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ABSTRACT
Directed differentiation of stem cells offers a scalable solution to the need for human cell models
recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an
induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors, and
characterized the distinct transcriptomic profiles associated with each stage. Established regulators
of endodermal lineage commitment, such as SOX17 (log2 fold change [FC] compared to iPSCs D
14.2, p-value D 4.9 £ 10¡5) and the pancreatic agenesis gene GATA6 (log2 FC D 12.1, p-value D 8.6
£ 10¡5), showed transcriptional variation consistent with their known developmental roles.
However, these analyses highlighted many other genes with stage-specific expression patterns,
some of which may be novel drivers or markers of islet development. For example, the leptin
receptor gene, LEPR, was most highly expressed in published data from in vivo-matured cells
compared to our endocrine pancreas-like cells (log2 FC D 5.5, p-value D 2.0 £ 10¡12), suggesting a
role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed
significant stage-selective expression of adult islet genes, including INS, ABCC8, and GLP1R, and
enrichment of relevant GO-terms (e.g. “insulin secretion”; odds ratio D 4.2, p-value D 1.9 £ 10¡3):
however, principal component analysis indicated that in vitro-differentiated cells were more
immature than adult islets. Integration of the stage-specific expression information with genetic
data from T2D genome-wide association studies revealed that 46 of 82 T2D-associated loci harbor
genes present in at least one developmental stage, facilitating refinement of potential effector
transcripts. Together, these data show that expression profiling in an iPSC islet development model
can further understanding of islet biology and T2D pathogenesis.
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Introduction

Numerous studies have confirmed a central role for the
pancreatic islet in type 2 diabetes (T2D) pathogenesis.1-4

However, the study of islet physiology as well as its per-
turbation in the disease state has historically been limited
to animal models and cell lines. This has changed with
access to primary human tissue from cadaveric donors
obtained through islet transplantation programs. The
availability of human islets is an improvement on the sole
reliance on animal models. However, primary islets are a
difficult cellular system to work with given their limited
availability and heterogeneity, both in terms of donor
characteristics and technical variation.

Directed differentiation of human embryonic and
induced pluripotent stem cells (hESCs and iPSCs
respectively) toward endocrine pancreas has the poten-
tial for routine generation of cells recapitulating both
islet physiology and diabetes-relevant cellular dysfunc-
tion at appreciable scale. The timely addition of growth
factors and other small molecules mimicking intracel-
lular and extracellular developmental signals has been
shown to produce endocrine pancreas-like cells
expressing key glucose homeostatic hormones (insulin
and glucagon), which, although not yet equivalent to
primary islets, display glucose-responsive insulin secre-
tion.5-7 Considering the differences between human
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and murine pancreatic development, mature cell func-
tion, and islet architecture,8-12 differentiated iPSCs
have a clear translational potential: more accurate dis-
ease modeling, and a platform for drug discovery.13

Although in vitro differentiation techniques have
become advanced in recent years, there are still
improvements to be made in terms of protocol effi-
ciency and cell function. High percentages of defini-
tive endoderm and early pancreatic progenitors can
routinely be achieved,5-7,14-17 but more mature endo-
crine pancreas-like cell populations are heterogeneous,
and contain fetal-like18 polyhormonal cells. The matu-
ration of pancreatic progenitors can be improved by
transplantation into immunocompromised mice, with
resultant cells expressing higher levels of b-cell marker
genes, and functioning in a manner more similar to
primary human islets than their in vitro-derived coun-
terparts.5,6,17,19-25 However the in vivo maturation step
is hard to scale. Therefore studies into the precise
mechanisms underlying this process continue, with
one recent effort focusing on developmental cues aris-
ing from the pancreatic mesenchyme.26

Transcriptomic profiling of iPSC-derived, in
vitro-differentiated, endocrine pancreas-like cells
(and precursors) can map the dynamic gene
expression changes occurring during islet develop-
ment. As demonstrated by Xie et al,25 this informa-
tion may help identify previously-unknown drivers
of islet cell maturation, as well as marker genes for
each developmental stage – both highly relevant to
optimization of in vitro differentiation protocols.
Additionally, such data could help shed light on
the pathobiology underlying the genetic contribu-
tors to T2D susceptibility identified in humans.
While >80 T2D-associated genetic loci are cur-
rently known,27,28 it has proven difficult to uncover
the genes mediating these association signals, so-
called effector transcripts, given the tendency of
associated variants to map to non-protein-coding
sequence. Recent studies which integrate genetic
data with detailed chromatin state maps29,30 or
expression quantitative trait loci (eQTL) informa-
tion from human islets31,32 have demonstrated this
as a powerful approach for translation of such dis-
ease-associated signals. However, as these studies
have only been performed in adult islets, they are
unable to determine the potential contribution of
fetal development processes to T2D risk in
adulthood.

