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Background: Cellular senescence, a novel hallmark of cancer, is associated with patient outcomes and 
tumor immunotherapy. However, at present, there is no systematic study on the use of cellular senescence-
related long non-coding RNAs (CSR-lncRNAs) to predict survival in patients with osteosarcoma. In 
this study, we aimed to identify a CSR-lncRNAs signature and to evaluate its potential use as a survival 
prognostic marker and predictive tool for immune response of osteosarcoma.
Methods: We downloaded a cohort of patients with osteosarcoma from The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) databases. We performed differential expression and co-expression 
analyses to identify CSR-lncRNAs. We performed univariate and multivariate Cox regression analyses along 
with the random forest algorithm to identify lncRNAs significantly correlated with senescence. Subsequently, 
we assessed the predictive models using survival curves, receiver operating characteristic curves, nomograms, 
C-index, and decision curve analysis. Based on this model, patients with osteosarcoma were divided into 
two groups according to their risk scores. Then, using Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes analyses, we compared their clinical characteristics to uncover functional differences. We 
further conducted immune infiltration analyses using estimation of stromal and immune cells in malignant 
tumor tissues using expression data (ESTIMATE), cell-type identification by estimating relative subsets of 
rna transcripts (CIBERSORT), and single-sample gene set enrichment analysis for the two groups. We also 
evaluated the expression of the target genes of immune checkpoint inhibitors (ICIs).
Results: We identified six lncRNAs that were significantly correlated with senescence and accordingly 
established a novel cellular senescence-related lncRNA prognostic signature incorporating these lncRNAs. 
The nomogram indicated that the risk model was an independent prognostic factor that could predict the 
survival of patients with osteosarcoma. This model demonstrated high accuracy upon validation. Further 
analysis revealed that patients with osteosarcoma in the low-risk group exhibited better clinical outcomes and 
enhanced immune infiltration.
Conclusions: The six-CSR-lncRNA prognostic signature effectively predicted survival outcomes and 
patients in the low-risk group might have improved immune infiltration.
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Introduction

Background

Osteosarcoma is one of the most prevalent primary 
malignant bone tumors, characterized by its malignancy 
and invasiveness with an incidence rate of 2–4 cases/million, 
accounting for 20% of primary malignant bone tumors in 
both younger and older individuals (1). Younger patients, 
specifically those aged between 10 and 14 years, within 
Asian and African populations, as well as adults exceeding 
65 years of age in European and American populations, 
are particularly susceptible to severe health risks associated 
with osteosarcoma (2). Although treatment modalities, such 
as surgical intervention (3,4), chemotherapy, radiotherapy, 
and immunotherapy (5), have shown promise clinically, 
their efficacy remains uncertain. Over time, relentless 
research efforts have managed to boost the 5-year survival 
rates of patients affected by osteosarcoma to approximately 
60–65% (6). However, a quarter to a third of these patients 
experience recurrence or metastasis, emphasizing the 
pressing need for innovative treatments (7). Therefore, 
understanding the intricate mechanisms underlying 
osteosarcoma and identifying novel biomarkers and 
therapeutic options are essential for refining osteosarcoma 
management.

The concept of cellular senescence was first proposed in 
the 1960s by Hayflick and Moorhead who described this 
phenomenon within the context of restricted replication of 
primary human fibroblasts under laboratory conditions (8). 

Today, this irreversible halt in the cell cycle is recognized 
as a hallmark of aging, with potential implications for 
accelerating the aging process in organisms (9). Notably, 
although this cellular arrest could inhibit the growth of 
potentially cancerous cells, it could simultaneously activate 
immune mechanisms to thwart tumor development 
through a process known as the senescence-associated 
secretory phenotype, which involves the release of several 
immune-modulating substances (10). However, owing to 
the dual nature of senescent cells, they can also create an 
immunosuppressive environment, inadvertently promoting 
cancer growth (11). Given the prevalence of cell senescence 
in the context of osteosarcoma, it is pivotal to identify 
senescence-related signatures with prognostic value for 
patients with osteosarcoma (12,13).

Long non-coding RNAs (lncRNAs), RNA sequences 
exceeding 200 nucleotides without protein-coding 
attributes, have attracted attention for their multifaceted 
biological roles (14). LncRNAs, particularly those exceeding 
1,000 nucleotides, exhibit evolutionary conservation, 
highlighting their importance in diverse cellular processes. 
These activities range from regulating the cell cycle to 
immune responses and maintaining embryonic stem cell 
properties (15). Aberrant lncRNA expression is linked to a 
spectrum of diseases, including cancer (16,17). For instance, 
certain lncRNAs influence the dynamics of liver and breast 
cancers (18,19).

