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Scanning Fluorescence Correlation Spectroscopy (scanning FCS) is a variant of conventional point FCS that
allows molecular diffusion at multiple locations to be measured simultaneously. It enables disclosure of
potential spatial heterogeneity in molecular diffusion dynamics and also the acquisition of a large
amount of FCS data at the same time, providing large statistical accuracy. Here, we optimize the process-
ing and analysis of these large-scale acquired sets of FCS data. On one hand we present FoCuS-scan, scan-
ning FCS software that provides an end-to-end solution for processing and analysing scanning data
acquired on commercial turnkey confocal systems. On the other hand, we provide a thorough character-
isation of large-scale scanning FCS data over its intended time-scales and applications and propose a
unique solution for the bias and variance observed when studying slowly diffusing species. Our manu-
script enables researchers to straightforwardly utilise scanning FCS as a powerful technique for measur-
ing diffusion across a broad range of physiologically relevant length scales without specialised hardware
or expensive software.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

FCS (Fluorescence Correlation Spectroscopy) is a well-
established technique which allows the diffusion characteristics
of fluorescently labelled molecules to be measured [1,2]. In FCS
the molecular mobility is accessed by determining the time it takes
the molecules under study to traverse through the observation
spot of an optical microscope. Knowledge of both the average tran-
sit time and the size of the observation spot allows a straightfor-
ward determination of respective molecular diffusion coefficients
as well as anomalies in diffusion. Through the advent of confocal
microscopy, FCS has become a powerful tool in various fields of
application [3]. An important topic is the use of FCS for determin-
ing the diffusion dynamics of molecules and proteins in the mem-
brane of cells and lipid bilayers [4–6]. For FCS to fundamentally
establish the dynamics of proteins in living membranes however,
spatial information as well as high statistical accuracy through
large data sets are required, due to the heterogeneity and dynamic
nature of the membrane under study [7–9]. Conventional (point)
FCS employs a single measurement spot at a time only. In this
paradigm a laser is focused on a single spot in the sample and
the emission light is recorded at this location throughout the dura-
tion of the experiment. As a consequence spatial information and
sufficient statistical power, perquisites of studying complex
heterogeneous organisms, can only be achieved through subse-
quent measurements. With measurement times of seconds to tens
of seconds a sequential approach like point FCS often results in
averaging of possible diffusion dynamics and so obscuring the vital
diffusion heterogeneities that are of interest.

Themost obviousway of attaining spatial information, as well as
large data sets, is through the recording of FCS data in multiple
observation spots simultaneously. Through simultaneous measure-
ment, heterogeneities present between locations become much
more obvious due to the high-degree of temporal synchronisation
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allowing accurate comparison. Simultaneous measurements can be
achieved through camera-based (image correlation spectroscopy,
ICS) [10] or multi-spot approaches [11–13]. While the spatial
awareness of these approaches have allowed the study of a wide
range of cellular processes, especially through there further devel-
opment (e.g. [14–16], the general applicability of each is hampered
either by the low frame rate of the detectors, limiting e.g. the use of
ICS for slow diffusion processes only, or by a complex setup. Scan-
ning FCS is a variant of the conventional point FCS technique and
allows diffusion at multiple locations to be measured simultane-
ously on conventional light microscopy equipment [17–19]. In
scanning FCS, the laser illumination spot is scanned across a sample
in a line (or circle) continuously and the light emitted from each
spatial location recorded in sequence. The intensity time-series at
each point is then correlated and parameterised through fitting of
derived equations which link diffusion dynamics with the relax-
ation of the correlation function. The yielded diffusion data can then
be used to establish spatial relationships within the sample. The
compromise of this technique is a reduced temporal resolution, as
the illumination and detection spot can only be in one location at
one time when compared to point FCS, i.e. the temporal resolution
is ultimately given by the scanning frequency and the signal-to-
noise ratio. Still, compared with other ICS-based approaches, scan-
ning FCS offers a good compromise for producing both spatial and
high frequency temporal information with the added benefit that
it can be performed on conventional laser scanning microscope
equipment.

Noise and its likely impact on a measurement is an important
consideration when performing correlation, and several attempts
to characterize noise in FCS data analytically have been made in
the past. Koppel first showed that for experiments of a long dura-
tion that the main basis for achieving a good signal-to-noise ratio
was to have a strong signal per molecule when compared to back-
ground noise like shot noise [20]. Subsequent attempts to under-
stand the statistical accuracy of correlation have highlighted the
importance of the duration of an experiment and also the artifacts
of having finite measurement duration [21,22]. Knowledge of the
relative levels of error across a correlation function have been
shown to assist in the accuracy of curve fitting and increasing
the accuracy of diffusion coefficient calculation [23]. Scanning
FCS may give further insights into such issues as it allows acquisi-
tion of large-scale FCS data sets simultaneously.

Here, we aim to optimize both processing and analysis for large-
scale scanning FCS data by on the one hand presenting the novel
FoCuS-scan software and secondly by providing a thorough charac-
terization of scanning FCS in a typical biological user-case. FoCuS-
scan software provides an end-to-end solution for processing and
analysing scanning data produced using commercial turnkey sys-
tems and expands existing software for processing scanning FCS
samples [24,25] with respect to ease-of-use, flexibility and analysis
of large data batches. FoCuS-scan software contains tools that
allow common photobleaching artefacts to be compensated for,
as well as tools that allow cropping to be applied to samples and
innovative visualization techniques. Furthermore, the FoCuS-scan
software also utilises advanced fitting algorithms, which accom-
pany the data processing and allow large and complex datasets
to be efficiently analysed. Using this software, we in this study fur-
ther characterize scanning FCS for use in investigating slowmoving
molecular species on individual cells (1.0–0.05 lm2/s, much slower
than has been previously characterized in FCS statistical analysis).
Due to the power of FoCuS-scan and the applicability to turn-key
confocal systems it is an essential tool for any bioscience
researcher interested in studying cellular dynamics.

