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Abstract: In order to realize state estimation for axisymmetric targets and improve the accuracy
and robustness of state estimation, a state estimation method for axisymmetric targets based on
beacon linear features and view relation is proposed in this paper. The depth camera is used to
collect the image and depth information of the object, and the features of the beacon line are extracted
by the thinning process and Hough transform. Then, the rotation matrix model based on view
relation is constructed to solve the target state. Finally, an axisymmetric shore power plug is taken as
the experimental object and the L–V (linear features and view relation) state estimation method is
compared with the C–H and C–IPPE state estimation methods. The experimental results show that
the L–V state estimation method has higher accuracy and robustness.

Keywords: axisymmetric targets; state estimation; linear features; view relation

1. Introduction

In the visual guidance system of the manipulator in industrial production, an effective
target position and attitude are important for the manipulator to realize grasping, sorting,
assembling, and other operations. The target pose estimation based on monocular vision is
a process of calculating the spatial position and attitude of the 3D target object according
to the two-dimensional image. At present, the features used in target state estimation are
mainly 2D image features [1] and 3D reconstructed point cloud features [2,3]. According
to the different models and algorithms, it can be divided into traditional feature–based
state estimation and deep–learning–based state estimation [4,5]. Among them, traditional
feature–based state estimation can be further subdivided into the target state estimations
based on feature points, feature lines, template matching, and 3D features.

The state estimation based on feature points is to solve the Perspective–N–point (PnP)
problem [6]. In this problem, the co-ordinates of [n] (n ≥ 3) feature points in the world
co-ordinate system, the pixel co-ordinates in the image, and camera internal parameters
are known. The co-ordinates of the target in the camera co-ordinate system are solved by
using the perspective relation and the above conditions. Such a method is divided into two
parts, feature points extraction and state solving method:

(1) Feature points extraction. For objects with obvious texture features, classic SIFT [7],
SURF [8], ORB [9] methods, and so on can be used to complete the extraction of
feature points. For the objects with unobvious texture features, it is often necessary to
mark the feature points manually to achieve the purpose.

(2) State solving method. The solving method can be divided into an iterative method and
noniterative method [10]. The iterative method is to construct the objective function
of minimizing the residuals of the image square, and then to obtain the optimal state
solution through a Newton method [11] or Levenberg–Marquardt (LM) [12] algorithm.
However, this algorithm involves many parameters and has low computational effi-
ciency. Among the noniterative algorithms, P4P, P5P, and other algorithms establish
the linear equations between the three-dimensional points and the pixel points, that
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is, the method for solving the homography matrix (C–H method) [13,14]. In addition,
Toby Collins et al. [15] proposed a C–IPPE state estimation method, whose solution
method is very fast and allows people to fully characterize the method in terms of
degeneracies, number of returned solutions, and the geometric relationship of these
solutions. In addition, the C–IPPE method is more accurate than the PnP methods
in most cases. However, the C–H and C–IPPE state estimation methods based on
feature points are extremely dependent on the accuracy of point detection and the
accuracy of point pairs matching, and the error of corner detection will directly lead
to the deviation of state calculation and the deterioration of robustness.

The state estimation based on line features is mainly for the weak texture objects
with few feature points, where it is difficult to establish the relationship between feature
points and state using feature points. Moreover, the robustness of the line is better than
that of the point, which is less affected by light and noise. Bin Wang et al. [16] proposed
an attitude measurement algorithm suitable for aircraft targets, which made full use of
the advantages of high accuracy, good stability, and strong antiocclusion ability of linear
feature extraction, and the attitude error angle could reach within 1◦. Yunxi Xu et al. [17]
proposed an extended orthogonal iterative algorithm to realize attitude estimation based on
the features of points and line segments. However, in both of these, multiple linear features
are used, which makes the application scope of the algorithm have certain limitations.
The noniterative linear solution method based on the linear feature is often not accurate
enough, while the iterative method has high accuracy but poor real–time performance.

