33.1% in late carcinoma, DMC-hypermethylation 

Figure 1.  Principal component analysis of DNA methylation profiles of both PyMT and FVB control samples. 
Samples were taken at four time points: weeks 6, 8, 10, and 12 – shown as w6, w8, w10, and w12 – correspond to 
hyperplasia, adenoma/MIN, early carcinoma and late carcinoma in PyMT mice.

Stage Hypomethylation Hypermethylation Total

Hyperplasia 70,323 30,187 100,510

Adenoma/MIN 79,147 34,900 114,047

Early carcinoma 97,436 48,665 146,101

Late carcinoma 100,148 49,570 149,718

Table 1.  Total DMCs.
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percentage + DMC-hypomethylation percentage = 1) (Fig. 2A). The late stages (early carcinoma and late carci-
noma) were similar on methylation patterns yet distinct from early stages (Fig. 2B).

To investigate impact of DNA methylation on gene expression and the possible gene affected, we mapped 
DMCs to the cis-regulatory elements of promoters (±2 kb to RefSeq TSS) and enhancers (if the DMCs overlapped 
with predicted enhancer regions, Methods). Consistent with the high preservation of DMCs between neighbor-
ing stages and among all stages (Fig. 2C,D), we found that gene promoters overlapping with these DMCs were 
largely the same (Fig. 2E,F). These observations provide evidence that DNA methylation changes at late stages 
can be traced back to early lesions. Interestingly, using curated gene lists from MSigDB (Molecular Signatures 
Database) and GSEA (gene set enrichment analysis)31, we found an enrichment of PRC2 targets (FDR < 0.05) 
among the 374 genes with promoter hyper-DMCs unique to late carcinoma stage (Barhl2, Cacna1e, Cntfr, Col4a6, 

Figure 2.  DMCs at different stages of tumor progression. (A) Numbers of DMCs. Counts and percentages 
are connected by solid and dashed lines, hypermethylation and hypomethylation are represented by red and 
blue lines; w6, w8, w10, w12 as week 6, week 8, week 10 and 12, corresponding to hyperplasia, adenoma/MIN, 
early carcinoma and late carcinoma. (B) DMCs (methylation difference ≥25% and q-value < 0.01) methylation 
difference distribution at four time stages. (C,D) Intersections of DMCs. (E,F) Intersections of genes whose 
promoter contain DMCs. H = hyperplasia, A = adenoma/MIN, EC = early carcinoma, LC = late carcinoma.
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Dkk2, Dok6, Elmod1, Fezf2, Fli1, Fzd10, Gabra2, Gdf7, Gria2, Gsc, Hlx, Hoxb7, Hoxb8, Hoxc12, Hoxd13, Hrk, 
Isl1, Lhx8, Neurod1, Nkx2-1, Nkx2-2, Nkx3-2, Nkx6-2, Otop3, Pdx1, Ripk3, Sctr, Tal1 and Wt1) and among the 
840 genes with promoter hyper-DMCs common to all four stages (including Alx3, Cited1, Comp, Coro6, Crlf1, 
Csmd1, Cyp26c1, Dgki, Dll4, Duoxa1, Eomes, Esam, Gdnf, Hes7, Hhex, Hhip, Hmx2, Hoxc5, Hoxc6, Hsf4, Il1rapl2, 
Lrfn5, Ltk, Mab21l1, Nfix, Nkx2-8, Nrg1, Otx1, Pax7, Podn, Ptgdr, Rasl10a, Sidt1, Slc10a4, Slc1a2, Sox7, Tbr1, 
Tcea3, Tmem59l, Tmem88, Tp73, Ucn and Ush1g). The former are potential biomarkers that distinguish late car-
cinoma from early stages and the latter can be potential biomarkers for early cancer detection. The distributions 
of CpGs captured and DMCs mapped to genomic compartments were similar across different stages. About 
10% of all CpGs captured and about 26% (26% at hyperplasia, 23% at late carcinoma) of DMCs were mapped to 
putative enhancers (Supplementary Fig. S2A), suggesting DMCs were enriched in enhancers (permutation test 
p-value < 0.05, Supplementary Fig. S2B, Methods). About 14% of DMCs and 28% of hypermethylated DMCs 
were mapped to promoters (Supplementary Fig. S2C), suggesting hypermethylation is biased toward promoters 
(permutation test p-value < 0.05, Supplementary Fig. S2D). Not many hypomethylated DMCs (and DMCs over-
all) were detected in the promoter regions, possibly due to their low methylation in general.

We then analyzed the pathway enrichment among genes linked to promoters and enhancers with hyper-
methylated DMCs (Fig. 3A,B), assuming nearest genes within 10 kb of an enhancer as its targets. Genes with 
hypermethylated DMCs in promoters were enriched in targets of PRC2, EED, and SUZ12 (Fig. 3A, FDR < 0.05). 
Putative targets of hypermethylated enhancers were also enriched in PRC2 targets (Fig. 3B, FDR < 0.05). We fur-
ther observed a significant reduced expression of such PRC2 target genes with promoter hyper-DMCs comparing 
to all PRC2 targets in all four stages (Fig. 3C, Wilcoxon-test p-value < 0.05). In addition, three core components 
of PRC2 (EZH2, EED and SUZ12) all exhibited higher mRNA expression in PyMT samples than in controls 
(Fig. 3D). Two core components of PRC2 (EHZ2 and EED) are E2F targets and we observed higher expression of 
E2Fs in the PyMT mice as well (Fig. 3E).