Rationale and knowledge gap

Despite recent scientific endeavors utilizing lncRNAs to 
establish diagnostic and prognostic models for numerous 
cancers, osteosarcoma remains relatively uncharted (20).

Objective

We aimed to address this issue by harnessing the potential 
of these unique RNA molecules to construct a predictive 
model, offering insights into clinical outcomes, navigating 
the genetic complexity of such patients, and contributing 
to the discovery of markers associated with prognosis, 
particularly those related to survival, in osteosarcoma.

In this study, we collected data from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases, identified key cellular senescence-related 
long non-coding RNAs (CSR-lncRNAs) relevant for 
diagnosis, and constructed a CSR-lncRNA-risk signature 
that accurately discriminated patients with osteosarcoma 

Highlight box

Key findings 
• This study established a prognostic model consisting of six cellular 

senescence-related long non-coding RNAs (CSR-lncRNAs) and 
uncovered potential markers associated with immune infiltration in 
osteosarcoma.  

What is known and what is new?  
• While recent research has leveraged lncRNAs to develop 

diagnostic and prognostic models for numerous cancers, the field 
of osteosarcoma remains relatively unexplored.

• In this study the prediction model of six-CSR-lncRNA is 
important for accurately identifying independent prognostic factors 
in patients with osteosarcoma and for individualized treatment.

What is the implication, and what should change now? 
• The identified CSR-lncRNA signature may be prognostic 

biomarkers for osteosarcoma. In addition, it could be employed by 
clinicians to estimate prognosis and immune therapeutic response. 



Wu et al. CSR-lncRNA prognostic signature in osteosarcoma3744

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3742-3759 | https://dx.doi.org/10.21037/tcr-24-163

from controls. Subsequently, we used CIBERSORT for 
the first time to analyze the differences in the immune 
microenvironment between patients with osteosarcoma and 
controls. Finally, we examined the correlation between the 
diagnostic markers and infiltrating immune cells to explore 
the molecular mechanisms involved in osteosarcoma 
development. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-163/rc).

Methods

Data acquisition and extraction 

From the UCSC Xena database (https://xena.ucsc.edu/), 
we acquired the expression profile data of the osteosarcoma 
GDC TARGET-osteosarcoma dataset, including HTSeq-
Counts (n=88) and HTSeq-FPKM formats (n=88). All 
the samples in the TARGET-osteosarcoma dataset were 
derived from Homo sapiens. Subsequently, we collected the 
clinical details of patients with osteosarcoma. After filtering 
out incomplete clinical records, we included 84 patients 
with osteosarcoma, including 63 without metastasis and 
21 with metastasis. We also assessed another gene dataset, 
GSE21257, from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) and included all expression profile data 
samples from the dataset GSE21257 in subsequent analyses. 
This dataset included the records of 19 patients without 
metastases and 34 patients with metastases. We compiled 
a list of 3,597 CSR genes (CSRGs) from the GeneCards 
Database (https://www.genecards.org/) and articles from the 
Pubmed Database (https://pubmed.ncbi.nlm.nih.gov/). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of CSR-lncRNAs in osteosarcoma 

Using the limma package, we identified genes with 
differential expression between metastatic and non-
metastatic samples based on specific criteria [P<0.05, false 
discovery rate (FDR) <0.05, and |log2FC| >0]. By cross-
referencing these genes to CSRGs, we identified the CSR 
differentially expressed genes (CSRDEGs). 

We then applied Pearson’s correlation analysis using 
the Hmisc R package (21) to detect CSR-lncRNAs from 
CSRDEGs and lncRNAs with a cutoff value of |Coef| >0.3 

and P<0.05.

Construction and validation of the prognostic signature for 
CSR-lncRNAs 

We performed univariate Cox regression analysis to obtain 
potential prognostic CSR-lncRNAs with a threshold of 
R<0.05 in the R package survival. Furthermore, to screen 
promising osteosarcoma-associated lncRNAs, we used the 
randomForestSRC R package (22) to filter these CSR-
lncRNAs with ntree =1,500 and nsplit =10 and obtained 
the important lncRNAs (relative importance >0.3 or 
importance >0.015). We then used multivariate Cox analysis 
(stepwise model) to determine which CSR-lncRNAs would 
be included in the model (P<0.05). The risk score was 
calculated as follows: 

( ) ( )
1

n
k k

k
Risk score coef lncRNA expr lncRNA

=

 = × ∑  [1]

where coef (lncRNAn) represents the coefficient of the 
lncRNAs that correlated with survival and expr (lncRNAn) 
denotes lncRNA expression. Based on median scores, 84 
patients in the TARGET-osteosarcoma dataset were divided 
into two groups, namely low- or high-risk.

To compare the overall survival between the high- and 
low-risk groups in the training, validation, and the entire 
sets, Kaplan-Meier survival analysis was performed using 
the R packages survminer and survival (23). 