Toward our goal of optimizing processing and analysis of scan-
ning FCS data we characterize simulations generated to model typ-
ical biological acquisition experiments. These simulations
highlight the limitations of experiments where there is a limited
number of molecules and also a need to maximize the number of
acquisitions possible within a period. As a consequence we have
simulated acquisition times of varying length and also traces that
model photobleaching artifacts. We observe that in a typical bio-
logical user-case the population of transit times significantly
broaden with decreasing theoretical diffusion rate especially at
slow diffusion rates in combination with a limited acquisition time.
This phenomenon is systematic of a limited convergence of the
underlying molecular motion being analyzed. Within the results
section we characterize the statistical accuracy of using scanning
FCS in this situation and propose solutions that can improve the
resolution of the technique for resolving slower moving species
as well as powerful means to visualize and understand the data.
2. Methods

2.1. Materials and methods

2.1.1. Cell culturing and preparation for microscope
Jurkat T-cells were cultured in RPMI-1640 (Sigma Aldrich, UK)

media supplemented with 10% FBS (Sigma Aldrich), 2 mM L-
Glutamine (Sigma Aldrich), 100 U/mL Penicillin (Sigma Aldrich),
0.1 mg/mL Streptomycin (Sigma Aldrich) and 10 mM HEPES pH
7.4 (Sigma Aldrich). 1 million cells were spun down for 5 min at
2000 rpm and washed with 1 mL of L15 medium (Life Technolo-
gies). After spinning down again the cells were labelled by resus-
pending in L15 medium containing 0.4 lg/mL Atto647N-DPPE
(AttoTec). The cells were labelled at 37 �C shaking at 300 rpm for
15 min. After washing with L15, the cells were resuspended and
kept in L15 for not longer than 1 h on room temperature. Measure-
ments were performed in 8-well glass-bottom chambers (Ibidi).
Prior to the measurements the glass was coated with PLL using a
0.01% PLL-solution (Poly-L-Lysine) (Sigma Aldrich) for 1 h at room
temperature and washed three times with L15.

2.1.2. Scanning FCS experimental acquisition
The scanning FCS measurements were performed using a cus-

tomized Abberior Instruments microscope [26]. The microscope
was controlled by Abberior’s Imspector software. Scanning FCS
measurements were acquired in xt mode using an orbital scan with
a pixel dwell time of 10 ms and a scanning frequency of 2630 Hz.
The pixel size was typically in the range of 80–150 nm and the
diameter (full-width-at-half-maximum, FWHM) of the observation
spot (point-spread-function, PSF) was taken to be that of a conven-
tional confocal microscope (250 nm). The fluorescence was excited
using a 640 nm pulsed diode laser (PicoQuant) with 10 mW total
excitation power at the objective’s back aperture. The detector
used was an Excelitas APD (SPCM-AQRH-13).

2.1.3. Scanning FCS experimental processing
For a scanning FCS measurement the fluorescence intensity of

the sample across a laser line was systematically collected for
the duration an experiment (Fig. 1A). The laser focus was moved
over the specimen, recording at each of M positions, before repeat-
ing the cycle N times. The duration spent scanning across a pixel
location (e.g. M = 0) is known as the dwell time, whereas the time
taken to repeat one of N cycles is denoted the line time. FoCuS-scan
supports both orbital scan and line scan derived data. On most cur-
rent commercial turnkey systems the laser can only be configured
to scan along a line on the sample and so there is delay whilst the
laser focus is moved back to the origin. With the correct equipment
however (e.g. in Fig. 1A-B), it is possible to scan a circle, in which
case the summed dwell time for all M locations (RM) and the line
time will be the same. The length of the line scanned was typically



Fig. 1. Simulations closely match experimental data. Experimental and simulated scanning FCS data visualized as time-series, correlation plots and correlation carpets. A) 2-
dimensional scanning confocal monograph of Jurkat T cell surface labelled with Atto647N-DPPE, 10 lm scale (white bar) and representative elliptical scan line (blue circle). B)
Intensity time-series from the live-cell experiment, (upper panel) for all pixels (y-axis) and first 150 scan lines (x-axis) and (lower panel) intensity integrated over all pixels
against time. C) Schematic representing the molecular simulation and scan line with labeled diffusing molecules (red dots), observation spot (green dot, diameter/
FWHM = 250 nm), scan line (green line), and scanning parameters as given. D) Intensity time-series from simulated experiment, (upper panel) for all pixels (y-axis) and first
150 scan lines (x-axis) (intensity carpet) and (lower panel) intensity integrated over all pixels against time. (E-H) Correlation curves yielded from individual pixels positioned
along scanning orbit as individual plots (E and G) or represented as a normalized carpet (F and H, y-axes: spatial pixel number along scanned line; x-axes: correlation lag
times s; left graph: time-integrated intensity for each pixel from 0 (white) to maximum (dark red); red graph: color bar coding of normalized correlation data), for the live cell
experiment (E and F) and the simulated experiment (G and H). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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around 5 lm with often M = 64 locations specified. Experiments
were varied in duration, but between 10 and 60 s was a practical
range depending on the mobility of the species being studied. An
intensity carpet, which contains the intensity measurements made
at each spatial location and time point is the direct product of a
scanning FCS measurement. Intensity carpets were exported from
the microscope and then imported into the FoCuS-scan software
for correlation and analysis. The FoCuS-scan software accepts file
types from the major turnkey system providers such as Leica (.
lif), Zeiss (.lsm) or Abberior Instruments (.msr). Nevertheless, using
FIJI any other data type can be easily converted to OME-TIFF, which
allows reading from files from practically every microscopy set-up.

2.1.4. Scanning FCS simulated modelling and acquisition
To explore the parameter space of the scanning FCS technique,

we developed simulations that would allow us to model a variety
of diffusion modes and acquisition settings. Each simulation mod-
elled a rectangular region (2 by 8 lm in size) on which molecules
diffused by 2-dimensional stochastic Brownian motion (Fig. 1C).
Diffusion rates between 1.00 and 0.05 lm2/s were simulated for
durations of between 3000 and 30000 ms. Between 120 and 240
molecules were simulated with a time-step of between 0.002
and 0.010 ms for each movement. For the simulated acquisition,
a Gaussian PSF with a 250 nm FWHM was generated and posi-
tioned at different locations along the theoretical scan line with
the location and integration time being synchronised with the
time-point and scan frequency. Thus it was possible to measure
the particles in the same way as in an actual scanning FCS experi-
ment with dwell times and line times which matched the real
experiments. For the simulations the scan-line was set to either
5550 or 5812.6 nm in length, with either 37 or 64 points along
the line placed at 150 or 90.82 nm intervals respectively. During
simulation, when molecules reach the boundary they were
wrapped round to the opposite side. The output time-series of
one of the simulations is shown in Fig. 1D. We noticed no artefacts
with this method and found the support to be of sufficient size to
avoid strange effects that might originate from a small simulation
area. Shot-noise was simulated by the addition of Gaussian noise
(with standard deviation = 1.0) to the data generated at each spa-
tial location of the simulation. The simulations used for this study
were written in python and are available as a series of ipython
notebooks stored in the Github repository: https://github.com/
dwaithe/nanosimpy/simulations.