To further study how gene expression is affected by DNA methylation in each cancer developmental 
stage, we analyzed together genes with promoter DMCs identified in this study and differentially expressed 
genes (FDR < 0.05) that we identified earlier in our study of mRNA expression of this PyMT mouse model30. 
Comparing PyMT samples from the four stages with age-matched normal tissues from controls, we identified 
101, 109, 159, and 198 genes, respectively, with both hypomethylated DMCs in promoter and increased gene 
expression and 131, 152, 216 and 249 genes with both hypermethylated DMCs in promoter and reduced gene 
expression. Down-regulated genes with promoter hypermethylation were enriched with genes involved in epi-
thelial mesenchymal transition (EMT) in week 10 (FDR < 0.05, Tagln, Sgcb, Col4a2, Wipf1, Tpm2, Igfbp3, Mest, 
Col1a1, Tpm1, Mmp14, Fstl1, Fap, Plod1) and week 12 (FDR < 0.05, Htra1, Mest, Slit3, Timp3, Tagln, Col4a1, Sgcb, 
Dpysl3, Tpm2, Col1a1, Wnt5a, Col1a2, Emp3, Fap, Nid2, Fstl1, Tpm1). Text mining of PubMed literature with an 
R package RISmed revealed that most of them are with unclear roles in breast cancer except for Igfbp3, Mmp14, 
Fap, Timp3 and Wnt5a.

Time-course analysis of DMRs reveals increasing methylation differences as tumor progress.  
Since a dense region of differentially methylated loci may also have a regulatory impact on TF binding and gene 
expression, we identified differentially methylated regions (DMRs) – i.e., dense regions of DMCs – using an R 
package eDMR (with default settings, DMR mean methylation difference ≥20%)32. DMRs from various stages 
have a similar length distribution (median = ~185 bp) and the numbers of DMRs increased as tumor progressed 
(Table 2). To study chronological changes of DNA methylation, we analyzed the union of DMRs identified in the 
four stages (as long as a region was identified as DMR in one stage, we included that region). Unsupervised hierar-
chical clustering on the union of DMRs revealed three groups (Fig. 4A): groups 1 (1,447) with hypermethylation, 
group 2 (1,050) with hypomethylation and group 3 (1,790) without significant methylation differences (methyla-
tion difference <20%) at the premalignant stages but with a moderate level of hypomethylation at the malignant 
stages. Then we applied GREAT (Genomic Regions Enrichment of Annotations Tool)33 to associate DMRs with 
genes and test for enrichment. Because hypermethylation is often associated with cis-regulatory regions, we are 
more interested in Group 1. Angiogenesis was one of the significantly enriched terms in Group 1 (Fig. 4B).

Genes in Group 1 were enriched in disease ontology terms related to cancer, carcinoma, and neoplasm of 
breast (Fig. 4C). This suggests the DMRs identified here are of biological significance in breast cancer. We also 
confirmed the enrichment of PRC2 targets (FDR < 0.05) in this group. In Group 1, we found 30 regions con-
nected to 24 genes in PANTHER angiogenesis pathway (Fzd1, Angpt2, Wnt5a, Vegfa, Dok3, Grap, Fzd5, Pik3r2, 
Arhgap8, Wnt7b, Shc1, Notch2, Grb7, Fzd2, Rhoc, Axin2, Pxn, Grb2, Plcg2, Dll4, Pik3c2b, Ephb2, Hras1, and 
Prkcz), including some Fzd genes. We found a hypermethylated DMR in the gene body of Fzd5 (TSS + 2,655 bp) 
and overexpression of Fzd5 in PyMT mice. Fzd genes encode Frizzled class receptors, which initiate Wnt sign-
aling cascade when activated. The COSMIC (Catalogue of Somatic Mutations in Cancer)34 database reported 
overexpression of Fzd5 in 475 TCGA cancer samples. Previous studies also observed hypermethylation in the 
gene bodies of Fzd1, Fzd2, Fzd7, and Fzd10 in pancreatic adenocarcinoma35.

In addition, our DNA methylation profiles showed a clear transition from the premalignant to the malig-
nant invasive stages (Fig. 2A,B). To further investigate DNA methylation changes in the malignant transition, 
we compared all premalignant PyMT samples (weeks 6 and 8) with all malignant samples (weeks 10 and 12) and 
mapped DMCs (methylation difference ≥10% and q-value < 0.01) identified to gene promoters. To minimize 
effects due to mammary gland development, we filtered out genes that were also identified by a similar compari-
son using control samples. We found 496 and 943 genes with promoter hypomethylation and hypermethylation, 
respectively, at the malignant stages compared with early lesions. Those 943 genes were enriched in PRC2 targets 
(Fig. 5A). The results are consistent with DMC and DMR analysis that genes with increased methylation during 
cancer progression were enriched in PRC2 targets.
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Co-methylation network analysis.  In addition to the differential methylation analyses, we built and 
explored the co-methylation gene network to investigate gene functions at a higher systems level. We discovered 
31 modules, including a module that was highly preserved between PyMT samples and controls as measured by 
the z-summary score (colored in pink in Fig. 4D) and also showed increased methylation (Wilcoxon test, adjusted 
p-value < 0.05) in PyMT samples. After mapping DMCs in this module to gene promoters, we discovered an 