Receiver operating characteristic (ROC) curves were 
constructed and the area under the curve (AUC) was 
calculated. Additionally, we categorized the clinical data of 
patients with osteosarcoma to refine our lncRNA prognostic 
model. 

Establishment and validation of the nomogram

We performed univariate and multivariate Cox regression 
analyses to determine the independence of risk score as a 
prognostic factor for osteosarcoma. We analyzed factors 
including age, sex, primary site, distant metastasis, and 
risk scores. To predict the 1-, 3-, and 5-year survival 
probabilities, we established a nomogram integrating 
the risk score and clinicopathological factors using the R 
package rms (24) and the nomogram formula (25). We then 
evaluated the nomogram model using ROC, calibration 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-163/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-163/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://pubmed.ncbi.nlm.nih.gov/
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curve, and decision curve analysis (26).

Principal component and related functional enrichment 
analyses

We performed principal component analysis (PCA) (27) 
to assess the distribution of high- and low-risk patients 
based on the different datasets. To discern biological 
annotations and pathway differences between these risk 
groups, we conducted Geno Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genome (KEGG) analyses 
of the differentially expressed genes (DEGs) using the 
clusterProfiler, enrichplot, and GOplot R packages (P<0.05).

Immune infiltration analysis

We employed the ESTIMATE method to gauge the 
tumor microenvironment characteristics of patients 
with osteosarcoma using the R package estimate (28). 
CIBERSORT algorithm provided insights into the immune 
cell composition of each patient with osteosarcoma. The 
sum of fractions of the 22 immune cell types in each sample 
was 1 (29). The single-sample gene set enrichment analysis 
(ssGSEA) method offers a perspective on the infiltration 
levels of 28 immune cell types using the R package gene 
set variation analysis (GSVA) (30,31). We also assessed the 
variations in immune checkpoint-related gene expression 
between the groups using R studio software.

Statistical analysis

Data manipulations and statistical evaluations were 
conducted using R software (version 4.3.0). We examined 
the mRNA-lncRNA relationships linked to cell senescence 
via Pearson’s correlation. We used Kaplan-Meier curves to 
visualize survival trends, as well as ROC analysis to evaluate 
the reliability of our prognostic risk scores. Immune-related 
evaluations were performed using the Wilcoxon test. All P 
values presented in this study were two-sided, and statistical 
significance was set at P≤0.05.

Results

Identification of CSR-lncRNAs

The methodology is illustrated in Figure 1. We sourced 88 
osteosarcoma samples from the UCSC Xena database and 
53 from the GEO database. From the GeneCards Database 

and previous publications in the PubMed Database, we 
identified 3,597 CSRGs (available online: https://cdn.
amegroups.cn/static/public/tcr-24-163-1.pdf). Using the 
R package limma, we identified 738 and 4,387 DEGs by 
comparing non-metastatic and metastatic osteosarcoma 
samples (Figure 2A,2B) based on specific criteria (|log2FC| 
>0, FDR <0.05, and P<0.05). We then identified 94 
common DEGs (Figure 2C) and 11 CSRGs (Figure 2D). 
Moreover, using heatmaps, we highlighted the differential 
expression of these 11 genes in the TARGET-osteosarcoma 
and GSE21257 datasets (Figure 2E,2F). We derived 1,262 
CSR-lncRNAs through co-expression analysis using the R 
package Hmisc (available online: https://cdn.amegroups.cn/
static/public/tcr-24-163-2.pdf). The results were visualized 
using a Sankey diagram (Figure 3).

Construction of the CSR-lncRNA prognostic model

From the UCSC Xena database, we utilized 84 osteosarcoma 
samples (out of 88) with complete clinical data. Univariate 
Cox regression analysis revealed 131 lncRNAs significantly 
linked to osteosarcoma (available online: https://cdn.
amegroups.cn/static/public/tcr-24-163-3.pdf); these 
lncRNAs were visualized using Cytoscape software  
(Figure 4A). In the interactive protein-protein interaction 
network, the node size corresponds to its degree, with larger 
and deeper colored nodes indicating higher values. To 
minimize overfitting, we employed the “randomForestSRC” 
package. As shown in Figure 4B, the out-of-bag (OOB) 
error rate stabilized with trees >500. We used the variable 
importance (VIMP) algorithm to determine the significance 
of variables (Figure 4C). Based on specific criteria (relative 
importance >0.3 or importance >0.015), we selected 
pivotal genes for the multivariate Cox regression model 
(Table S1). The optimal prognostic model comprised six 
lncRNAs, namely ELFN1-AS1, CYP2U1-AS1, AL162274.1, 
LINC02328, AP000785.1, and VPS9D1-AS1, which were 
deemed the best candidates for constructing a prognostic 
model (Table 1). Among the six CSR-lncRNAs, the risk 
factors of LINC02328 and VPS9D1-AS1 exhibited a hazard 
ratio (HR) less than 1, whereas the remaining lncRNAs had 
an HR exceeding 1. The risk scores were calculated using 
the following formula:

1.5786 . 1.7503
3.4881 . 0.6993 9 -

0.7672 - 3.0007 -Risk score
AL162274 1 LINC02328
AP000785 1 VPS D1 AS1

ELFN1 AS1 CYP2U1 AS1= +

+ × − ×

+ × − ×

× ×

 [2]

https://cdn.amegroups.cn/static/public/tcr-24-163-1.pdf
https://cdn.amegroups.cn/static/public/tcr-24-163-1.pdf
https://cdn.amegroups.cn/static/public/tcr-24-163-2.pdf
https://cdn.amegroups.cn/static/public/tcr-24-163-2.pdf
https://cdn.amegroups.cn/static/public/tcr-24-163-3.pdf
https://cdn.amegroups.cn/static/public/tcr-24-163-3.pdf
https://cdn.amegroups.cn/static/public/TCR-24-163-Supplementary.pdf
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Verification of the prognostic model

We divided the entire cohort into training and validation 
subsets for subgroup analysis. Across the three distinct 
cohorts, the low-risk group displayed superior survival 
outcomes (Figure S1A-S1C). Heatmaps depicted the 

expression of model CSR-lncRNAs for both risk groups 
(Figure S1D). Cross-validation confirmed the independence 
of the cohorts (Table 2).

We further stratified the clinical data to evaluate the 
prognostic model. Kaplan-Meier survival curves based 

Target-OS (mRNA)
(metastases =21,

unmetastases =63)

GSE21257
(metastases =34,

unmetastases =19)

Differential expression analysis

Common DEGs (n=94)

CSRDEGs (n=11)

Correlation analysis identified cellular 
senescence-associated

lncRNAs (n=1,262)

Univariate COX analysis (n=133)

Random forest algorithm (n=13)

Multivariate COX analysis (n=6)

Construction of the prognostic model

Prognostic KM curve,
risk curve analysis

Independent prognostic,
nomogram analysis

PCA, GO 
and KEGG

Immune infiltration 
and analysis

ESTIMATE, CIBERSORT,
ssGSEA

Immune-related 
functions

Immune 
checkpoints 

Cellular senescence 
related genes (n=3,597)

Figure 1 Flow chart of the study. OS, osteosarcoma; DEGs, differentially expressed genes; CSRDEGs, cellular senescence-related 
differentially expressed genes; lncRNAs, long non-coding RNAs; KM, Kaplan-Meier; PCA, principal component analysis; GO, Geno 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genome; ESTIMATE, estimation of stromal and immune cells in malignant tumor 
tissues using expression data; CIBERSORT, cell-type identification by estimating relative subsets of rna transcripts; ssGSEA, single-sample 
gene set enrichment analysis.

https://cdn.amegroups.cn/static/public/TCR-24-163-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-163-Supplementary.pdf
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Figure 2 Identification of cellular senescence-associated genes. (A,B) Volcano plot illustrates differentially expressed cellular senescence 
genes between metastatic osteosarcoma and non-metastatic samples in two distinct datasets. (C) Venn diagram shows 94 common DEGs 
between the two datasets. (D) Venn diagram shows 11 CSRDEGs by intersection of common DEGs and the senescence-related gene list. 
(E,F) Heatmap presents the expression pattern of 11 CSRDEGs in metastatic and non-metastatic groups. DEGs, differentially expressed 
genes; CSRDEGs, cellular senescence-related differentially expressed genes.
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Figure 3 Sankey diagram of 11 CSRDEGs and 1,262 lncRNA by using Pearson’s correlation analysis. lncRNA, long non-coding RNA; 
CSRDEGs, cellular senescence-related differentially expressed genes.

on various factors, such as sex (male: P<0.001; female: 
P<0.001), age (age ≥15: P<0.001; age <15: P<0.001), 
metastasis (metastasis: P=0.005; non-metastasis: P=0.001), 
and tumor primary sites (legs: P<0.001; other: P=0.29), are 
presented in Figure S2. 