2.1.5. Software Engineering
The FoCuS-scan software is written using the python scripting

language and is compiled into an application that can run indepen-
dently in the Windows, OS X and Linux operating systems. The
interface is designed using PyQT library and the bulk of the visual-
ization is performed using the matplotlib visualization library. The
fitting of diffusion functions is performed using the lmfit library
[27]. Binary file readers for Leica file format (.lif) and the Abberior
Imspector software (.msr) have been created and the file readers
for the Zeiss (.lsm) and OME-Tiff (.tiff, .tif) files were produced
using tifffile python library. The raw python code used for
FoCuS-scan and also the compiled binary files are available
through: https://github.com/dwaithe/FCS_scanning_correlator.

2.1.6. Data visualization
Scanning FCS experiments typically produce large quantities of

data and with this comes the requirement for powerful visualiza-
tion tools to handle this data in an appropriate way. FoCuS-scan
has multiple tools that allow users to analyse and dissect their data
effectively including, filters, scatter plots and histogramming
methods for visualizing populations of data. A detailed guide for
these tools is available in the Supplementary Manual.

2.2. Theory/calculation

2.2.1. Data pre-processing
Intensity carpets yielded from an experiment or a simulation

that are imported into FoCuS-scan are processed in a number of
different independent ways. To generate an intensity time-series
visualization, the intensity carpets are integrated across all spatial
locations to yield an intensity plot over time (Fig. 1B):

TsðtÞ ¼
XM
i¼0

Iði; tÞ where 0 P i > M and 0 P t > N

where I is the input raw intensity carpet, M is the number of spatial
pixels locations (parameterised by i) in the scan and N is the num-
ber of scan line passes (parameterised by t). Furthermore, several
optional techniques are also possible which can be used to pre-
process the data before commitment through correlation. It is pos-
sible to crop the data, either in terms of sub-duration or spatially in
terms of pixels measured. This cropping facility is included because
sometimes only a subset of the data are required for an experiment
or it is desirable to exclude artefacts present during certain time
spans of the acquisition or certain pixels:

I0ði; tÞ ¼ Iðiþ ci1; t þ ct1Þ;
where 0 P i P ðM � ðci1 þ ci2ÞÞ and 0 P t P ðN � ðct1 þ ct2ÞÞ and ci1
is the lower crop pixel location and ci2 is the greater crop pixel loca-
tion of the scan line (ci1 < ci2). Temporally ct1 represents the start
time-point from which to start correlation and ct2 represents the
last time-point from which to correlate (ct1 < ct2). Within the soft-
ware interface of FoCuS-scan it is also possible to split the intensity
time-series up into multiple sections temporally by setting a
desired interval. Processing this step will result in multiple I0 repre-
senting differently cropped sections of the input I.

Another optional pre-processing step is to perform spatial bin-
ning on the input intensity carpet. This pre-processing step can be
applied to reduce the impact of noise from the specimen through
the application of a sliding window to the input pixels.

I00ði; tÞ ¼
Xiþð2:bÞ

k¼i

Iðk; tÞ; where 0 P i P ðM � 2:bÞ and 0 P t P N

and I00 is the spatially binned carpet and b is the size of the margin
used for the binning. Please note however, although this can be
effective for reducing the impact of noise, the likely impact of
applying this technique will be that the measured transit times will
increase as a result of the lengthened effective pixel size, which will
broaden the effective observation spots along the scanning
direction.

2.2.2. Correlation
Correlation analysis is as signal-processing technique used to

determine statistically the time scale that two signals resemble
one another. In terms of Fluorescence Correlation Spectroscopy,
auto-correlation (GAC) represents a signal correlated with itself,
the self-similarity over different time-scales, whereas in cross-
correlation (Gcc) two signals are compared from different image
channels. Because the signal fluctuations are related to the fluctu-
ations caused by the fluorophores moving in and out of the confo-
cal detection volume, the self-similarity detected within these
methods is directly related to the rate of the diffusion of the
detected species. Primarily for the software, correlation is per-
formed in time only, but on each pixel j (of the M spatial locations)

https://github.com/dwaithe/nanosimpy/simulations
https://github.com/dwaithe/nanosimpy/simulations
https://github.com/dwaithe/FCS_scanning_correlator


66 D. Waithe et al. /Methods 140–141 (2018) 62–73
of the raw intensity data I or on the pre-processed data I0 or I00 from
a specific channel. The auto-correlation carpet is defined as
follows:

GACðj; sÞ ¼ hI0ðj; tÞ:I0ðj; t þ sÞi
hI0ðj; tÞ2i

� 1;

where GAC is the normalised auto-correlation function and I0 repre-
sents the intensity time-series I for a specific channel (0, or 1), t is
the time-point of the time-series, s is the lag time and j is the
scan-line pixel of acquisition. The normalised cross-correlation
function GCC represents the correlation calculation for two indepen-
dent channels I0 and I1:

GCCðj; sÞ ¼ hI0ðj; tÞ:I1ðj; t þ sÞi
hI0ðj; tÞI1ðj; tÞi � 1;

where I0 and I1 would typically represent imaging data acquired at
different acquisition wavelengths. The core of the correlation algo-
rithm utilises a fast implementation of a multiple-tau algorithm
[28]. The multiple-tau algorithm was developed more than 30 years
ago to produce a method that could efficiently correlate a wide
range of delay times using a semi-logarithmic scheme [29]. In
FoCuS-scan this multiple-tau algorithm is seamlessly integrated
with a single parameter ‘m’ (or quality) that defines the number
of points calculated at each level of the logarithmic scheme. Please
refer to the Supplementary methods for more details regarding
parameter selection.