The state estimation based on template matching is mainly based on the 3D model of
the object to establish the image template library of different states. By matching the real
object’s state with the image in the model library, if the matching error is less than a certain
threshold, the 3D model’s state is taken as the estimated value of the real object’s state.
Bing Ji et al. [18] estimated the attitude angle of an aircraft by using the dynamic model
matching principle, and proposed the cross–search method to accelerate the optimal model
matching speed according to the distribution law of the similarity matrix. This method
requires a high–precision model, a large number of data sets, and an efficient search and
matching algorithm.

The state estimation based on 3D features, with the popularity of an RGBD sensor, is
transformed from 2D–3D data point pairs to 3D–3D data point pairs. Without the auxiliary
equipment, which is necessary for the monocular camera to estimate the state of the target,
the depth feature of the pixel can be measured quickly and conveniently. Among them,
the pose estimation based on 3D point cloud features [19,20] can ignore textures, but its
algorithm is complex. In addition, for highly axisymmetric objects, it is difficult to detect
the state angle around the axis of symmetry, as in the example of the shore power plug
mentioned below.

To summarize, the target state estimation task, with lack of texture features, complex
texture features, and high axisymmetric characteristics, is one of the difficult problems
that needs to be solved at present [21]. In industrial applications, such as production lines,
state estimation becomes particularly complex for industrial products with lack of texture
features or high axisymmetric characteristics and strict requirements for multiple state
angles. Figure 1 shows the example with the above characteristics, which is the object
to be grasped by the manipulator arm. Figure 1a is a shore power plug for automatic
docking. Figure 1b illustrates the axisymmetric characteristics of the shore power plug
and the requirement for matching the phase sequence of a shore power plug and shore
power socket.
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Figure 1. Example of highly axisymmetric properties. (a) Plug front view. (b) Plug and socket 
phase sequence. 
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anti−noise capabilities than the feature points). The state of the target object is solved an-
alytically through the view relation of the linear beacon, and the state angle around the 
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According to the imaging model of a pinhole camera, the spatial line is still a straight 
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ries cannot be known in advance. The above methods do not consider the constraints of 
the beacon itself, so the beacon linear features cannot be extracted accurately. 

In this paper, a beacon feature extraction method based on the thinning process and 
Hough line detection algorithm is proposed. By using the linear constraints existing in the 
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The image thinning process is an algorithm that replaces the connected area of an 
image with a curve. In the thinning process, the boundary pixels are iteratively removed 
to form an image skeleton with a single−pixel width on the basis of maintaining the con-
nectivity of the target. Zhang–Suen [23] algorithm is a parallel and 8−adjacency thinning 
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as lines, corners, and the intersection of T rows. Moreover, in terms of the complexity of 
the algorithm, it has fewer iterations and a fast running speed. According to the idea and 

Figure 1. Example of highly axisymmetric properties. (a) Plug front view. (b) Plug and socket
phase sequence.

For the target object with the above characteristics, a rectangular beacon (yellow
beacon in Figure 1a) is designed in this paper. A deep binocular camera is adopted to
extract the straight–line features of the beacon, based on the thinning process and Hough
transform, combining the characteristics of the straight line (better robustness, anti–light,
and anti–noise capabilities than the feature points). The state of the target object is solved
analytically through the view relation of the linear beacon, and the state angle around the
symmetry axis is included.

2. Extraction of Beacon Linear Features

According to the imaging model of a pinhole camera, the spatial line is still a straight
line after the projection transformation. The premise of state estimation is to extract straight–
line features representing rectangular beacons from two-dimensional images. The target
object may have multiple linear features (contour, edge, etc.), so the rectangular beacon
should be segmented from the background before the linear detection algorithm is applied.
Image segmentation methods based on edges, regions, or contours are greatly affected
by the texture features of actual images, so it is often necessary to adopt appropriate
segmentation algorithms for specific objects.