Independent prognostic and nomogram analysis

We employed Cox regressions to assess the clinical 
characteristics of the entire cohort. Both uni-Cox (Figure 5A)  
and multi-Cox regressions (Figure 5B) revealed risk scores 
with hazard ratios (HRs) of 1.045 and 1.056, respectively. 
These significant findings (P<0.001) confirmed the accuracy 
and validity of the CSR-lncRNA prognostic model in 
predicting overall survival. Figure 5C further demonstrates 
that the risk score for the CSR-lncRNA prognostic 
signature had an area under the curve (AUC) of 0.893, 
surpassing that for age (AUC =0.456), sex (AUC =0.467), 
and primary site (AUC =0.462), and was similar to that 
metastasis (AUC =0.905). Subsequently, we generated a 
nomogram for the 1-, 3-, and 5-year overall survival based 
on this model (Figure 5D). Calibration curves (Figure 5E) 
indicated that the nomogram exhibited a reliable predictive 
performance. Using decision curve analysis, we compared 
the prognostic signatures of the CSR-lncRNAs to those 
of other clinicopathological features, revealing that this 
nomogram exhibited the highest risk threshold (Figure 5F).

Principal component and enrichment analyses of risk 
subgroups

We performed three-dimensional (3D) PCA visualization 
based on the six lncRNAs in CSR-lncRNAs prognostic 
signatures (CSLPS) to highlight distinct distributions 
between the high- and low-risk groups (Figure 6A). 
The Scree Plot revealed six favorable factors in our risk 
signature, corresponding to the six CSR-lncRNAs used to 
construct the model (Figure 6B). Moreover, we employed 
GO and KEGG to investigate the potential biological 
functions in both risk groups. Figure 6C shows the top 
10 enriched terms for biological processes (BPs), cellular 
components (CCs), and molecular functions (MFs) in the 
GO enrichment analysis. Notably, the primary enriched 
terms in BP were activation and regulation of the immune 
response, whereas vacuolar and lysosomal membranes 
were enriched in CC. Additionally, actin binding and actin 
filament binding were the enriched terms in MF. Figure 6D 
emphasizes the significance of specific pathways, such as the 
regulation of the actin cytoskeleton and PI3k-Akt signaling 
pathway, in both risk groups.

Immune-related multiomics analysis

To explore the correlation between our established CSR-
lncRNA prognostic signature and the immune landscape, we 

https://cdn.amegroups.cn/static/public/TCR-24-163-Supplementary.pdf
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Figure 4 Screening of the related CSRDEGs. (A) Network diagram of 11 CSRDEGs and 133 CSR-lncRNAs by univariate Cox regression 
analysis. Inner ring represents 11 CSRDEGs and outside circle represents lncRNAs. (B) The left graph shows the variation of error rate 
with the number of trees. (C) The right graph shows the ranking of genes according to the importance of the VIMP algorithm, where 
blue represents favorable to the correct judgment of the endings and red represents unfavorable. CSRDEGs, cellular senescence-related 
differentially expressed genes; CSR-lncRNAs, cellular senescence-related long non-coding RNAs; VIMP, variable importance.

first explored the differences in the tumor microenvironment 
between the high- and low-risk groups. ESTIMATE analysis 
indicated that the high-risk group exhibited lower stromal, 
immune, and overall ESTIMATE scores (Figure S3A-S3C),  
whereas the low-risk group exhibited higher tumor purity 
(Figure S3D). Correlation analysis conducted between 
various scores and the CSRDEG prognostic model risk score 
yielded significant outcomes, exhibiting that all correlation 

coefficients exceeding 0.3 with P<0.005 (Figure S3E-S3H). 
We then used CIBERSORT analysis to identify 22 types 
of immune cell infiltrations in the high- and low-risk 
groups; the results are displayed in a boxplot. As shown in 
Figure 7A, osteosarcoma samples tended to have a lower 
proportion of neutrophils, mast cells, naïve B cells, CD8 
T cells, and natural killer cells, and a higher proportion of 
M0 macrophages, M2 macrophages, and naïve CD4 cells. 

https://cdn.amegroups.cn/static/public/TCR-24-163-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-163-Supplementary.pdf
http://Figure S3E-S3H
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Notably, the high-risk group exhibited a lower proportion of 
CD8 T (P<0.001) and regulatory T cells (P<0.05; Figure 7B).  
Additionally, ssGSEA revealed lower expression levels of 
12 immune cell subtypes (activated B cells, activated CD8 
T cells, natural killer T cells, and memory CD8 T cells) in 
the high-risk group than in the low-risk group (Figure 7C). 
These results suggest weaker immune infiltration in the 
high-risk group than in the low-risk group, especially for 
CD8 T cells and regulatory T cells. 