The output of the correlation is displayed as both a correlation
trace (Fig. 1E) or as a part of a correlation carpet (Fig. 1F), with the
colour of the carpet representing the correlation function output at
each correlation lag time. Using the correlation carpet it is more
straight-forward to visualize differences between neighbouring
pixel locations. These and additional features for processing and
visualization can be used according to the user-manual in the Sup-
plementary materials section.

2.2.3. Photobleaching correction
FoCuS-scan has two methods for photobleaching correction

included. The first method, a common method for correcting for
photobleaching, is to correct the decay in the fluorescence time-
series Ts directly, by fitting with a mono-exponential function [18]

f ðtÞ ¼ f ð0Þ: exp � t
tb

� �
;

where f(0) is initialised as Ts(0) and tb denotes the average bleach-
ing time taken for the initially observed fluorescence intensity value
to decrease by a factor of 1/e and is extracted by fitting Ts. Upon
determination of f(t) the intensity trace is corrected according to

I000ðj; tÞ ¼ Iðj; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðtÞ=f ð0Þ

p þ f ð0Þ: 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðtÞ=f ð0Þ

q� �
;

where I(j,t) is the original intensity trace (can be substituted for I0 or
I00) and I000(t) is the corrected output. The corrected pixels are then
correlated using the standard correlation methodology.

A second method for correction of photobleaching artefacts is to
correlate sub-intervals of an input time-series, through local aver-
age adaptive correction [5,30,31]. Photobleaching affects correla-
tion especially at lower frequencies, which in turn affects the
normalisation of the curve and therefore perturbs the transit time
calculation. Rather than compensating for this directly, as in the
previous method, it is also possible to avoid the issue by not corre-
lating at long lag times. Because the effect of the photobleaching is
predominantly mediated through the longer frequencies it can be
circumvented by not correlating up to those times. Because we
are no longer correlating long frequencies we can correlate the
input time-series at multiple points and improve the statistics of
the method by averaging the correlation function resulting from
each section. In FoCuS-scan we provide a means to do this and
implement it seamlessly as an alternative to the conventional
correlation:

Gðj;s; lÞ¼ hIðj;tÞ:Iðj;tþsÞi
hIðj;tÞ2i

�1where06 l< L and int:l6 t< int:ðlþ1Þ

and L represents the number of intervals to divide up our intensity
time-series, and int is the interval duration (i.e. total duration of
time series divided by L). G(j,s,l) is our correlation function matrix
which contains each of the correlation functions. Once the correla-
tion function matrix has been filled, one output correlation function
G’ is created which is an average of each of the L interval correlation
functions at each lag time and each spatial position:

G0ðj; sÞ ¼ 1
L

XL

l¼1

Gðj; s; lÞ:

Once correlated this data is exported as normal. The difficulty
with this technique is to choose a significantly long interval time
to allow the full correlation function decay for a particular species
to take shape (convergence of the correlation function) whilst bal-
ancing the need to shorten it in favour of reducing the contribution
of artefacts resulting from photobleaching of less mobile, or immo-
bile species. FoCuS-scan includes an interface that makes this pro-
cess straight-forward and reproducible (See Supplementary
materials for more information).

2.2.4. Fitting
Ultimately auto- and cross-correlation functions are calculated

to establish the diffusion rates of the species that are responsible
for generating the observed functions. Once the correlation func-
tion G(j, s) of an intensity time-series I(j,t) has been calculated
we want to determine the characteristic transit time of the
observed molecules through the observation spot along with other
parameters which describe this function in terms of the underlying
physical processes which created it. We do this independently for
each individual curve of the carpet rather than considering the
whole ensemble and so for simplicity refer to each individual cor-
related functions as G(s). Derivations which link G(s) to the kinet-
ics of fluctuations for 2- and 3-dimensional processes and have
been derived elsewhere and we refer the user to full derivations
[32]. Below we have the accepted definition of the 3-dimensional
diffusion correlation function G(j,t):

GDðsÞ ¼ 1
�N

1þ s
sD

� ��1 1
�N

1þ s
x2sD

� ��0:5

;

with parameters sD (the characteristic transit time of the observed
molecules through the observation spot), Ñ the number of particles,
x2 a constant for connecting the transit time in 3-dimensions to 2-
dimensions. FoCuS-scan has a variety of extensions to the classical
diffusion equation with options that can be customised to describe
multiple diffusion species, triplet states and anomalous diffusion:

GNðsÞ ¼ Of þ GNð0Þ½GDðsÞ:GTðsÞ�;
where Of is the offset, GN(0) is the amplitude of the correlation func-
tion (1/Ñ, inverse average number of particles), GD is the diffusion
model (2- or 3-dimensions) and GT is the optional triplet state. Tri-
plet state equations are used to model the cases when the fluo-
rophores under investigation have dark-states that are induced by
the imaging regime [33,34]. Within FoCuS-scan there is the facility
to include one or more triplet states in the equation. Anomalous dif-
fusion is a special situation where the diffusion regime deviates
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from the ideal relationship, for example, when studying diffusion
using a super-resolution imaging regime. Further details for the
specific components of this model are available in the FoCuS-scan
Supplementary manual. With the above models it is possible to
calculate the diffusion coefficient with knowledge of the observa-
tion spot 1/e2 radius xxy and the measured transit time sD using:
D ¼ x2

xy=4:sD, where D is the diffusion coefficient (lm2.s-1)
and xxy is the lateral beam radius (lm). xxy can be calculated
from the observation spot’s FWHM diameter with: xxy ¼
FWHM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:Inð2Þp

.