Segmentation algorithms based on grayscale and color features are widely used in
the field of machine vision. For the grayscale image of the source image Itraget or the tonal
channel image I in HSV space, the binary image B can be obtained by using thresholds T1
and T2 for segmentation [22]:

B(x, y) =
{

255, T1 ≤ I(x, y) ≤ T2
0

(1)

In the formula, B(x, y) and I(x, y) are pixel values of the column x, row y, of image
B and image I, respectively.

Considering the beacon linear features, the method based on edge features or contour
features will be affected by interference. Based on clusters, this method can suppress
interference, but the robustness of the algorithm is not good, because the number of
categories cannot be known in advance. The above methods do not consider the constraints
of the beacon itself, so the beacon linear features cannot be extracted accurately.

In this paper, a beacon feature extraction method based on the thinning process and
Hough line detection algorithm is proposed. By using the linear constraints existing in the
beacon, the interference can be eliminated to a large extent.

The image thinning process is an algorithm that replaces the connected area of an
image with a curve. In the thinning process, the boundary pixels are iteratively removed
to form an image skeleton with a single–pixel width on the basis of maintaining the
connectivity of the target. Zhang-Suen [23] algorithm is a parallel and 8-adjacency thinning
algorithm. The most prominent advantage of Zhang-Suen algorithm is that the skeleton
obtained after thinning is basically consistent with the original image for the areas such
as lines, corners, and the intersection of T rows. Moreover, in terms of the complexity of
the algorithm, it has fewer iterations and a fast running speed. According to the idea and
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characteristics of the image thinning algorithm, the thinned binary image T can be obtained
by applying the algorithm to the above binary image B.

Hough transform [24] converts curves in Euclidean space into points in parameter
space, where a voting mechanism is used to detect the features of a given curve. For the
binary image T, the progressive probabilistic Hough transform (PPHT) [25] can be applied
to eliminate the influence of interference and obtain the straight–line segment describing
the beacon. For the binary image obtained by color segmentation, PPHT is used to extract
straight lines. The process is as follows:

(1) Random acquisition of pixel points whose value is not 0 in the binary image, according
to the polar co-ordinate system linear equation: ρ = xcosθ + ysinθ, where ρ represents
the distance from the normal line to the origin, and θ is the angle between the normal
line and the polar co-ordinate axis. A two-dimensional (ρ, θ) point corresponds to
a straight line, mapped onto a homogeneous two-dimensional co-ordinate curve of
(ρ, θ), which represents all the straight lines of that pixel point.

(2) PPHT method is applied, where each pixel on its curve for (ρ, θ) is used to vote. If the
number of (ρ, θ) points in the polar co-ordinate system reaches the minimum number
of votes, the corresponding line L in the x–y co-ordinate system can be discovered.

(3) The points on the line L (and the distance between the points is less than the maximum
distance set) are connected into line segments. Then, these points are all deleted and
the parameters of the line segment are recorded (set starting point as S and end point
as E). The length of the line segment should meet the minimum length condition.

(4) The above operations (1), (2), and (3) are repeated until all the pixels of the image
have been traversed.

Using the line detection based on PPHT, n effective line segments can be obtained,
and each line segment has the similar slope and two parameters, S and E, which are the
starting point and end point, respectively. Then, the least square method is used to fit the
2n points into a straight line (obtaining the linear equation in pixel co-ordinates), that is,
the extraction of beacon line features is completed.

3. State Estimation Based on the Beacon Linear Features and View Relation

In this chapter, the state of the target object is described mathematically, and the
corresponding rotation matrix is established to solve the model. In addition, the state of the
target object is estimated by combining the linear features mentioned in the previous chapter.