To further analyze the relationship between the model 
and immune signature, we performed a correlation analysis 
of the immune components, six modeling lncRNAs, and risk 
scores. The results (Figure 7D) indicated that most immune 
cells were negatively correlated with the model indices, 
especially CD8 T cells, macrophages, monocytes, natural 
killer cells, and myeloid-derived suppressor cells. Finally, 
we generated a heatmap, which revealed that among 13 
immune-related functions, cytolytic activity, inflammation 

promotion, and T cell co-stimulation were notably different 
between the high- and low-risk groups, with the high-
risk group displaying weaker activity (Figure 8A). Based 
on 79 immune checkpoint-related genes (32), we analyzed 
their expression levels in the two groups and revealed that 
CD40, D40LG, HAVCR2, HLA-A, HLA-DMA, HLA-DMB, 
HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-
DRB1, HLA-E, LAG3, LGALS9, SIRPA, TDO2, HLA-F, 
and TNFRSF14 were highly expressed in the low-risk 
group compared to the high-risk group (Figure 8B). These 
findings indicate that patients with high-risk present with a 
inhibitory tumor immune microenvironment compared to 
patients with low-risk.

Discussion

Osteosarcoma, a primary malignancy of the bone 
characterized by its aggressive spread and metastasis (33), 
primarily affects individuals between the ages of 10– 
30 years, with a notable surge during the adolescent growth 
phase. Osteosarcoma frequently occurs in areas with 
significant bone growth, such as the knee and shoulder (6). 
Our study included 84 osteosarcoma cases and revealed 
an average age of 15 years with a significant number of 
cases localized near the knee. Cellular senescence, now 
recognized in the realm of cancer, plays a dual role by 
either inhibiting or promoting tumor growth (34). Recent 
research has focused on lncRNA-related risk signatures 
owing to their predictive capabilities (35-37). However, the 
prognostic signature domains linked to CSR-lncRNAs in 
osteosarcoma remain unclear. To the best of our knowledge, 
our study is the first to identify 1,262 differentially 
expressed CSR-lncRNAs using both differential expression 
and correlation methodologies, of which 133 were 

Table 1 Multivariate Cox analysis results based on CSR-lncRNA

CSR-lncRNA coef HR HR.95L HR.95H P value

ELFN1-AS1 0.7672 2.153824 1.15378 4.020662 0.02

CYP2U1-AS1 3.0007 20.10054 1.30035 310.7099 0.03

AL162274.1 1.5786 4.848352 1.782752 13.18552 0.002

LINC02328 −1.7503 0.173719 0.076516 0.394404 <0.001

AP000785.1 3.4881 32.72345 5.1949 206.1298 <0.001

VPS9D1-AS1 −0.6993 0.496927 0.279817 0.882495 0.02

CSR-lncRNA, cellular senescence-related long non-coding RNA; coef, correlation coefficients; HR, hazard ratio; 95L, lower limit of 95% 
confidence interval; 95H, upper limit of 95% confidence interval.

Table 2 Clinical features in the training, testing, and entire sets

Variable Type
Entire 

set
Training 

set
Validation 

set
χ2 P 

value

Age (years) >15 35 15 20 1.224 0.54

≤15 49 27 22

Sex Female 37 18 19 0.024 0.99

Male 47 24 23

Translation Metastatic 21 11 10 0.063 0.97

Un-metastatic 63 31 32

Primary 
site

Lower limb 76 40 36 2.211 0.35

Upper limb 8 2 6
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Figure 5 Independent prognostic analysis and prognostic nomogram establishment. (A,B) Univariate and multivariate Cox regression 
analyses of clinical features and risk score with osteosarcoma. (C) ROC curves demonstrate a comparison of accuracy of predicting prognosis 
risk score between CSR-lncRNAs prognostic signatures and other clinicopathological features. (D) Nomogram to predict osteosarcoma 
patients’ outcomes in 1, 3, and 5 years (**P<0.01, ***P<0.001). (E) Calibration curves for 1-, 3-, and 5-year overall survival. (F) DCA of CSR-
lncRNAs prognostic signatures and other clinicopathological features. 95% CI, 95% confidence interval; AUC, area under the curve; ROC, 
receiver operating characteristic; CSR-lncRNAs, cellular senescence-related long non-coding RNAs; DCA, decision curve analysis.

highlighted via univariate Cox regression analysis. 
We constructed a prognostic model encompassing the 

six identified lncRNAs using a combination of the random 
forest method and multivariate Cox regression analysis. 
When tested on a training set using survival and ROC 

analyses, our mode exhibited a robust ability to predict 
the outcomes of patients with osteosarcoma. Remarkably, 
consistent outcomes were also observed when applying 
these same evaluations to the validation and complete 
datasets. Our subgroup survival analysis revealed shorter 
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survival spans for patients in the high-risk categories across 
eight distinct clinical subgroups. Further univariate and 
multivariate analyses confirmed that the risk score derived 
from the 15 lncRNAs served as a solitary prognostic 
marker for patients with osteosarcoma. Based on these 
findings, we devised a nomogram that assigned risk scores 
to clinicopathological traits. Both the calibration curves and 
decision curve analysis indicated the elevated risk threshold 
of the nomogram, highlighting its precision in predicting 
the 1-, 3-, and 5-year survival probabilities for patients with 
osteosarcoma.