3. Results and discussion

3.1. Scanning FCS simulation and live cell comparison

To validate FoCuS-scan and to understand the characteristics of
diffusion across a range of physiologically and experimentally rel-
evant rates we simulated Brownian motion and confocal scanning
acquisition in 2-dimensions and compared the data to experiments
performed on live cells under similar settings looking at the diffu-
sion of a fluorescent DPPE-Atto647N lipid analogue (1,2-dipalmi
toyl-sn-glycero-3-phosphoethanolamine tagged with the organic
dye Atto647N) in the membrane. Fig. 1 depicts experimentally
acquired data from the DPPE-Atto647N lipid analogue in the
plasma membrane of a Jurkat T cell (Fig. 1A) and a sample of the
corresponding intensity and integrated time-series from an ellipti-
cal scan trajectory (Fig. 1B). Fig. 1C shows the schematic for a scan-
ning FCS simulation with very similar settings to the live cell
experiment (including photon counting noise) and the correspond-
ing sample intensity and integrated intensity time-series (Fig. 1D).
Upon correlation of the live-cell or simulation data, correlation
functions for each pixel are produced and can be presented as a
plot of functions (Fig. 1E and G) or as a correlation carpet
(Fig. 1F and H). For correlation carpets the maximum calculated
correlation value are usually normalised to 1.0 along each correla-
tion function so that the heterogeneity in the transit times can be
easily observed. The distribution and form of the correlation func-
tions are very similar between the actual live-cell data and also
those generated from the simulation with characteristic variances
and shapes, but there are some minor deviations between the two
sets of curves. The curves from the simulated data are not quite as
steep as those generated from measured data and also the magni-
tude of the curves are different. These observed differences are
likely due to features such as the cellular membrane not being per-
fectly 2-dimensional, the overall particle number being different,
and also the observation spot deviating from being a perfect Gaus-
sian. Despite these differences the live cell data and the simulated
data are close to indistinguishable, and so it is possible to explore
the fundamental phenomena of scanning FCS using these
simulations.

Simulated intensity carpets for molecules diffusing in 2-
dimensions (i.e. on membranes) with diffusion coefficients of
D = 1.0, 0.5, 0.2 and 0.05 lm2/s were generated, respectively, with
in each case 120 molecules being simulated for a duration of 30 s, a
dwell time of 0.002 ms and a scan rate of 1800 Hz. 10 carpets were
generated in total for each condition, resulting in 640 measure-
ment points per different diffusion coefficient condition. Using a
FCS-based analysis pipeline, each measurement point gave a value
of the average transit time through the observation spot, and we
could thus determine the distribution of transit times along with
median values and variances (or standard deviations). From the
simulated data it is clear that simulations for lower diffusion coef-
ficients, i.e. slower diffusion (e.g. D = 0.05 lm2/s) exhibit larger
median values of transit times and consequently a much greater
absolute variance in values when compared to distributions
generated from higher diffusion coefficients, i.e. faster diffusion
(e.g. D = 1 lm2/s) (Fig. 2A).

The broadening of the distribution of determined transit times
is actually so dramatic for the slow-diffusion data that a logarith-
mic axis is required to adequately visualize the distribution across
the whole range of simulated data (Fig. 2A inset). Note that the
simulations depicted in Fig. 2A included no additional measure-
ment noise in terms of shot noise, photon counting or photobleach-
ing, yet, they still exhibit a high variance in terms of the observed
transit values. This observation proved that in a typical scanning
FCS paradigm powerful statistical effects are influencing the exper-
imental output. Furthermore, in addition to the high degree of vari-
ance at the slower diffusion speeds (0.05 lm2/s) a systematic error
(bias) is evident with the deviation of the population median devi-
ating away from the theoretical value being simulated, as outlined
further on. Fig. 2A depicts a simulation of duration 30 s that is a
realistic duration for an experiment performed on live cells and
so a practical understanding of the observed variance phenomenon
is very important.

Through using these simulations it is possible to accurately
characterise the distributions and describe the effect that statisti-
cal variance and sampling will have on a likely experiment. As dis-
cussed in the introduction, certain phenomena will impact on
different aspects of correlation and affect the statistics of the resul-
tant function. Fig. 2B shows a typical scanning FCS experiment
with 64 curves generated from a single simulated carpet. High-
lighted in this plot are the areas known to be affected by specific
phenomena (e.g. shot/duration noise, bias, measurement variance).
The top of each curve is susceptible to effects caused by poor
signal-to-noise due to poor photon yield and other effects (anno-
tated ‘shot noise’) [20]. If noise is evident at the bottom of the
curve, this is due to an insufficient experimental duration com-
pared to the measured transit time introducing variance [21,22]
and is annotated as ‘duration noise’. Variance in the middle of
curve, in terms of the positions of the curve inflexion points (or
transit times), is a consequence of non-convergence of the under-
lying molecules being measured, and again is dependent on the
duration of the experiment and the speed of the molecule being
measured (‘measurement variance’). A systematic shift (‘bias’) is
also a consequence of the duration of an experiment, but also of
the correlation methodology as a whole, as we see later, measure-
ments made using single molecule tracking do not suffer this bias
[21]. Having researched the possible causes of variance in our data
it was clear that our data could be affected by any number of them,
so we sort to delineate each influence for the benefit of our own
understanding and that of subsequent FoCuS-scan users.

3.2. Establishing the cause of the variance and systematic error in the
transit time distributions

To test whether the observed variance and systematic errors
were a product of correlation, or intrinsic to the system being stud-
ied, single molecule tracking was applied to track molecules enter-
ing the observation volume for each simulation (Fig. 3). Rather
than the FCS approach of integrating the particles with the PSF,
the time for each particle was determined for the duration each
particle was in the observation volume (1/e2 radius, 212.33 nm,
as threshold), and the distance between the exit and entry point
measured also for each event (Fig. 3A). Given the duration and
effective distance of each particle entering the observation volume
it was straightforward to calculate the transit time of each particle
and the average time for the entire ensemble. Repeating this for
each simulation measurement, generated a population of measure-
ments very similar to those generated through the correlation
method. The similarities and differences between these
correlation and single molecule tracking based analyses and their



Fig. 2. Simulated data generated across physiological ranges exhibit varying degrees of noise and statistical variance. A) Histogram of values of transit times determined via
correlation analysis from 640 measurements from scanning FCS simulations with 1.0 lm2/s (grey), 0.5 lm2/s (turquoise), 0.2 lm2/s (green) and 0.05 lm2/s (blue) diffusion
rates, representing 10x carpets from each simulation. (Inset) The same data but with natural logarithm of transit time values. B) Correlation functions from 0.2 lm2/s
diffusion simulations (black dots) with parameterised fits (blue lines) with different forms of noise annotated on the different parts of the curve, and (lower panel) residuals
from curve fitting (grey lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

68 D. Waithe et al. /Methods 140–141 (2018) 62–73
comparison to the theoretical values used in the simulations
allowed us to highlight systematic and convergence artifacts asso-
ciated with the determination of transit times via (scanning) FCS.