3.1. Target State Description

In the physical space, the object co-ordinate system OP − XPYPZP, its definition, and
pose relation with the camera co-ordinate system OC − XCYCZC are established with the
rectangular beacon as the reference. OP − XPYPZP has a pure translational relation with
the co-ordinate system established at the origin of the target object’s centroid C0, so the
state of OP − XPYPZP can be regarded as the state of the target object. Point OP is the

midpoint of the short side above the rectangular beacon. co-ordinate axis
→

OPXP is the short

side direction of the beacon. co-ordinate axis
→

OPYP is the long side direction of the beacon.

co-ordinate axis
→

OPZP is determined according to the right–hand rule and intersect with
the central axis of the target object. The related co-ordinate systems are shown in Figure 2.
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The transformation relationship of the vector between co-ordinate system OP −
XPYPZP and the camera co-ordinate system OC − XCYCZC can be described as:[

xC yC zC
]T

=
[

R t
][

xP yP zP 1
]T (2)

In the formula, R =
[

r1 r2 r3
]

is a 3 × 3 rotation matrix, t is a 3 × 1 translation
matrix, and R is the state unknown.

If only the rotation matrix R is considered, the origin of the two co-ordinate systems
can be coincident. In the case of the rotation matrix R, the geometric meaning is that the
co-ordinate system OC − XCYCZC goes through a series of rotations about a fixed axis
(or the current axis), transforming to the co-ordinate system OP − XPYPZP. In general,
R = Rz(ϕ)Ry(θ)Rx(ψ), and the working plane of the target object in most industrial
applications is approximately parallel to the XCOCYC plane of the camera, so the rotation
about the XC axis can be ignored, i.e., Rx(ψ) = I. Therefore, the rotation matrix R is
regarded as the composition of the rotation Ry(θ) about the axis YC (fixed axis) and the
rotation Rz(ϕ) about the axis ZC (fixed axis), i.e.,:

R = Rz(ϕ)Ry(θ) (3)

3.2. State–Solving Model Based on Rotation Matrix
3.2.1. The Target Only Rotates Ry(θ ) about The YC Axis

If the target object only rotates Ry(θ) about the YC axis, as shown in Figure 3, that is,
the target object rotates angle θ about the YC axis, its geometric center of mass rotates from
C0 to C′0, and its physical radius is r. The center point of the target object on the image
plane π is C, and the co-ordinate of the corresponding point C in the camera co-ordinate
system is (xC, yC, zC). Its value can be obtained after three-dimensional measurement.
Line L can be obtained after the projection of the rectangular beacon is detected by the line.
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Figure 3. The projection and the YP axis view of rotation only about the YC axis. (a) The camera projects an image view as it
rotates about the YC axes. (b) YP axial view.

According to the geometric relationship:

rsinβ = sdCLcosα (4)

In the formula, α = arctan xC
zC

; dCL is the pixel distance from point C to line L; s = zC
fc

is
the scaling factor, representing the physical length per pixel; and fc is the normalized focal
length of the camera.

Therefore, in the figure (xC > 0, point C is to the left of line L), the rotation angle θ is:

θ = α− β (5)

In the same way, it can be obtained that θ = α + β when xC > 0 and point C is located
on the right side of line L; θ = α − β when xC < 0 and point C is to the left of line L;
θ = α + β when xC < 0 and point C is to the right of line L. Thus, the calculation model of
rotation angle θ about the YC axis can be uniformly expressed as:

θ = α + ζβ (6)

In the formula, ζ = −1. when point C was to the left of line L, −1 when C was to the
right of line L, and 0 when C was on line L. In addition, β = arcsin[ zCdCLcosα

( fc ·r) ].
Line L and any two points on it, S(x1, y1), E(x2, y2), and the outer point C(x, y) are

investigated on the pixel plane, as shown in Figure 4.
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The pixel distance from point C to line L is dCL:

dCL =
2S∆SED

dSE
(7)

In the formula, S∆SED is the area of ∆SED, and dSE is the Euclidian distance between
S and E.