Figure 3.  PRC2 targets enrichment and expression. (A) Gene set enrichment analysis with GSEA on genes 
with promoter hypermethylation. The top 10 terms with most significant FDR at each stage were plotted. 
H = hyperplasia, A = adenoma/MIN, EC = early carcinoma, LC = late carcinoma. Color represents –
log10(FDR), dot size represents the number of genes overlapping each term. (B) Gene set enrichment analysis 
with GSEA on hypermethylated enhancer target genes. (C) Log transformed gene expression of PRC2 targets 
with promoter hypermethylation (at week 12) compared with all PRC2 targets and all genes. (***Wilcoxon-test 
p-value < 0.05) (D) Log transformed gene expression of EZH2, EED and SUZ12. (E) Log transformed gene 
expression of E2Fs. P = PyMT, C = controls, 1–3 represent 3 biological replicates.

Stage Hypomethylation Hypermethylation Total

Hyperplasia 1,447 471 1,918

Adenoma/MIN 1,410 594 2,004

Early carcinoma 2,054 1,004 3,058

Late carcinoma 2,221 1,156 3,377

Table 2.  Total DMRs.



www.nature.com/scientificreports/

6SCiENtifiC REPOrTs |  (2018) 8:5535  | DOI:10.1038/s41598-018-24005-x

enrichment of SUZ12, EED and PRC2 targets (FDR < 0.05) among genes in this module. Moreover, we identified 
genes – e.g., Ajap1 and its network neighbors – with strong co-methylation connections in this module (Fig. 4E). 
Interestingly, the putative tumor suppressor AJAP1 has been suggested to be epigenetically silenced by DNA 
methylation in many glioblastoma36 and its reduced expression might be associated with patients’ better survival 
outcome37.

Figure 4.  Clusters and enrichment of DMRs. (A) Hierarchical clustering of all DMRs detected during cancer 
progression. Color represents mean methylation differences between PyMT samples and controls. Dashed 
black lines represent 0 values, solid lines are mean values of methylation difference. (B) PANTHER pathway 
enrichment of Group 1. (C) Disease ontology enrichment of Group 1. H = hyperplasia, A = adenoma/MIN, 
EC = early carcinoma, LC = late carcinoma. (D) Preservation z-summary scores for all moduels detected. (E) 
Some hub genes of the pink module, visualized with VisANT88.
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TCGA breast invasive carcinoma samples exhibit DNA methylation dysregulation in PRC2 tar-
gets.  To translate our findings from the PyMT mice to human, we studied TCGA breast carcinoma data of 
gene expression (RNA-sequencing) and DNA methylation (HumanMethylation450 BeadChip). After subtyping 
all human breast cancer cases into molecular types using the AIMS method38, we end up with 269 luminal A, 189 
luminal B, 111 HER2-enriched, and 142 basal-like samples. We used the bump-hunting method implemented 
in the R package minfi to identify DMRs (methylation difference ≥25% and FDR < 0.01 or 0.05) by comparing 
tumor samples with normal mammary gland controls in each subtype. We then carried out enrichment analysis 
on genes with hypo- or hyper-methylated promoter in the luminal B subtype, which is most closely recapitulated 
by the PyMT mice26,27. Genes with promoter hypermethylated DMRs were enriched in PRC2 targets (Fig. 5B). 
There were 313 PCR2 targets and their expression was significantly reduced when compared with all PRC2 targets 
(Supplementary Fig. S3A, Wilcoxon-test p-value < 0.05). The enrichment of PRC2 target genes was a common 
signature for other subtypes: we found 271, 206 and 43 PRC2 targets with promoter hypermethylation in lumi-
nal A, HER2-enriched and basal-like subtypes, with a significant overlap among these genes (Supplementary 
Fig. S3B).

To narrow down the candidate gene list, we used 12 PRC2 target genes overlapped between 60 PRC2 targets 
(DMR methylation difference ≥40% and FDR < 0.01) and 130 PRC2 targets with significantly reduced expres-
sion (FDR < 0.05) as a gene panel to test if they can predict metastasis risk in human patients. We applied the 
gene list to Gene Expression-Based Outcome for Breast Cancer (GOBO)39 and found there was a significant 
difference on distant metastasis-free survival (DMFS) between patients with high and low expression of those 
genes (Supplementary Fig. S3C). This suggests potential biological importance of DNA methylation mediated 
gene silencing in breast cancer. Because many PRC2 targets function in cell differentiation/differentiation, we 
further explored six such genes (SLIT2, PDGFRA, GATA6, TAL1, FLI1, KLF4) among the 12 genes; only KLF4 is 
known to be involved in breast cancer based on text mining. They also presented prognostic value in breast cancer 
patients (Supplementary Fig. S3D), hence can be potential novel biomarkers that worth further investigation.