Here we report global transcriptomic analysis for
2 independent iPSC donor lines subjected to in vitro
differentiation toward endocrine pancreas-like cells.
These data provide a normative reference of gene
expression for the early stages of pancreatic develop-
ment – even if the methods used in this study do not
produce fully-functional b-cells14 – to which other dif-
ferentiation protocol optimization efforts, as well as
studies into pathologically perturbed cells, can be
compared.

Results

Characterizing the transcriptome of endocrine
pancreas-like cells

To profile global gene expression within the iPSC dif-
ferentiation model, we collected RNA from each of
the cell populations generated via in vitro differentia-
tion of 2 independent iPSC lines (n D 2 donors, 1 dif-
ferentiation each) toward endocrine pancreas-like
cells: iPSC, definitive endoderm [DE], primitive gut
tube [GT], posterior foregut [PF], pancreatic endo-
derm [PE], and endocrine pancreas-like cells [EN].
Gene expression profiles were obtained using
100 nucleotide paired-end RNA-sequencing on the
Illumina HiSeq 2000 platform of libraries enriched for
poly-adenylated transcripts – yielding a median of
127 million reads per sample.

Firstly, we assessed differentiation efficiency at
each stage, and for each independent donor line,
by confirming stage-specific expression of previ-
ously-identified developmental markers: POU5F1
[iPSC], SOX17 [DE], HNF4A [GT], PDX1 [PF],
NKX6-1 [PE], and INS [EN] (Fig. 1A). As expected,
expression of genes marking pluripotent potential
decreased and expression of islet-specific transcrip-
tion factors increased as cells became more com-
mitted to an endocrine pancreas fate. Concomitant
FACS analysis demonstrated efficient differentiation
of both iPSC lines to DE and further toward the
pancreatic lineage (Fig. 1C and Supplementary
Fig. 1). However, at the end of the differentiation
(EN-stage), FACS analysis of c-peptide and gluca-
gon expression (Fig. 1C and Supplemental Fig. 1B),
and the endocrine transcription factor NKX2.2
(Supplemental Fig. 2) demonstrated that donor
2 displayed a more efficient endocrine pancreas dif-
ferentiation compared to donor 1. Notably, we also
observed heterogeneity within the c-peptide positive

84 M. VAN DE BUNT ET AL.



cells for both lines, as only some co-expressed the
transcription factor NKX6.1 (Fig. 1C). Principal
component analysis of the gene expression profiles
showed a similar picture, with increasing distance
between samples of the same developmental stage
as endocrine pancreas commitment progressed
(Fig. 2B).

It has been proposed that variation in differentiation
efficiency could partly reflect transcriptional heterogene-
ity resulting from donor-specific differences in genetic

background.33-36 Accordingly, we compared correlation
of all expression profiles across each developmental stage
for the 2 independent lines. Clustering of gene expression
profiles demonstrated that samples from the current
study showed the greatest similarity by stage, rather than
by donor (Fig. 1B). Therefore data from this study shows
no evidence to suggest that inter-individual differences in
genotype have a substantial effect on commitment to
endodermal fate. However, repeated differentiations
would be needed to confirm whether donor 1 is less

Figure 1. Characterizing the transcriptome of an iPSC-derived endocrine pancreas-like cell model. (A) Expression pattern of 6 differentia-
tion stage marker genes for 2 independent iPSC lines (green D donor 1; pink D donor 2). (B) Heatmap showing the Euclidean distances
between the samples as calculated from voom-transformed expression values. (C) FACS plots showing c-Peptide/NKX6.1 (and relevant
isotype controls) expression in the EN-stage of both iPSC lines. iPSC D induced pluripotent stem cells; DE D definitive endoderm; GT D
primitive gut tube; PF D posterior foregut; PE D pancreatic endoderm; EN D endocrine pancreas-like cells; TPM D transcripts per kilo-
base million.
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efficient at generating later stage, endocrine pancreas-like
cells, versus donor 2.