3.3. Explanation for the convergence artifacts in the transit time
distributions

When modeling stochastic random processes over limited time
periods there will always be some deviation in each modeled mea-
surement from those acquired over an infinite time duration.
When a population of these measurements is made this typically
does not affect the accuracy of the resulting population (mean)
but has implications for the precision of the population (variance).
For scanning FCS the imprecision is clearly evident through the
measurement variance (Fig. 2), a consequence of the limited acqui-
sition time with respect to the rate of diffusion of the molecular
species being investigated. As highlighted, through simulating sin-
gle molecule tracking we have been able to circumvent the possi-
bility that the correlation processing and fitting is influencing the
broadening of the measured transit times. A closer inspection of
the median values and variances of the transit times generated
from either analysis method (FCS and single molecule tracking)
for data simulated for differently moving molecules (D = 0.05–
1.0 lm2/s) and different total acquisition times (3 and 30 s)
revealed a high degree of similarity (Fig. 3B). Both FCS and single
molecule tracking have a characteristic precision when looking at
a population of measurements, which decreases with total acquisi-
tion time shown here by the standard deviation of each population.
For example, for data simulated with D = 0.05 lm2/s, FCS analysis
yielded median values (±standard deviations) of transit times of
161 ± 175 ms after 3000 ms and 212 ± 116 ms after 30000 ms sim-
ulated duration, and single molecule tracking analysis
253 ± 127 ms after 3000 ms and 246 ± 92 ms after 30000 ms simu-
lated duration. The accuracy of these measurements is considered
in Section 3.4, for now, notice how the precision in both cases
increases (reduction in standard deviation) with increased mea-
surement duration. The general imprecision and its relationship
with measurement duration shows that there is an inherent prob-
lem with measuring the kinetics of molecules crossing the detec-
tion volume, no matter the analysis technique. If molecules are



Fig. 3. Variance in transit time measurements is underlying statistical variance of particle movement, bias is characteristic of correlation methodology. Comparison of transit
time populations from different analysis methods and for different measurement durations of the simulations. A) Schematic representation of the single molecule tracking
analysis method. The Euclidean distance between where the particle entered (1) and exited (2) the observation spot area (circle marking the observation spot/PSF boundary,
1/e2 diameter of the 250 nm FWHM PSF as border) is measured and divided by the duration. B) Median and standard deviations (error bars) of transit time values from 640
simulated measurements with different theoretical simulated diffusion coefficients and durations and determined with the different analysis methods (single molecule
tracking and correlation), as labelled. C) Histogram (bin size = 14, D = 0.05 lm2/s) of transit time values from 640 simulated measurements determined with single molecule
tracking method (black) and with correlation analysis (green). D) Median values of diffusion coefficients determined from 640 simulated measurements with a spot size of
60 nm FWHM (STED) compared to a spot size of 250 nm FWHM (confocal) and different diffusion coefficients of 1.0 lm2/s (grey), 0.5 lm2/s (turquoise), 0.2 lm2/s (green) and
0.05 lm2/s (blue). Error bars represent inter-quartile range of obtained values. Grey dashed lines in C and D represent theoretically expected values, and deviation of bars
from nearest line represents bias. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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diffusing across an area, some will take longer times than others,
due to statistical variance. If data is acquired for a short period of
time only it is likely that one may not probe enough transits to find
the true average, as by chance one may have observed only a lim-
ited set of events, that happened to be on average quicker or slower
than the true average generated from an infinite measurement
time. The longer one monitors, the more accurate each individual
assessment of the average will be and therefore the tighter the
resulting population of measurements will become. This conver-
gence phenomenon is dependent on the speed of the particle under
study, the length of the study and also the size of the area used. As
pointed out (Fig. 3B), in the simulations the slower moving parti-
cles result in wider distributions, and the longer the duration of
the measurement, the more precise the distribution becomes, no
matter the speed. Whilst dependencies of correlation calculation
noise dependent on the measurement time and general diffusion
speed have been indicated before [20,22], to our knowledge this
is the first time that simulations have been run at sufficient num-
bers and at slow enough diffusion and thus molecular rates to visu-
alize population transit time variance of this scale, though this
relationship has been observed in experimental measurements
[35]. Through understanding the underlying cause of the variance
it is possible to devise strategies to cancel it out.

3.4. Systematic error associated with the correlation method

Due to the calculation of the correlation function, the FCS data,
in addition to the imprecision pointed out in the previous section,
also suffer from systematic deviations when the experimental
duration is limited, reducing the accuracy of the FCS-based analy-
sis. This phenomena has been previously described as correlation
‘bias’ [21] and has been pointed out in previous high-throughput
screening experiments [35,36]. This ‘bias’ is highlighted by our cur-
rent observations that distributions of transit time values gener-
ated from single molecule tracking analysis are more accurately
describing the true theoretical average (as input by the simula-
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tions) than those generated from FCS. Let us again consider the
example of data simulated for D = 0.05 lm2/s, with a true theoret-
ical transit time of 225.4 ms. Fig. 3C compares the distribution of
values of transit times generated from simulated diffusion and
analyzed by correlation (green) and single molecule tracking
(black). The distributions obtained from the single molecule track-
ing analysis reveal the strong differences of the correlation analy-
sis, especially differences in the median value and overall shape.
The FCS analysis of this data yields a median transit time and stan-
dard deviation of 161 ± 175 ms after 3000 ms duration simulation
showing poor accuracy but achieves improved accuracy with a
value of 212 ± 116 ms after 30000 ms. The same comparison for
the analysis of this data set using single molecule tracking analysis
achieves 253 ± 127 ms and 246 ± 92 ms for 3000 and 30000 ms
simulation time, respectively, showing almost no change in med-
ian value and a smaller increase in standard deviation with
reduced measurement duration. Note that this prominent differ-
ence between FCS and single molecule tracking analysis in
decreased accuracy for shorter measurement times diminishes
for the simulations with faster moving molecules (e.g. D = 0.5–
1 lm2/s, Fig. 3B). Corrections developed in the past will only tackle
the noise across each correlation function, also caused by the lack
of recording duration [22,23], rather than shifting the underlying
population of transit times at the point at which they converge.
In summary, our simulations highlight that for short measurement
times on especially slow moving particles, the bias introduced
through correlation is more of a problem than the variance, and
some corrective strategies are required to reduce the bias.