Discussion
We observed, for the first time, a global dysregulation of DNA methylation during malignant breast cancer pro-
gression in the MMTV-PyMT mouse model. In addition to a global hypomethylation and possible preservation 
of DMCs, we observed an increase of both DMCs number and degree of methylation difference during tumor 
development. Such shift accompanied the malignant transition, with a slight overall shift towards hypermethyla-
tion. PRC2 target genes were the primary targets of this epigenetic field defects, these findings may contribute to 
explain the regulatory mechanisms underlying in breast cancer of PyMT mice and humans.

Based on the status of hormone receptors such as estrogen receptor (ER), progesterone receptor (PR), and 
human epidermal growth factor receptor-2 (HER2), breast cancers can be largely clustered into five subtypes: 
luminal A, luminal B (represented by the PyMT mouse model), HER2-enriched, basal-like, and normal-like40. 
The breast cancer hormone receptor status could be connection to DNA methylation41,42. Thus, in addition to 
these hormone receptors, DNA methylation also exhibit subtype-specific patterns, which has been shown in 
studies of cell lines, tissue samples, and TCGA data. For example, Park et al. reported distinct promoter CpG 
island methylation among breast cancer subtypes at 12 loci related to tumor progression, including APC, DLEC1, 
GRIN2B, GSTP1, HOXA1, MT1G, RARB, RASSF1A, RUNX3, SCGB3A1, SFRP1, and TMEFF243. Dedeurwaerder 
et al. profiled DNA methylation in 248 breast tissues and characterized new breast cancer subtypes associated 
with T lymphocyte infiltration beyond the widely-used cancer classification based on gene expression profiles44. 

Figure 5.  GSEA gene set enrichment. (A) Genes with promoter hypermethylation during malignant transition 
enriched in PRC2 targets. (B) Genes with promoter hypermethylation (DMR methylation difference ≥40% and 
q-value < 0.05) in luminal B TCGA samples enriched in PRC2 targets.
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In the initial TCGA BRCA study, epigenetic changes in more than 800 breast tumors were detected19. Hierarchical 
clustering of methylation values of all samples revealed several groups corresponding to intrinsic subtypes, with 
one group showing hypermethylation significantly enriched for luminal B subtype samples and with low fre-
quency of PIK3CA, MAP3K1 and MAP2K4 mutations. Some 490 genes, enriched in Wnt signaling, exhibited 
both DNA hypermethylation and reduced expression.

The higher methylation in luminal B samples has been also observed previously. In one study45, DNA meth-
ylation difference among luminal A, luminal B and basal-like subtype was readily observed in 189 breast tumor 
samples with basal-like ones being least frequently methylated. In particular, targets of PRC2 (Polycomb repres-
sive complex) showed higher methylation in luminal B samples. In another17, 15 CpG loci were found differ-
entially methylated among various subtypes and novel epigenotypes that distinguish basal-like tumors from 
HER2-overexpressing tumors. In a more recent study46, the unsupervised clustering of 188 breast tumor samples 
revealed seven DNA methylation epigenetic subgroups as epitypes. Only hypermethylation patterns in luminal 
subtypes might play roles in tumor progression but not that in basal-like subtype. In addition, studies of breast 
cancer cell lines have also identified distinct methylation patterns on CpG island shores among subtypes as well 
as hypomethylation in the basal-like B subtype47,48.

The study by Fang et al.49 has established foundations of epigenetic changes in the metastatic process of breast 
caner and showed that breast cancer can be characterized by B-CIMP (breast CpG isalnd methylator phenotype). 
The aforementioned study as well showed elevated methylation levels and frequencies in some gene promoters 
as well as a gradual increase in the number of methylated genes from normal mammary tissue to FEA, ADH 
and DCIS23. Here we report a global dysregulation of DNA methylation starting as early as the hyperplasia stage. 
Moreover, our previous analysis showed that genes such as Dnmt1 implicated in DNA methylation were differ-
entially expressed between PyMT samples and controls30. Although no significant DNA methylation changes 
was found in DNMTs and TETs genes, which are all key players in DNA methylation process, we observed an 
increased expression of DNMT3B in late carcinoma stage (log2 fold change is 1.28, FDR = 0.02) from a previous 
study of mRNA expression in this mouse model30. Together all provided strong evidence for interplay between 
dysregulation of DNA methylation and abnormal gene expression in tumorigenesis of breast cancer.

We also observed a similar enrichment of PRC2 targets among genes with promoter hypermethylation in 
the PyMT mice as well as in human breast cancer. This is very much in consistent with the findings in normal 
tissue adjacent to breast cancer exhibiting DNA methylation alterations, which are also associated with PRC2 
targets24. Previously, cancer specific promoter DNA hypermethylation acossicated with Polycomb targets was 
observed50–52. In our study, we extended the observations to early stage lesions. It has been found that DNA meth-
ylation affects Polycomb target genes prior to cervical neoplastic transformation, and such risk can be predicted53. 
Recently, another study also found genes with promoter methylation alterations starting in early stage of cervical 
intraepithelial neoplasia were enriched in PRC2 targets54.