Identifying developmental stage-specific gene sets
and pathways

To identify transcripts characteristic of each develop-
mental stage, we performed differential expression
analysis with limmaCvoom.37 There were a total of
14,207 protein-coding and lincRNA genes expressed
in at least one of the 6 stages (Supplementary Table 1).
For 5,690 expressed genes we observed significant dif-
ferential expression using empirical Bayes F-tests
(Supplementary Table 2A-F). We defined significant
differential expression as genes with a false discovery
rate < 1% and a log2 fold change compared to iPSC >

1 in one of the stages – or for iPSC-specific genes a
maximum log fold change < ¡1 in any other stage.
Each differentially expressed gene was assigned to the
stage at which the fitted model for that gene achieved
its maximum value. Substantial numbers of differen-
tially expressed genes were identified at each of the
stages: iPSC n D 827, DE n D 1,039, GT n D 591, PF
n D 788, PE n D 1,290, and EN n D 1,155.

Results are detailed in Supplementary Tables 2 and 3,
but here we highlight some of the more interesting find-
ings. As expected, iPSC stage-specific genes included

those with known involvement in pluripotency, such as
NANOG and the aforementioned POU5F1.38 Known
regulators of endoderm lineage commitment differen-
tially peaked at the DE stage.39,40 GATA6, the most com-
monly-mutated gene in pancreatic agenesis in
humans,41,42 also showed significant differential expres-
sion in DE (log2 FC D 12.1 p D 8.6 £ 10¡6;
Supplementary Table 2B). The significant differential
expression ofGATA6 in the early stage of the iPSCmodel
highlights its role organogenesis, which is also supported
by the extra-pancreatic comorbidities present in individ-
uals with mutations in the gene.42 Gene ontology (GO)
analysis showed a clear enrichment among DE stage
transcripts for proteins implicated in “positive regulation
of ERK1/2 (MAPK) cascade” (nD 21 genes, ORD 3.6, p
D 8.8£ 10¡3; Supplementary Table 3). This pathway has
been shown to mediate DE commitment and cell prolif-
eration in mice, and these data support a similar role in
human cells.43,44

Across PE-specific transcripts, GO analysis identi-
fied enrichment of multiple terms relating to “extra-
cellular matrix” and “cell-cell signaling,” supported by
significant differential expression of transcripts encod-
ing TGFb, WNT, and NOTCH signaling molecules,45

as well as those encoding basement membrane pro-
teins46-48 (Supplementary Tables 2–3). The PE-selec-
tive expression of these transcripts is likely a reflection

Figure 2. Transcriptomic comparison of in vitro-differentiated versus in vivo-matured human embryonic stem cells and primary human
adult islets. (A) Heatmap showing the Euclidean distances between samples generated in this study and similar in vitro-differentiated
and in vivo-matured human embryonic stem cells25 as calculated from the voom-transformed expression values. (B) Plot of the first
2 principal components derived from the normalized expression profiles of iPSC in vitro-differentiated and hESC in vivo-matured cells25,
as well as adult islets and FACS-enriched b-cell fractions57. ES D embryonic stem cells; iPSC D induced pluripotent stem cells; DE D
definitive endoderm; GT D primitive gut tube; PF D posterior foregut; PE D pancreatic endoderm; EN D endocrine pancreas-like cells.
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of their involvement in branching morphogenesis and
lineage allocation of pancreatic progenitors.49,50

In the EN-stage, there is enrichment of terms “hor-
mone transport” and “insulin secretion," alongside
those relating to “endocrine pancreas development”
(Supplementary Table 3). Significant EN-specific
expression is for example observed for the insulin
(INS) itself, the incretin receptor gene GLP1R, and the
ATP-sensitive potassium channel subunit ABCC8.
However, the GO enrichment of “endocrine pancreas
development," combined with continued expression of
fetal transcription factors such as PAX451 and SOX9,52

suggests that the majority of EN-stage cells produced
in this study are ‘immature’ at the transcriptomic level.