Our pioneering prognostic model encompassed six 
lncRNAs linked to cellular senescence, among which, 

CYP2U1-AS1 ,  LINC02328 ,  and AP000785.1  were 
highlighted in osteosarcoma for the first time. Our findings 
are consistent with those of earlier investigations, identifying 
ELFN1-AS1 (38) and AL162274.1 (39) as potential risk 
lncRNAs for patients with osteosarcoma. Conversely, our 
findings regarding the association between VPS9D1-AS1 and 
a better prognosis diverge from the existing literature (40).  
VPS9D1-AS1 has shown a promising ability to inhibit 
lymphoblastic leukemia cell growth, mediated by the miR-
491-5p-miR-214-3p/GPX1 pathway, suggesting its potential 
therapeutic relevance for lymphoblastic leukemia (41).  
Moreover, the suggested involvement of LINC02328 in 
immune-centric PANoptosis in renal clear cell carcinoma 
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Figure 7 Immune landscape of the CSR-lncRNA model. (A) Boxplot shows the types of immune cell infiltration abundance. (B) 
CIBERSORT algorithms in two groups. (C) Expression of 28 types of immune cells between the high- and low-risk groups by ssGSEA. 
(D) Correlation analysis of immune components and six modeling lncRNAs and risk scores based on ssGSEA. The P values are labeled 
using asterisks (ns, no significance, *P<0.05, **P<0.01, ***P<0.001). CSR-lncRNA, cellular senescence-related long non-coding RNA; 
CIBERSORT, cell-type identification by estimating relative subsets of RNA transcripts; ssGSEA, single-sample gene set enrichment 
analysis.

is supported by RNA transcriptome insights, and single-
cell sequencing has revealed its possible role in modulating 
T cell activity and directing cell death (42). ELFN1-AS1, 
which is known to inhibit natural killer (NK) cell activity 
in colorectal cancer cells, has emerged as a prospective 
therapeutic target for colorectal cancer (43). Notably, a 
significant proportion of these lncRNAs are associated 
with immune mechanisms. Therefore, we performed an 
extensive analysis of the differences in immune infiltration 
between the high- and low-risk groups and demonstrated 
that the high-risk group exhibited diminished StromalScore, 
ImmuneScore, and ESTIMATEScore, suggesting a unique 
tumor microenvironment compared to the low-risk group. 

Macrophages are divided into M1 and M2 types, and 
the latter creates an environment to suppress the immune 
response and promote tumor growth (44). Our data indicate 
the pronounced presence of M2 macrophages, which 
may explain why patients with elevated risk scores often 
experience reduced overall survival, potentially due to 
the prominence of M2 macrophage infiltration (9). Using 
ssGSEA, we identified several immune cell types, such as 
activated B, activated CD8+ T, and CD56 bright natural 

killer cells, in the low-risk group. Our correlation analysis 
further revealed that most of these immune cells had an 
inverse relationship with the model lncRNAs and risk score. 
Specifically, activated CD8+ T cells, CD56 bright natural 
killer cells, central memory CD8+ T cells, macrophages, 
monocytes, and NK cells showed a negative association 
with most of the markers mentioned. These results suggest 
the tumors in the high-risk group exhibit lower levels of 
immune cell infiltration than their low-risk counterparts. 

CD8+ T lymphocytes, as major effector cells (45), 
compete with tumor cells for essential nutrients, such as 
glucose (46), and target tumors by identifying specific 
antigenic peptides present on malignant cells via MHC-I 
molecules, subsequently releasing cytolytic granules 
containing perforin and granzymes (47). The significance 
of effector T cells in tumor protection is well established 
given their ability to proliferate clonally, exert cytotoxic 
effects, and the crucial role of long-lasting memory CD8+ 
T cells in maintaining long-term tumor immunity (48).  
NK cells, an innate lymphoid cell subset, are used to identify 
and neutralize virus-infected and tumorous cells (49).  
Their role in anticancer defense mechanisms is accentuated 
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Figure 8 Analysis of differences in immune functions between the two groups with ssGSEA. (A) Thirteen immune-related functions between 
the high- and low-risk groups. (B) Expression of immune checkpoint-related genes between the high- and low-risk groups. The P values are 
labeled using asterisks (ns, no significance, *P<0.05, **P<0.01, ***P<0.001). IFN, interferon; MHC, major histocompatibility complex; APC, 
antigen-presenting cell; CCR, chemokine receptor; HLA, human leukocyte antigen; ssGSEA, single-sample gene set enrichment analysis.

by their varied mechanisms of cytotoxicity and influence 
on the broader immune response via cytokine release. 
With the current trend, NK cells are emerging as 
promising candidates for immunotherapy, especially after 
demonstrating their potential in treating patients with 
advanced leukemia (50). Therefore, the scarcity of CD8+ T 
and NK cells in the high-risk group observed in the present 
study may be pivotal in influencing the osteosarcoma 
trajectory. 