We hypothesized that there is a regulatory cascade from E2Fs to PRC2-mediated gene silencing, which con-
nected our findings from both expression profiles and DNA methylation profiles. Two core components of PRC2 
– EED and EZH2 – are targets of E2Fs55,56. Together with the E2Fs, they showed increased mRNA expression 
in PyMT samples. As discussed before, we also found elevated expression of Dnmt1, which is an E2F target as 
well55,57. The elevated E2Fs levels may result in increased expression of DNMT1, EED and EZH2, leading to 
reduced expression of PRC2 targets.

SUZ12, EED, and EZH2 are three core components of PRC2. EZH2 catalyzes histone H3 trimethylation of 
lysine 27 (H3K27me3), leading to transcriptional repression. EZH2 and SUZ12 are known to initiate tumorigen-
esis, and are overexpressed in various human cancers58–60. Increased expression of EED and EZH2 was detected in 
human breast cancer lymph node metastases61. Overexpression of EZH2 was as well reported in prostate cancer 
and is suggested to be involved in tumor progression62. It is also considered a marker of tumor aggressiveness 
in breast cancer63. Increased expression of PRC2 core subunits may promote malignant progression through 
EMT (epithelial–mesenchymal transition) by repressing E-cadherin64–66. The results of EZH2 high activation 
seem to be context specific: the molecule can transcriptionally silence DNA-damage repair genes, pRB tumor 
suppressor and lineage specification genes, all leading to cancer as a common consequence67. Many PRC2 targets 
are involved in differentiation, and the fact that EZH2 suppresses expression of some lineage specification genes 
suggests that EZH2 may promote transformation by repressing differentiation67. In our study, we also observed 
reduced expression of some PRC2 targets fuctioning in differentiation in PyMT mice.

It is known that DNA methylation and H3K27me3 are both involved in epigenetic gene silencing. In gen-
eral, H3K27me3 and DNA methylation are mutually exclusive at CpG islands68, but the two repressive marks 
are more likely to co-occur at CpG islands and TSS of silenced genes in cancer69. Although the relationship 
between PRC2-mediated gene silencing and DNA methylation remains elusive, it seems to be more than a dual 
repression. In one study, epigenetic repression occurs first through gain of H3K27me3 and then through gain 
of DNA methylation70. In another study with mouse embryonic stem cells (ESCs), PRC2 is required for DNA 
methylation at some genes, while DNA methylation represses H3K27me3 placement globally71. Although EZH2 
may recruit DNMTs72, it is suggested that the recruitment of DNMT3A to specific sites by EZH2 alone may not be 
sufficient for de novo DNA methylation73. Multiple factors, such as transcription factors and histone modification 
are involved in recruiting PRC2 to targeted genomic regions74. Studies also suggested that the long non-coding 
RNA (lncRNA) HOTAIR interacts with PRC2 and is required to target its occupancy75. In breast cancer, HOTAIR 
showed increased expression in primary tumors as well as metastases76. In addition to lncRNA, another type of 
non-coding RNAs: microRNA, also contribute to breast cancer progression in this PyMT mice as sugguested by 
our previous study77. Taken together, there seems be a synergy of epigentic regulation and gene expression in the 
PyMT mouse model of breast cancer.

Although our current findings need further validation and more studies to understand the functional links 
between E2Fs-(PRC2/DNMTs)-PRC2 targets repression, it is important to point out that EZH2 and DNMT1 
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are targeted by multiple drugs (EZH2: EI1, EPZ-6438, GSK126; DNMT1: PROCAINAMIDE, IFOSFAMIDE, 
DECITABINE, CISPLATINUM) according to DGIdb (Drug-Gene interaction database)78. The elevated expres-
sion of both genes may warrant a combinatory use for breast cancer early treatment and metastasis prevention. 
The findings from this study help to improve our understanding of the molecular mechanisms of breast cancer 
progression in the MMTV-PyMT mouse model as well as in humans. Combining it with our previous mRNA 
study, we found that gene expression and DNA methylation changes precede tumor malignant transition in this 
mouse model. New breast cancer candidate genes discovered in both studies warrant further investigation and 
may serve as cancer biomarkers for prognosis.

Methods
Animals and tissue collection.  This study was approved by the Institutional Animal Care and Use 
Committee (IACUC) of Albert Einstein College of Medicine. All procedures involving mice were conducted in 
accordance with the National Institutes of Health guidelines concerning the use and care of experimental animals. 
Male PyMT mice (FVB/N-Tg (MMTV-PyVT) 634Mul/J mice, Stock Number: 002374, the Jackson Laboratory) 
were randomly bred with homozygous FVB females to obtain F1 female mice (PyMT mice hereafter). They were 
heterozygous for the PyMT transgene, they developed breast cancer spontaneously and were used as cases. Age 
matched homozygous FVB females were used as controls.

We selected four time points, corresponding to the main stages of tumor progression: most PyMT mice 
develop hyperplasia at week 6, adenoma/MIN at week 8, early carcinoma at week 10, and late carcinoma with lung 
metastasis at week 1225. At each time point, three PyMT mice and three age-matched controls were sacrificed, 
bulk mammary tumors and normal mammary glands were collected, snap froze and stored at −80 °C until use. 
The histological changes undergoing in the PyMT samples dissected for DNA methylation analysis was evaluated 
by a pathologist after H&E staining. Typical features of the tumor developmental stage based on the mouse age 
were observed (see our previous paper30 for details. Samples used for RNA-sequencing and ERRBS were not nec-
essarily from the same tumor piece.)