These data identify developmental stage-specific
transcripts whose expression fits with known endo-
crine pancreas biology, thus validating its use as a
model for studying transcriptomic changes governing
islet development. Furthermore, the results point
toward other stage-specific marker transcripts with an
as-yet unidentified role in endocrine pancreas forma-
tion (Supplementary Table 2). Examples of this can be
found among cell surface proteins (e.g., stage-specific
expression of CD80 in DE and NTRK2 in PE), which
could facilitate enrichment of more homogeneous
populations through cell sorting. The list of novel
stage-specific transcripts also includes transcription
factors such as ARNT2 and ASCL1, both of which are
specific to EN and are known to play essential roles in
neurogenesis. Mutant Arnt2 mice fail to form nutri-
ent-sensitive, hormone-producing neurons due to a
lack of terminal differentiation,53,54 and Ascl1 is an
essential factor for reprogramming somatic-to-
induced neuronal cells.55 Adult pancreatic endocrine
cells and neuronal tissue share many characteristics,
including patterns of gene expression.56 The expres-
sion data support a similar picture during develop-
ment, even though germ layers are not shared
between pancreas and brain. This information has
value for the identification of novel drivers of endo-
crine pancreas differentiation.

Transcriptomic evaluation vs. in vitro and in vivo
matured human embryonic stem cells and primary
human adult islets

The maturation status of cells produced via in
vitro-differentiation methods in this study was fur-
ther assessed by comparing the gene expression

profile of these cells to that of other physiologi-
cally-representative models, including both hESC-
derived pancreatic islet-like cells that had been in
vivo matured in mice,25 and FACS-enriched human
b-cells.57

To minimize technical variation between the differ-
ent datasets,25,57 raw RNA-sequencing reads were
reprocessed using the same pipeline as that used for
the in vitro-differentiated iPSCs. Distance-based clus-
tering of read counts showed that the in vitro-derived
iPSC cells in general correlated well with analogous
stages of differentiated hESCs in pancreas develop-
ment from a previously published study25 (Fig. 2A).
At the later stages there was more intra-study correla-
tion than in the earlier time points, which may reflect
the maturation potential and/or resultant cell popula-
tion composition of the alternative differentiation
strategies employed.

Principal component analysis of the different devel-
opmental stages and human FACS-enriched b-cells57

showed an inverted-U shape from stem cell through
to adult b-cells. Notably, the in vitro-differentiated
cells produced in this study were spatially distinct
from the more mature in vivo-matured and adult
b-cells (Fig. 2B). Direct comparison of the in vitro-
derived endocrine pancreas-like cells to primary islet
tissue showed significant upregulation of transcripts
related to the GO term “regulation of insulin secre-
tion” (n D 28, OR D 3.4, p-value D 5.6 £ 10¡3) in
adult b-cells. This difference was not seen when com-
paring in vivo-matured versus adult b cells, and indi-
cates that endocrine pancreas-like cells matured in
vivo express more of the stimulus-responsive secretory
genes important to adult islet function than their non-
matured counterparts. However, FACS-enriched adult
b-cells showed a strong enrichment for RNA transla-
tion terms when compared to in vivo-matured endo-
crine pancreas-like cells, perhaps reflecting a higher
turn-over of INS (constituting »38% of the adult
b-cell transcriptome). Interestingly, the most signifi-
cantly up-regulated gene in the in vivo-matured cells
compared to adult b-cells is the leptin receptor gene,
LEPR (log2 FC D 5.5, p-value D 2.0 £ 10¡12). The
same gene is also one of the most significantly upregu-
lated transcripts when comparing the in vivo-matured
cells to comparable cells obtained via in vitro methods
(log2 FC D 5.1, p-value D 1.6 £ 10¡13), suggesting a
potential role for leptin in mediating b-cell
maturation.
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Differential expression analysis of transcripts
mapping to T2D-associated loci

Most effector transcripts at T2D-associated genetic
loci are currently unknown, with translation hindered
by the localization of associated variants in non-pro-
tein-coding sequence. The endocrine differentiation
model provides an opportunity for assessing the
potential contribution of fetal development processes
to T2D risk in adulthood. To gain insight into poten-
tial effector transcripts for T2D association loci, we
looked for all transcripts showing stage-specific differ-
ential expression in 100 kilo base-flanking regions
around T2D index variants. At 46 of the 82 previ-
ously-reported T2D-associated loci,27,28 we were able
to identify stage-specific transcripts in at least one
stage, with 55% of these being specific for the latter
developmental stages in the differentiation model
(Supplementary Table 4).