3.5. Removing systematic bias and improving convergence

There are several potential solutions for reducing the bias and
for assisting in the convergence of the measurements. The first
and most obvious is to increase the measurement time for a longer
more stable measurement. The drawback of this approach is that
biological specimens such as cells may become damaged due to
phototoxic effects, might move during acquisition, or the dynamics
under-study may change, and overall this limits the number of
measurements that can be made. The second is to apply a correc-
tion to the correlation function which is possible through the cal-
culation and application of a 1st order bias factor [22]. The third
proposed technique is to reduce the size of the observation vol-
ume, which can be achieved by applying FCS on a super-
resolution STED microscope [17,24,37–39]. Reducing the observa-
tion spot size of the acquisition improves the accuracy and preci-
sion of scanning FCS measurements. In Fig. 3D the effects of
reducing the observation volume through using a STED microscope
are simulated on datasets only 3000 ms in length. Clear gains in
accuracy are seen for slower transit times when compared to anal-
ysis using conventionally sized confocal observation volumes. For
simulated experiments with molecules diffusing with D = 0.05
and 0.2 lm2/s we using the FCS analysis obtained median values
of diffusion coefficients of 0.066 and 0.22 lm2/s, respectively, for
an observation spot of 60 nm in diameter (STED) and 0.086 and
0.25 lm2/s, respectively, for the conventional confocal observation
spot (250 nm in diameter). The use of the 60 nm large observation
spots is however not advisable for very fast moving molecules with
diffusion coefficients of 0.5 lm2/s or greater because in these cases
the transit times are too close to the temporal resolution of the
scan line (in this case 1800 Hz, i.e. 0.556 ms between line repeti-
tions); however a higher scan rate would correct this (e.g. by using
a fast resonance scanner). For slower diffusing species (D = 0.2–
0.05 lm2/s), reducing the observation spot size as in the presented
case can be equivalent to a 10 � increase in experiment duration,
making it possible to take accurate unbiased measurements in a
fraction of the time.
3.6. Noisy data, error metrics and data visualization

As discussed in the introduction, several studies have investi-
gated the impact of noise in terms of assessing the quality of cor-
relation functions. One of the standard approaches is to establish
the signal-to-noise ratio for a given correlation function S/N = G
(t)/var(G(t))0.5 [20]. When we applied a normalized variant of the
signal-to-noise formula [40] to our data taken for 30000 ms, we
found that the average S/N for our measurements was linearly
dependent on the measured transit time (Fig. 4A). This means that
the longer the transit time the less certain one is as to the true
value of that data-point as well as explaining why the distributions
are log-normal in appearance. Each calculated point is effectively
convolved with an error that increases with transit time producing
non-symmetrical distributions [41]. This effect is very likely linked
again to the length of the measurement duration and the effect this
can have on the variance of a function due to slower moving par-
ticles residing longer in the detection volume. Histogramming
techniques, although reliable for binning and visualization of data,
assume in most cases a finite bin size. Because the distributions we
observe can span large transit time margins we wanted a method
of binning and visualization which could take into account the
increased margin for uncertainty with longer transit times.

3.7. Density kernel estimation bandwidth calculations

Density kernel estimation is an alternate technique to his-
togramming used for visualizing and also for estimating the prob-
ability density distribution of a random variable. With this method
each data point is represented with a kernel (typically a Gaussian)
and the bandwidth of the kernel is set to a static width for each
point or is varied depending on a suitable metric. Because the ker-
nel size can be set dynamically, it is advantageous over conven-
tional histogram methods, which are restricted to a static bin
and cannot be tuned to individual data points. Here we trialed
using density kernel estimation with a variable bandwidth propor-
tional to the level of error we obtained from three different error
metrics. Each transit time data point was represented as a Gaus-
sian kernel of standard deviation equal to the error associated with
the calculation of that particular transit time measurement. In
addition to the signal-to-noise estimation we implemented two
additional metrics for calculating the variance of our transit time
data populations and first wanted to establish there suitability as
error metrics for correlation. The first method was to use the stan-
dard deviation calculated for our transit time parameter during
curve fitting using the lmfit python library. This method was very
efficient to calculate as this error parameter accompanies each of
our fitting operations. Our second method was to perform boot-
strapping on our correlation data, followed by calculating the stan-
dard deviation of the transit times generated across the bootstraps.
Bootstrapping is a commonly used statistical test for assessing the
accuracy of an estimator, in this case the estimator being the cor-
relation function. Bootstrapping is often used when parametric
inference is impossible or difficult, as is the case when calculating
correlation factor error. In this method we take each of our corre-
lated measurements and then randomly sample with replacement
the function to form a bootstrap sample. This process is repeated a
number of times (we use 5-100x) and the transit time calculated
for each of the distributions, and the standard deviation calculated
across the population. We found that for both the methods trialed,
the curve fitting standard deviation parameter and the bootstrap-
ping method, both gave error measures consistent with the
signal-to-noise statistic calculated for each curve (Fig. 4B-C). Each
of these methods had a positive linear relationship with regard
to the transit time for each of the generated datasets and a distri-
bution similar in form to the signal-to-noise estimation and so we



Fig. 4. Density kernel estimation enables visualization of transit time distributions across scales. A-C) Scatter plots comparing transit time measurements from
640 simulations (30 s duration, 120 mol.) with diffusion coefficients of 1.0 lm2/s (grey), 0.5 lm2/s (turquoise), 0.2 lm2/s (green) and 0.05 lm2/s (blue) with different error
metrics, signal-to-noise (A), correlation fit standard deviation (B) and standard deviation of 100x bootstrap samples (C). D) Density kernel estimation of the data of A (shown
here as histogram, with binsize = 2) with different error metrics compared to Histogram visualization method with widths corresponding to 100x bootstrap (blue-line), 5x
bootstrap (red-line), correlation fit standard deviation (green-line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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deemed them good potential candidates to express the error in our
density kernel visualization.
3.8. Density kernel estimation visualization