In this study, we focused on a new lncRNA, CYP2U1-
AS1, which is linked to 10 immune cell types. Similarly, 
lncRNA AP000785.1 is associated with eight unique 
immune cells. The interplay between these two lncRNAs 
and the tumor immune response is yet to be elucidated, 
which will help to facilitate new investigative paths for 

the immunological aspects of osteosarcoma. To further 
elucidate the inhibitory immune microenvironment in in 
high-risk patients, we conducted a comprehensive analysis 
of the disparities in immunological function between high- 
and low-risk cohorts and demonstrated a noteworthy 
enhancement in immune cytolytic activity, immune 
inflammation promotion, and T cell co-stimulation in the 
low-risk osteosarcoma group. Researchers have unveiled 
multiple strategies for harnessing the functional capacity 
of NK cells in patients with leukemia or solid tumors to 
enhance their cytolytic activity against malignant cells (51). 
The co-stimulatory factors within T cell biology intricately 
determine the functional outcomes of T cell receptor 
signaling, thereby playing a pivotal role in orchestrating 
immunoreactivity (52). Recently, targeted immune 
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checkpoint therapy has emerged as a novel approach for 
treating osteosarcoma. However, the overall response rate 
to immunotherapy within a broader population remains 
less than optimal (53). Our analysis highlighted increased 
gene expression of 18 immune checkpoints in patients 
with low risk, with CD40, CD40LG, and ALG3 being 
particularly prominent. Jiang et al. (54) reported that the 
pharmacological suppression of c-Myc in osteosarcoma 
promotes intricate crosstalk between antigen-presenting 
dendritic cells and T lymphocytes through the CD40/
CD40L co-stimulatory pathway. Moreover, our multi-omics 
analysis, focused on immune-related factors, revealed the 
upregulation of diverse immunotherapeutic targets in low-
risk osteosarcoma specimens compared to their metastatic 
counterparts, concurrently identifying hypoimmune 
infiltration in high-risk disease states. Deficiency in 
immune cell infiltration and diminished expression of 
immune checkpoints within high-risk tumor cohorts might 
highlight their resistance to immunotherapy and immune 
checkpoint inhibitors (ICIs). Therefore, strategies aimed 
at ameliorating the osteosarcoma microenvironment 
by increasing the infiltration of antitumor immune 
cells hold promise for enhancing the efficacy of these 
immunotherapeutic modalities (6).

Although various methodologies were used to refine our 
model, it was not without limitations. First, while internal 
validation encompassed the entire cohort, external validation 
was omitted. However, upon subsequent validation of the 
model via a third-party platform, statistically significant 
disparities emerged between the low- and high-risk factions. 
To a certain extent, this may be considered an external 
validation of the model. Moreover, pertinent empirical data 
substantiating the correlation between the six lncRNAs 
and osteosarcoma prognosis were absent. Nevertheless, 
half of the lncRNAs included in this study have been 
definitively implicated in osteosarcoma genesis. Hence, our 
prognostic model possesses moderate reliability. Thirdly, 
patients with low risk exhibit elevated gene expression of 
18 immune checkpoints, with the majority of these genes 
being associated with MHC-II and only three pertaining to 
MHC-I (HLA-A, HLA-E and HLA-F). Given the critical 
influence of MHC class expression on NK and CD8+ T 
cell responses, careful consideration is necessary when 
assessing immune responses. Future studies must prioritize 
functional exploration of MHC class I and II genes to 
further understand immune system interactions. Ultimately, 
we acknowledge the need for clinical sample experiments 
to validate the reliability of the risk model and plan to 

incorporate these experiments in future research. 

Conclusions

In this study, we developed a novel CSR-lncRNA 
prognostic signature that can accurately predict the 
prognosis of patients with osteosarcoma. The high-risk 
groups displayed lower immune infiltration, immune score 
estimates, and proportion of CD8+ T cells, implying less 
sensitivity to immunotherapy and ICIs. Our investigation 
has the following merits: first, we identified differentially 
expressed and prognosis-associated CSR-lncRNAs in 
osteosarcoma, providing important insights into subsequent 
exploration of the intricate role of lncRNAs in senescence. 
Second, we identified pronounced variations in the tumor 
immune microenvironment between the high- and low-risk 
cohorts. Notably, individuals in the high-risk group exhibit 
an environment characterized by hypoimmune infiltration, 
thus providing insights into the factors contributing to 
lower overall survival in this patient population. Further 
investigation into the mechanisms and pathways of CSR-
lncRNAs in the current model is warranted to enhance 
understanding of their role in osteosarcoma.
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