There are several loci where only a single stage-spe-
cific gene is implicated. Two of these contain genes,
LAMA1 which shows the highest expression in gastric
tube cells (log2 FC D 2.7, p-value D 1.0 £ 10¡4) and
HHEX peaking at the posterior foregut stage (log2 FC
D 7.5, p-value D 3.8 £ 10¡5), that are of particular
interest. LAMA1 has been proposed to promote b-cell
differentiation in vitro,58 whereas HHEX is known to
play an important role in organogenesis of the ventral
pancreas.59 Both genes display substantial differences
in maximum peak height between the 2 independent
differentiations around the time where they start to
deviate in differentiation efficiency. However, the
association interval around HHEX also contains sev-
eral other good candidate genes.60 These data there-
fore add further support to HHEX, and thus illustrate
how knowledge of developmental expression can help
elucidate likely effector transcripts. Further functional
studies will be needed to confirm whether any, or
both, of these genes play a causal role in mediating
T2D risk, for example by affecting endocrine cell
number or maturation.

In other cases, the data show that the association
interval contains several stage-specific genes, highlight-
ing multiple candidate effector transcripts. For exam-
ple, at the ZBED3 locus, PDE8B (a phosphodiesterase
regulating islet cAMP and insulin secretion61,62) and
ZBED3 (axin-binding protein regulating WNT/b-cate-
nin signaling43) both show significant differential
expression at the EN stage (log2 FC D 4.9, p-value D

3.4 £ 10¡5, and log2 FC D 2.0, p-value D 3.0 £ 10¡6,
respectively). Another example can be found at the
KCNQ1 locus where there are 3 genes showing signifi-
cant differential expression: SLC22A18 (DE log2 FC D
2.2, p-value D 3.3 £ 10¡3), PHLDA2 (PE log2 FC D
3.2, p-value D 6.8 £ 10¡4) and CDKN1C (EN log2 FC
D 4.7, p-value D 3.2 £ 10¡6). Previous parent-of-ori-
gin-based analyses63 have shown that at least one of the
KCNQ1 locus T2D-associated signals may elicit its
effect via genomic imprinting. Methylation profiling in
adult and fetal islets demonstrated that CDKN1C is the
only mono-allelically expressed gene at this locus.64

The significant upregulation of this CDKN1C in EN-
cells produced in the current study therefore provides
additional support for the candidacy of this gene. How-
ever, there are several other independent signals pres-
ent at the KCNQ1 locus, at which a role for the other 2
transcripts cannot be excluded.

Stage-specific expression patterns of genes at T2D
loci does not imply causality, but rather suggests a
potential role of the transcript during a specific devel-
opmental stage. Additional functional data will be
needed to disentangle if any, or all, of the above genes
drive the disease phenotype.

Discussion

The results presented in this manuscript demonstrate
that the differentiation protocol employed provides a
robust model system for studying cells of the endo-
crine pancreas lineage, with each stage expressing
known developmental marker genes, and correlating
well with differentiated endocrine pancreas-like cells
generated in other studies.25 Clustering analysis, dif-
ferential gene expression, and GO term enrichment
indicate that each stage represents cell populations
with distinct transcriptomic profiles.

The current data represent a comprehensive analy-
sis of an iPSC-based endocrine differentiation model
with robust and reproducible results between biologi-
cal replicates. However, the study was limited to only
2 lines differentiated with a protocol achieving an
immature endocrine cell-type. Additional insights will
flow from expansion to larger numbers of islets gener-
ated with steadily improving in vitro differentiation
protocols.5-7

Coupling the gene expression data with informa-
tion on other regulatory annotations such as ATAC-
seq and methylation profiling will help further map
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the genomic changes occurring during endocrine pan-
creas development.65 Likewise, complementary analy-
ses using single-cell techniques can be used to
disentangle the cellular heterogeneity present at each
of the differentiation stages. This knowledge will be
instrumental for interpreting of comparisons between
normative data and results from other studies. One
example of a current study that will benefit from high-
quality normative data is the StemBANCC consortium
(www.stembancc.org), which is generating analogous
iPSC cell models from individuals with diabetes.

These data also provide examples of how iPSC-
derived models of islet-like cells can be used to priori-
tize genes and differentiation stages for investigating
T2D pathogenesis. There are for example several loci
where a single transcript within the association inter-
val is identified as showing stage-specific differential
expression (e.g. HHEX and LAMA1). Therefore these
data can help prioritize likely effector transcripts, as
well as the developmental stage at which these tran-
scripts are expressed, for functional follow-up to
uncover disease-associated mechanisms. Furthermore,
comparison of differentially expressed transcripts
from the in vitro-differentiated cells produced in this
study to those of in vivo-derived endocrine pancreas-
like cells (which are transcriptionally more similar to
primary human b-cells), suggests pathways that may
promote endocrine pancreas maturation, such as
those involving leptin signaling.