Once we have established our potential error metrics we trialed
each on the data. To compare our methods we first amalgamated
data into a single transit time distribution from simulations of
1.0 lm2/s, 0.5 lm2/s and 0.2 lm2/s diffusion rates. Next we his-
togrammed the data using a bin-size = 2, optimized for the transit
time relating to 1.0 lm2/s. The average signal-to-noise ratio data
produced kernels of a width which was far too large (data not
shown), however the curve fit error and the bootstrap methods
both produced density kernel visualizations which were highly
similar to the input data with the histogram (optimized for
1.0 lm2/s) (Fig. 4D). We found that the bootstrap method pro-
duced a distribution remarkably similar to the histogram distribu-
tion and was tighter than the curve fit error method. We also show
that as little as 5x bootstraps is necessary to accurately represent
the distribution of the data, as both these distributions are highly
similar. Density Kernel estimation is advantageous as the output
function can be interpolated to any degree of accuracy and also
there is no requirement to define a bin-size, making it advanta-
geous over histogramming. In summary, the bootstrapping
method, as an error metric, closely matches the trends of more well
defined metrics of variance such as signal-to-noise and can be used
as an appropriate scale invariant metric for density kernel band-
width estimation, which is a superior visualization method when
compared to histograms.
3.9. Photobleaching correction

Due to the repetitive nature of FCS measurements, some photo-
bleaching is likely to occur during the course of a scanning FCS
acquisition experiment. Scanning FCS suffers from photobleaching
less than point FCS due to the sequential nature of the line scan-
ning and therefore reduced continuous exposure of any one point
to the laser, [42] however some photobleaching can still occur.
Photobleaching represents loss of information and corrections
should be applied with care. Fortunately, due to the differential
nature of photobleaching, in that it affects immobile fluorescent
fractions much more than mobile fractions, it is possible to extract
the signal from the mobile fraction near perfectly despite a seem-
ingly large effect on the unwanted immobile fraction. The main
perturbation which occurs to a correlation signal as a consequence
of photobleaching is due to the effect that photobleaching has on
the lower temporal frequencies of the correlation function and
the overall impact this has on the normalisation of the correlation
function [43,44]. The photobleaching occurs on a different time-
scale to the mobile fraction which are left relatively unaffected
except that the normalisation of the correlation function as whole
is perturbed which can affect the fitting of the correlation function.



Fig. 5. Photobleaching dramatically affects transit time measurements but can be restored through suitable corrections. A,B) Intensity time-series from a simulated
experiment (D = 0.5 lm2/s, duration 3000 ms), integrated over all pixels from simulation without (A) and with photobleaching (B). (C) Respective correlation curves from the
simulation without (black line) and with photobleaching (green line, analyzed in the conventional way), and in the latter case with correction method 1 (red line) and
correction method 2 (blue line). D) Whisker plots of values of transit times determined from 64 simulated measurements generated with and without photobleaching,
original data and analysis without correction and with correction methods 1 and 2, as labeled. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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This effect is clearly visualised in Fig. 5. In Fig. 5A there is a simu-
lated intensity time-series of diffusing molecules with no photo-
bleaching and in Fig. 5B the same intensity time-series is
depicted but with the addition of photobleaching simulated
through the addition of a mono-exponentially decaying function.
When these signals are correlated we obtain correlation functions
depicted in Fig. 5C with the correlation curves generated from the
non-photobleaching signal (black) and the photobleached signal
(green). The correlation curve generated from the photobleaching
signal lacks an inflexion point due to the perturbation that the pho-
tobleaching has on the normalisation of the signal. Through using
either of the two photobleaching correction algorithms it is possi-
ble to restore the curve to something much more similar to the
non-photobleached original (Fig. 5C, red and blue lines). Correction
method 1 involves fitting a mono-exponential function to the
intensity signal of the whole intensity carpet and then a correction
is applied to the intensity signal for the intensity over time (see
methods for more details) [18]. This has the effect that the normal-
isation of the signal is corrected directly but will introduce arte-
facts if the photobleaching signal is not mono-exponential or
differs between positions of the carpet. Correction method 2 (local
averaging) involves breaking up the intensity signal for each pixel
up into time-series of shorter length, correlating each section and
then averaging the output function [30]. Although the time-series
sequence is reduced in length, which will increase the variance
of the species being studied, the averaging of the correlated
sequences will reduce the broadening effect this has on the popu-
lation data. However, when used for slower diffusing species it is
likely that some bias may be introduced as a result of the tempo-
rally shortened sequence. This approach works well however for
faster moving species as the photobleaching affects on the lower
temporal frequencies will be filtered out through using sections
of shorter length. Analysis of a population of data as shown in
Fig. 5D shows that, in terms of restoring the signal, so that the tran-
sit time measurements are accurate, both correction method 1 and
2 are far superior to no correction, and correction method 2 pro-
duces a distribution most similar to the original non-
photobleached population with the closest median population
transit time. In summary although photobleaching should be
avoided initially through design of the experiment (suitable fluo-
rophores, low laser power etc.), photobleaching correction meth-
ods are highly effective at reducing the impact that the
photobleaching has on the data distribution. FoCuS-scan has two
accepted methods that are effective at correcting likely photo-
bleaching artefacts and these should be used when appropriate
to restore a signal through correction of its normalisation.
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4. Conclusion

Scanning FCS is a powerful technique for establishing the
spatio-temporal kinetics of diffusion in live cells or potentially in
supported lipid bilayers. So far the technique has only seen limited
use within the life sciences due to the requirements of specialist
equipment and analysis software as well as the need for validation
within this area. With FoCuS-scan it is now possible to process and
analyse data acquired on conventional confocal scanning micro-
scopes. Furthermore, scanning FCS has great potential to be applied
in future to also quantify more complex diffusion and reaction
dynamics of molecules such as molecule oligomerisation and/or
transient binding events in living cells. Such analysis will require
additional strategies to fulfil the obvious demand in cell-biology
to systematically and statistically robustly quantify these pro-
cesses. This article describes the performance of scanning FCS
across a broad range of biological relevant diffusion length scales
and highlights the limitations and practical considerations when
performing these experiments.
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