The relative position relationship (left or right) between point C and line L can be
represented by the scalar A, consisting of points S(x1, y1), E(x2, y2), and point C(x, y).
When A > 0, it means that point C(x, y) is on the left of line L, and when A < 0, it means
that point C(x, y) is on the right of line L. When A = 0, it means that the point C(x, y) lies
on line L.

A = (y2 − y1)[(y− y1)(x2 − x1)− (y2 − y1)(x− x1)] (8)

If the target object only rotates about the YC axes, the rotation matrix R is:

R = Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (9)

3.2.2. The Target Rotates about the ZC Axis and YC Axis

The state R of the target object is regarded as the composition of the rotation Ry about
the YC axis (fixed axis) and the rotation Rz about the ZC axis (fixed axis). As shown in
Figure 5, the rotation angle of the target object about the YC axis is θ, and the rotation angle
about the ZC axis is ϕ.
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The angle of the projection line L of the rectangular beacon in the pixel plane represents
the rotation angle ϕ about the ZC axis. As shown in Figures 4 and 5, considering line L and
any two points S(x1, y1) and E(x2, y2) on it, it is obvious that the rotation angle ϕ is:

ϕ = arctan
(

x1 − x2

y1 − y2

)
(10)

The rotation Rz(ϕ) about the ZC axis (the fixed axis) is:

Rz(ϕ) =

 cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

 (11)

At this time, due: [
xC yC zC

]T
= Rz(ϕ)

[
x′C y′C z′C

]T (12)
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In the formula, [ x′C y′C z′C ]
T co-ordinate point is based on co-ordinate system

OC − X′CY′CZ′C, which co-ordinate system OC − XCYCZC transforms to by rotating ϕ about
the ZC–axis. It is obvious that zC = z′C.

On this basis, the rotation Ry(θ) about the axis YC
′ (current axis) is further considered.

Similar to the analysis process in the previous section, the calculation model of rotation
angle θ is:

θ = α + ζβ (13)

In the formula, ζ = −1 when point C was to the left of line L, 1 when C was to the
right of line L, and 0 when C was on line L.

[
x′C y′C z′C

]T
= RT

z (ϕ)
[

xC yC zC
]T

α = arctan x′C
z′C

= arctan xCcosϕ+yCsinϕ
zC

β = arcsin
[

zCdCLcosα
( fc ·r)

] (14)

Thus, when the target object rotates about the YC axis and then about the ZC axis, the
rotation matrix is:

R = Rz(ϕ)Ry(θ) =

 cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (15)

4. Experiment and Result Analysis

In order to verify the accuracy and robustness of the algorithm, the linear feature
extraction and state estimation were carried out with the shore power plug as the object.
The shore power plug approximates a cylinder with highly axisymmetric characteristics,
with a physical dimension of 176 mm high and an average diameter of d = 86 mm in the
middle section. The state estimation of the shore power plug is the premise of realizing
the automatic docking between the shore power plug and the shore power socket by
the manipulator arm. Since the phase sequence of the shore power plug and the shore
power socket needs to match, it is necessary to detect its state around its axis l. The pose
description between the shore power plug and the camera is shown in Figure 2. The yellow
rectangular beacon in the figure is the straight–line feature to be extracted.

The YOLOV3 [26,27] target detection algorithm was used to identify and locate the
shore power plug, and the depth camera was used to obtain the three-dimensional co-
ordinates of the center point (xC, yC, zC).