Proteins involved in early endocrine pancreas
development may not be ideal drug targets, but their
identification can help optimize differentiation proto-
cols. This yields more physiologically-representative
diabetes cell models, and further facilitates b-cell gen-
eration for cellular-replacement therapy, which is in
early phase clinical trials.13

Methods/materials

Generation of human iPSCs: Human skin fibroblasts
from 2 independent donors were obtained from a
commercial source (Lonza CC-2511, tissue acquisition
numbers 23447 and 23801). Both donors were Cauca-
sian, with neither diagnosed as having diabetes. Fibro-
blasts were cultured for 24 h in Iscove’s Modified
Dulbecco’s Medium (Sigma 13390) containing: 10%
FBS (Gibco 10270106), 1% penicillin-streptomycin
(Gibco 15140), 100x GlutaMAXTM (Gibco 35050),
and 100x MEM Non-Essential Amino Acids Solution

(Gibco 11140). Cells were then treated with the
CytoTune�-iPS Reprogramming Kit (Life Technolo-
gies A13780-01) according to manufacturer’s instruc-
tions. Cell culture medium was changed 24 h post-
transduction, with subsequent media changes every
other day. After 5–6 d, cells 460 were passaged using
0.05% Trypsin-EDTA (Gibco 25300–054), and plated
onto MEF feeder cells at a density of 3000cells/cm2 in
KnockOutTM DMEM (Gibco 2013–05) containing:
1% penicillin-streptomycin, 5x KnockOutTM Serum
Replacement (Gibco 10828–028), 465 100x Gluta-
MAXTM, 100x MEM Non-Essential Amino Acids
Solution, and 8ng/ml FGF-Basic (AA 10–155) Recom-
binant Human Protein (Gibco PHG0021). Medium
changes were conducted every other day for 3–4 weeks
with concomitant observation of transformed cell
and colony formation, alongside colony size. After
3–4 weeks colonies were picked manually using an
inverted microscope and a 25 gauge needle so as to
cut each colony into 5–6 pieces, before replating onto
fresh MEF plates, and subsequent cell expansion.
iPSCs were confirmed as Sendai virus-free using a
combination of immunostaining with anti-Sendai
virus antibodies, alongside RT-PCR.

Prior to differentiation, iPSCs were adapted to
feeder-free conditions by dissociating with collage-
nase (Gibco) before plating onto BD MatrigelTM

hESC-qualified Matrix (BD Biosciences 354277)-
coated plasticware, with subsequent culture in
mTeSRTM1 (Stem Cell Technologies 05850). Both
iPSC lines were also subject to strict quality control
checks before differentiation commencement. This
included (data not shown): i) tests for Sendai virus
clearance via qRT-PCR (primers against Sendai
virus genome and each of the 4 transgenes encoded
within the CytoTuneTM Sendai reprogramming vec-
tors), ii) FACS and immunocytochemistry analysis
for pluripotency markers Tra-1-60, Tra-1-81, and
NANOG, SOX2, and POU5F1, iii) genomic integ-
rity checks via Illumina Human CytoSNP-12v2.1
beadchip and G-banding analysis, and iv) embryoid
body tri-lineage differentiation experiments (endo-
derm D AFP, ectoderm D TUJI, mesoderm D
SMA; qRT-PCR).

The two iPSC lines designated SB Ad2 clone 1 and
SB Ad3 clone 4 (original fibroblasts 24245 and 23447
respectively; donors 1 and 2 in this manuscript/study),
were obtained through the IMI/EU sponsored Stem-
BANCC consortium via the Human Biomaterials
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Resource Centre, University of Birmingham (http://
www.birmingham.ac.uk/facilities/hbrc).

Ethics: all tissue samples for reprogramming were
collected with full informed consent. Ethical approval
for the StemBANCC study (UK) was received from the
National Research Ethics Service South Central Hamp-
shire A research ethics committee (REC 13/SC/0179).

iPSC differentiation towards endocrine pancreas-like
cells

The iPSC lines were differentiated side-by-side
using a protocol adapted from 2 previous publica-
tions.14,23 Briefly, dissociated iPSCs were seeded
onto CellBind tissue culture plates (Corning 3336)
coated with 1:30 diluted growth factor reduced
matrigel (Corning 356230). Cells were seeded in
mTeSR1 medium with ROCK inhibitor (Sigma-
Aldrich Y0503) at 0.3 £ 106 cells pr. cm2 and incu-
bated for 24 hours before starting the
differentiation.