Enhanced Reduced Representation Bisulphite Sequencing (ERRBS).  Total genomic DNA was 
extracted from the snap frozen samples using a phenol-chloroform method79. DNA samples passing Nanodrop 
quality control were used for ERRBS following the standard protocol3,80.

Data preprocessing and detection of differential methylation.  Raw reads passing Illumina’s purity 
filter were preprocessed by an ERRBS pipeline80, which uses Bismark81 to align reads to the mm10 reference 
genome. All statistical analysis were carried out by R v3.2.182. After assessing samples quality with reads coverage, 
methylation percentage, and principal component analysis, we removed two outliers from the dataset.

Using the methylKit R package83 we analyzed DMCs. We first retained in the analysis reads with ≥10 coverage 
and captured, on average, ~1.4 million confident loci. For each locus, we then calculated a methylation score as 
percentage of methylation (number of methylated cytosines/(number of methylated cytosines + unmethylated 
cytosines)) and got the methylation difference between PyMT samples and age-matched FVB control samples. 
We mapped DMCs (methylation difference ≥10% and q-value < 0.01) to genes, using annotation from the UCSC 
genome browser (https://genome.ucsc.edu). Promoters are defined as RefSeq transcription start site (TSS) ±2 kb. 
Biological pathways and gene sets enrichment were performed using GSEA31. Predicted mouse enhancer regions 
were obtained from a study using the mouse ENCODE data84; enhancer prediction was based on ChIP-seq data 
of multiple tissues and cell types84. Data originally mapped to mm9 was lifted over to mm10 using the R package 
rtracklayer. Permutation tests were used to demonstrate the significance of DMCs enrichment. For permutation 
tests, we randomly sampled n loci of interest (for example, number of DMCs), and count how many mapped to 
annotation X (for example, enhancers); the process was repeated 1,000 times to generate an empirical distribution 
of overlap counts and determine a p-value.

Co-methylation network analysis.  We adopted methods from the WGCNA (weighted gene co-expression  
network analysis)85 to study gene co-methylation network. We first retained significant DMCs (q-value < 0.01) 
from previous step. Next, for computational efficiency, we further restricted to DMCs in promoter regions 2 kb 
upstream to TSS. We focused on upstream promoter because the GETx eQTL study86 showed an upstream bias 
(more eQTLs located upstream of TSS), suggesting upstream TSS regions possibly have greater influence on 
expression. After these two steps, over 21k CpG loci remained and were used to construct a signed co-methylaiton 
network using an adjacency matrix based on Pearson’s correlation coefficient on every pair of CpG loci. Modules 
were identified using a “dynamic tree cut” method87. Preservation of module connectivity patterns between 
cases and controls were gauged by a z-summary statistic. Modules with high preservation showed significant 
difference on module eigengene (first principal component of a module) between PyMT samples and controls 
(Wilcoxon-test adjusted p-value < 0.05), meaning methylation values varied in the two groups.

Bisulphite MassArray verification assays.  We performed Bisulfite MassArray to verify our ERRBS 
results using samples from carcinoma stage. We bisulfite-converted DNA using the Zymo EZ-Methylation-Gold 
Kit. Primers were designed to span loci with high, intermediate and low levels of methylation (Supplementary 
Table S3). We performed MassArray (EpiTyper) and proved a high correlation between MassArray and ERRBS 
results (Supplementary Fig. S4).

Availability of Data.  The PyMT ERRBS data is available in the Gene Expression Omnibus (GEO) database 
as GSE83623.

https://genome.ucsc.edu


www.nature.com/scientificreports/

1 0SCiENtifiC REPOrTs |  (2018) 8:5535  | DOI:10.1038/s41598-018-24005-x

Declarations and Ethics Approval.  This study of cancer in mice was approved by the Institutional Animal 
Care and Use Committee (IACUC) of Albert Einstein College of Medicine. All procedures involving mice were 
conducted in accordance with the National Institutes of Health guidelines concerning the use and care of exper-
imental animals.

References
	 1.	 Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484–92 (2012).
	 2.	 Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45, 1127–1133 (2013).
	 3.	 Akalin, A. et al. Base-Pair Resolution DNA Methylation Sequencing Reveals Profoundly Divergent Epigenetic Landscapes in Acute 

Myeloid Leukemia. Plos Genetics 8 (2012).
	 4.	 Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–13 (2002).
	 5.	 Baylin, S. B. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1), S4–11 (2005).
	 6.	 Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 

11, 726–34 (2011).
	 7.	 Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–92 (2007).
	 8.	 Hon, G. C. et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast 

cancer. Genome Res 22, 246–58 (2012).
	 9.	 Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 1, 239–59 (2009).
	10.	 Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. 

Nature 301, 89–92 (1983).
	11.	 Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 7, 21–33 (2006).
	12.	 Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. 

Science 300, 455 (2003).
	13.	 Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. 