Stage 1: definitive endoderm. Medium was aspi-
rated from the iPSC and cells washed once with RPMI
1640 medium (Gibco 61870–010). Cells were cultured
for 24 hours with RPMI 1640 containing 0.2% hESC-
grade fetal bovine serum (FBS, Gibco 16141–079),
100 ng/ml Activin A (Peprotech 120–14) and 3 uM
CHIR99021 (Axon Medchem 1386). For the following
3 days, cells were incubated with RPMI 1640 contain-
ing 0.5% FBS and 100 ng/ml Activin A with daily
medium changes.

Stage 2: gut tube. Cells were cultured for 2 d with
DMEM/F12 medium (Gibco 21331–020) containing
50 ng/ml KGF (Peprotech 100–19) with medium
replenished daily.

Stage 3: posterior foregut. Differentiation was con-
tinued for 4 d with cells being exposed to DMEM con-
taining 25 mM Glucose (Gibco 31966–010), 1% B27
(Gibco 17504–044), 50 ng/ml KGF, 20 ng/ml Activin
A, 0.25 uM Sant-1 (Sigma-Aldrich S4572), 2 uM reti-
noic acid (Sigma-Aldrich R2625) and 200 nM LDN-
193189 (Stemgent 04–0074). Medium was replenished
daily.

Stage 4: pancreatic endoderm. Cells were differenti-
ated for additional 4 d with DMEM containing
25 mM Glucose, 1% B27, 0.25 uM Sant-1, 200 nM
LDN-193189, 500 nM TBP (EMD Millipore 565740)
and 100 nM Liarozole (Tocris 2705). Medium was
replenished daily.

Stage 5: endocrine pancreas-like cells. Differentia-
tion was continued for additional 7 d in DMEM con-
taining 25 mM Glucose, 1% B27, 200 nM LDN-
193189 and 1 uM Alk5i (Enzo Life Sciences AXL-
270–445) with daily medium change.

Immunofluorescence

Cells were fixed directly in wells with a 4% formalde-
hyde (VWR 9713.1000) for 20 min at room tempera-
ture (RT). Fixed cells were washed twice in PBS and
permeabilized for 10 min at RT with PBS containing
0.5% Triton-X100 (Sigma-Aldrich 93443). Permeabi-
lized cells were then incubated for 30 min at RT with
a blocking solution consisting of: 0.1 M Tris-HCl pH
7.4, 0.15 M NaCl, and 0.5% Tyramide Signal Amplifi-
cation (TSA) immunohistochemistry kit blocking
reagent (Perkin Elmer). Blocked cells were incubated
overnight at 4�C with primary antibodies diluted in
PBS with 0.1% Triton X100 (Supplementary Table 5).
Following incubation, cells were washed 3 times with
PBS and then incubated with Alexa Fluor�-conju-
gated secondary antibodies (Thermo Fisher Scientific,
final dilution 1:500) and 40,6-diamidino-2-phenylin-
dole for 45 min at RT in PBS C 0.1% Triton X100.
Images were acquired via inverted fluorescence
microscopy (Olympus IX-81).

Flow cytometry

Cells were harvested with TrypLE Select (Gibco
12563–011), washed in PBS and incubated in a 4%
formalin solution for 20 min on ice. Fixed cells were
permeabilized with PBS containing 5% donkey serum
(EMD Millipore S30–100 ml) and 0.2% Triton X100
for 30 min on ice. Fixed and permeabilized cells were
incubated with primary antibodies in PBS containing
5% donkey serum 0.1% Triton X100 overnight at 4�C
(Supplementary Table 5). Following incubation, cells
were washed twice in PBS, with unconjugated primary
antibodies further incubated with Alexa Fluor�-conju-
gated secondary antibodies (Thermo Fisher Scientific,
final dilution 1:500). Cells were analyzed on a BD
LSRFortessa Analyzer with 10.000–20.000 events
recorded per sample.