Nature 395, 89–93 (1998).
	14.	 Jones, A. et al. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med 10, 

e1001551 (2013).
	15.	 Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–92 (2003).
	16.	 Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30, e21 

(2002).
	17.	 Bediaga, N. G. et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12, R77 (2010).
	18.	 Fleischer, T. et al. Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact 

on gene transcription and prognosis. Genome Biol 15, 435 (2014).
	19.	 Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
	20.	 Gao, Y. et al. The integrative epigenomic-transcriptomic landscape of ER positive breast cancer. Clin Epigenetics 7, 126 (2015).
	21.	 Ma, X. J. et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100, 5974–9 (2003).
	22.	 Allred, D. C., Mohsin, S. K. & Fuqua, S. A. Histological and biological evolution of human premalignant breast disease. Endocr Relat 

Cancer 8, 47–61 (2001).
	23.	 Park, S. Y. et al. Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458, 73–84 (2011).
	24.	 Teschendorff, A. E. et al. DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat 

Commun 7, 10478 (2016).
	25.	 Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable 

model for human diseases. American Journal of Pathology 163, 2113–2126 (2003).
	26.	 Pfefferle, A. D. et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype 

counterparts. Genome Biology 14 (2013).
	27.	 Herschkowitz, J. I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and 

human breast tumors. Genome Biology 8 (2007).
	28.	 Acosta, D. et al. DNA methylation changes in murine breast adenocarcinomas allow the identification of candidate genes for human 

breast carcinogenesis. Mamm Genome 22, 249–59 (2011).
	29.	 Ried, T. et al. Molecular cytogenetics of mouse models of breast cancer. Breast Dis 19, 59–67 (2004).
	30.	 Cai, Y. et al. Transcriptomic dynamics of breast cancer progression in the MMTV-PyMT mouse model. BMC Genomics 18, 185 

(2017).
	31.	 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. 

Proc Natl Acad Sci USA 102, 15545–50 (2005).
	32.	 Li, S. et al. An optimized algorithm for detecting and annotating regional differential methylation. BMC Bioinformatics 14(Suppl 5), 

S10 (2013).
	33.	 McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28, 495–501 (2010).
	34.	 Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43, D805–11 

(2015).
	35.	 Vincent, A. et al. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic 

adenocarcinoma. Clin Cancer Res 17, 4341–54 (2011).
	36.	 Lin, N. et al. Deletion or epigenetic silencing of AJAP1 on 1p36 in glioblastoma. Mol Cancer Res 10, 208–17 (2012).
	37.	 Cogdell, D. et al. Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased 

AJAP1 expression and shorter survival in patients with glioma. Chin J Cancer 30, 247–53 (2011).
	38.	 Paquet, E. R. & Hallett, M. T. Absolute assignment of breast cancer intrinsic molecular subtype. J Natl Cancer Inst 107, 357 (2015).
	39.	 Ringner, M., Fredlund, E., Hakkinen, J., Borg, A. & Staaf, J. GOBO: gene expression-based outcome for breast cancer online. PLoS 

One 6, e17911 (2011).
	40.	 Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 295, 2492–502 (2006).
	41.	 Ottaviano, Y. L. et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human 

breast cancer cells. Cancer Res 54, 2552–5 (1994).
	42.	 Fackler, M. J. et al. Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of 

recurrence. Cancer Res 71, 6195–207 (2011).
	43.	 Park, S. Y. et al. Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell 

phenotypes. Mod Pathol 25, 185–96 (2012).
	44.	 Dedeurwaerder, S. et al. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 

3, 726–41 (2011).
	45.	 Holm, K. et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 

12, R36 (2010).
	46.	 Holm, K. et al. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to 

chromatin states in normal mammary cells. Breast Cancer Res 18, 27 (2016).



www.nature.com/scientificreports/

1 1SCiENtifiC REPOrTs |  (2018) 8:5535  | DOI:10.1038/s41598-018-24005-x

	47.	 Rhee, J. K. et al. Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast 
cancer. Nucleic Acids Res 41, 8464–74 (2013).

	48.	 Chae, H., Lee, S., Nephew, K. P. & Kim, S. Subtype-specific CpG island shore methylation and mutation patterns in 30 breast cancer 
cell lines. BMC Syst Biol 10, 116 (2016).

	49.	 Fang, F. et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 3, 75ra25 (2011).
	50.	 Gal-Yam, E. N. et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell 

line. Proc Natl Acad Sci USA 105, 12979–84 (2008).
	51.	 Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat 

Genet 39, 232–6 (2007).
	52.	 Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat Genet 39, 157–8 (2007).
	53.	 Teschendorff, A. E. et al. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological 

transformation. Genome Med 4, 24 (2012).
	54.	 Wijetunga, N. A. et al. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma. Oncotarget 7, 

62133–62143 (2016).
	55.	 Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes 

Dev 15, 267–85 (2001).
	56.	 Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo j 22, 

5323–35 (2003).
	57.	 McCabe, M. T., Davis, J. N. & Day, M. L. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 65, 3624–32 

(2005).
	58.	 Jene-Sanz, A. et al. Expression of polycomb targets predicts breast cancer prognosis. Mol Cell Biol 33, 3951–61 (2013).
	59.	 Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6, 846–56 (2006).
	60.	 Sauvageau, M. & Sauvageau, G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 

7, 299–313 (2010).
	61.	 Yu, H. et al. PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and 

correlates with tumor proliferation in situ. PLoS One 7, e51239 (2012).
	62.	 Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–9 (2002).
	63.	 Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc 

Natl Acad Sci USA 100, 11606–11 (2003).
	64.	 Cao, Q. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–84 (2008).
	65.	 Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28, 

4772–81 (2008).
	66.	 Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19, 1438–49 (2013).
	67.	 Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat Med 22, 128–34 (2016).
	68.	 Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA 

methylation cross-talk. Genome Res 22, 1128–38 (2012).
	69.	 Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status 

of histone-modified DNA. Genome Res 22, 1120–7 (2012).
	70.	 Tellez, C. S. et al. EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early 

manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71, 3087–97 (2011).
	71.	 Hagarman, J. A., Motley, M. P., Kristjansdottir, K. & Soloway, P. D. Coordinate regulation of DNA methylation and H3K27me3 in 

mouse embryonic stem cells. PLoS One 8, e53880 (2013).
	72.	 Viré, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2005).
	73.	 Rush, M. et al. Targeting of EZH2 to a defined genomic site is sufficient for recruitment of Dnmt3a but not de novo DNA methylation. 

Epigenetics 4, 404–14 (2009).
	74.	 van Kruijsbergen, I., Hontelez, S. & Veenstra, G. J. Recruiting polycomb to chromatin. Int J Biochem Cell Biol 67, 177–87 (2015).
	75.	 Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 

1311–23 (2007).
	76.	 Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–6 

(2010).
	77.	 Nogales-Cadenas, R. et al. MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice. 

Breast Cancer Res 18, 75 (2016).
	78.	 Griffith, M. et al. DGIdb: mining the druggable genome. Nat Methods 10, 1209–10 (2013).
	79.	 Garcia, A. M. et al. Detection and analysis of somatic mutations at a lacZ reporter locus in higher organisms: application to Mus 

musculus and Drosophila melanogaster. Methods Mol Biol 371, 267–87 (2007).
	80.	 Garrett-Bakelman, F.E. et al. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair 

resolution. J Vis Exp e52246 (2015).
	81.	 Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 

1571–2 (2011).
	82.	 Team, R.C. R: A Language and Environment for Statistical Computing (2014).
	83.	 Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13, 

R87 (2012).
	84.	 Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–64 (2014).
	85.	 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. Bmc Bioinformatics 9 (2008).
	86.	 Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in 

humans. Science 348, 648–60 (2015).
	87.	 Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. 

Bioinformatics 24, 719–720 (2008).
	88.	 Hu, Z., Snitkin, E. S. & DeLisi, C. VisANT: an integrative framework for networks in systems biology. Brief Bioinform 9, 317–25 

(2008).

Acknowledgements
This work was supported by NIH grants R00 LM009770 from National Library of Medicine and R01 HG008153 
from the National Human Genome Research Institute to Z.D.Z. We thank our colleagues at Albert Einstein 
College of Medicine – Drs John Greally, Jan Vijg, Yousin Suh, and Deyou Zheng – for their expert advice. We 
also thank the Einstein Center for Epigenomics, the Epigenomics Shared Facility, the Histotechnology and 
Comparative Pathology Facility (supported by the Albert Einstein Cancer Center Support Grant from the 
National Institutes of Health under award number P30 CA013330), the Genomics Shared Facility and the 
Computational Epigenomics Group for technical support.



www.nature.com/scientificreports/

1 2SCiENtifiC REPOrTs |  (2018) 8:5535  | DOI:10.1038/s41598-018-24005-x

Author Contributions
Z.D.Z. conceived and designed this study. Y.C. carried out the analyses and performed some experiments. Y.C. 
and Z.D.Z. wrote the manuscript. K.B. performed animal experiments and sample preparation. J.R.L., Q.Z., and 
C.M. provided useful input for the analyses and helped edit the manuscript. All authors read and approved the 
final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24005-x.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-24005-x
http://creativecommons.org/licenses/by/4.0/

	Epigenetic alterations to Polycomb targets precede malignant transition in a mouse model of breast cancer

	Results

	DNA methylation profiles of the PyMT mouse model unveil DNA methylation changes precede malignant transition. 
	Time-course analysis of DMRs reveals increasing methylation differences as tumor progress. 
	Co-methylation network analysis. 
	TCGA breast invasive carcinoma samples exhibit DNA methylation dysregulation in PRC2 targets. 

	Discussion

	Methods

	Animals and tissue collection. 
	Enhanced Reduced Representation Bisulphite Sequencing (ERRBS). 
	Data preprocessing and detection of differential methylation. 
	Co-methylation network analysis. 
	Bisulphite MassArray verification assays. 
	Availability of Data. 
	Declarations and Ethics Approval. 

	Acknowledgements

	Figure 1 Principal component analysis of DNA methylation profiles of both PyMT and FVB control samples.
	Figure 2 DMCs at different stages of tumor progression.
	Figure 3 PRC2 targets enrichment and expression.
	Figure 4 Clusters and enrichment of DMRs.
	Figure 5 GSEA gene set enrichment.
	Table 1 Total DMCs.
	Table 2 Total DMRs.