RNA extraction and sequencing

Prior to RNA extraction, cells were trypsinized using
TrypLE Select before pelleting via centrifugation, and
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snap freezing and storage at ¡80�C. RNA was
extracted from each samples using TRIzol� Reagent
(Life Technologies 15596–018) according to manufac-
turer’s guidelines, with RNA quality (RIN score)
assessed using the RNA 6000 Nano Kit (Agilent 5067–
1511) and 2100 Bioanalyser. Prior to RNA extraction,
cells were trypsinized using TrypLE Select before pel-
leting via centrifugation, and snap freezing and storage
at ¡80�C in TRIzol reagent (Life Technologies 15596-
018). RNA was extracted according to manufacturer’s
guidelines, with RNA quality (RIN score) assessed
using the RNA 6000 Nano Kit (Agilent 5067-1511)
and 2100 Bioanalyser. All samples passed quality con-
trol (RIN > 8).

Library preparation and sequencing was performed
at the Oxford Genomics Centre (Wellcome Trust Cen-
tre for Human Genetics, University of Oxford). Polya-
denylated transcripts were isolated with the NEBNext
PolyA mRNA Magnetic Isolation Module (New Eng-
land Biolabs E7490 L), this followed by library prepara-
tion using the NEBNext Ultra Directional RNA
Library Prep Kit for Illumina (New England Biolabs
E7420 L) with 12 cycles of PCR and custom 8 bp
indexes.66 All libraries were multiplexed and sequenced
with the TruSeq PE Cluster Generation Kit v3 and Tru-
Seq SBS Kit v3 (both Illumina, PE-401-3001 and FC-
401-3001 respectively) over 7 lanes of Illumina
HiSeq2000 as 100-nucleotide paired-end reads.

Transcript quantification

Raw sequencing reads were aligned to the human
genome reference GRCh37.p13 with TopHat267 on
default setting using GENCODE release 1968 as the
transcriptome reference. Gene level read counts for dif-
ferential expression analysis were quantified for all pro-
tein-coding and long non-coding transcripts present in
GENCODE release 19 using RNA-SeQC69 with the
“strictMode” flag set. For plotting and filtering pur-
posed, we also normalized the gene counts to tran-
scripts per million (TPM).

Comparison with differentiated hESCs and human
b-cells

Publicly available RNA-seq data on human ESCs dif-
ferentiated toward endocrine pancreas-like cells,25 and
FACS-enriched adult human b-cells57 were down-
loaded from Array Express (accession number

E-MTAB-1086) and a University of Geneva ftp server
(ftp://jungle.unige.ch) respectively. Where BAM files
were available, these were first reconverted into
FASTQ files using Picard v1.128 (http://broadinsti
tute.github.io/picard). Thereafter, files were processed
as described in the section above.

Differential expression analysis

Differential expression analysis was performed in R
v3.2.2 using limmaCvoom37 on gene-level read
counts. A model comprising a sample covariate and a
time factor was fitted to the data, and significance was
assessed using empirical Bayes F-tests implemented in
limma. Each significant gene was assigned to the dif-
ferentiation stage where the maximum log2 fold
change was observed. Transcripts were assigned to
iPSC when the maximum observed log2 fold change
was negative. Reported log2 fold changes were all com-
pared to the iPSC stage, except for the iPSC stage itself
where the log2 fold change is the inverse of the maxi-
mum observed log2 fold change across all other stages.
When comparing the in vitro-derived EN cells pro-
duced in this study, to in vivo matured cells and pri-
mary adult b-cells, the full model was fitted with an
additional study covariate which contrasted only for
the specific stages of interest. For all transcripts to
false-discovery rate adjusted p-value is reported.

GO term enrichment

To assess gene sets of interest for overrepresentation
of GO terms, we used the GOstats R package70 with
all “Biological Process” (“BP”) terms in GO.db. The
hyperGTtest was run with the “conditional D TRUE”
option set, using all genes tested for differential
expression as the background set. P-values were
adjusted using “p.adjust” according to the Benjamini-
Hochberg method. Only adjusted p-values are
reported.

Abbreviations
DE definitive endoderm
EN endocrine pancreas-like cells
eQTL expression quantitative trait loci
FACS fluorescence-activated cell sorting
FDR false discovery rate
GT primitive gut tube
hESC human embryonic stem cell
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hiPSC human induced pluripotent stem cell
OR odds ratio
PE pancreatic endoderm
PF posterior foregut
T2D type 2 diabetes
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