4.1. Line Feature Extraction Experiment

The target object (the shore power plug) is randomly placed at any position at a
random angle under different lighting backgrounds. Based on the target detection results,
the beacon is divided on the hue channel of HSV space. Then, the extraction results of
beacon linear features based on the thinning process and Hough transform proposed in
this paper are shown in Figure 6.
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The preliminary results show that the algorithm can detect the straight–line character-
istics of the beacon in most conditions, but there are still some cases that some interference
cannot be removed and leads to error detection. Further quantitative results are obtained
to evaluate the specific performance of the algorithm correctly. Under the condition of
different illumination, the target object (simple pendulum, translation) is shaken for contin-
uous multiple frame detection, which means that the target object and rectangular beacon
appear a variety of different angles. Under the condition of each kind of illumination
and the different depth zC, the experiment is repeated independently three times. Then,
the statistical detection success rate ηL is equal to NL

NP
, where NL is the number of frames

of successfully detecting line and NP is the number of frames of successfully detecting
plug. In addition, the results are shown in Table 1. The total number of NP frames in
each experiment is fixed as 300 frames. When the depth zC is equal to 790 mm under
normal light, the relationship between the success rate and the number of frames is shown
in Figure 7.

Table 1. Success rate of beacon straight–line feature extraction under different conditions.

Condition Weak Light Normal Light Strong Light

zC = 480 mm 96.00% 98.14% 98.33%
zC = 790 mm 77.33% 91.38% 74.67%

zC = 1100 mm 58.75% 64.86% 59.00%
Average 77.36% 84.79% 77.33%
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It can be seen from Table 1 that light intensity and depth distance have an influence
on the success rate of beacon linear feature extraction. The general rule is that the success
rate is negatively correlated with depth distance, and the success rate under the normal
light condition is higher than that under weak light and strong light. It can be seen
from Figure 7 that the success rate fluctuates with the increase in the number of frames,
qualitatively indicating that the success rate of sample data is close to the overall success
rate. The comprehensive success rate of beacon linear feature extraction is more than 80%
by the experiment.
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4.2. State Estimation Experiment and Analysis

In order to verify the accuracy of the proposed state estimation method (L–V method)
based on the beacon linear feature and view relation, it is compared with the state estimation
based on the beacon corner and homography matrix (C–H method) and the state estimation
based on infinitesimal plane–based pose estimation (IPPE). Besides, in the experiment, it
is found that the estimation value of C–H method is basically the same as that of another
state estimation based on EPNP [28,29] (C–EPNP method).

In the static scene, the target object is placed at random in different positions and
attitudes, and the target object is rotated at angle θ only around the YC axis, angle ϕ only
around the ZC axis, and angle θ first around the YC axis and then angle ϕ only around
the ZC axis, respectively. A gyroscope is used to make objects present a different state,
and the measured value of the gyroscope is taken as the true value. With continuous
multiple frame detection of the target object, the linear feature extraction of failure and
beacon corner detection frame are abandoned, and the data of the detection are averaged.
Each experiment fixes the total effective frames NR = 100, under the condition of three
kinds of detection diagram, as shown in Figure 8; blue box, blue dot, green line, and red
dot represent target detection and its confidence, beacon corner, straight line feature, and
center point detection results, respectively.
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Figure 8. State measurement schematic diagram under three situations. (a) Rotate about YC axis.
(b) Rotate about ZC axis. (c) Rotate about YC and ZC axis.

Regarding the description of the rotation state of the target object, there are vari-
ous methods to describe the rotation state, and the commonly used methods are Euler
angles [30] and quaternion [31]. Among them, the quaternion state description method
tends to use numbers with certain calculation rules to describe the rotation state of the
target object, which can be displayed intuitively through the certain calculation. The
state description based on Euler angles is obtained by rotating three angles about three
co-ordinate axes, and it is more intuitive. When Euler angles are used to describe the state
in a three-dimensional space, the target object may fall into the problem of the gimbal
lock [32]. However, according to the actual situation, the rotation angle of the target object
around the camera’s co-ordinate axis Xc is so small that it is ignored. Therefore, in this
paper, the state of the target is described by Euler angles without the problem of the gimbal
lock. In addition, considering the intuitionistic state description and the fact that the state
solving algorithm in this paper can directly solve the Euler angles of the target object
relative to the camera co-ordinate system, the Euler angles are used to express the state of
the target more suitably than quaternion. The measurement results expressed by the RPY
angle are shown in Tables 2–4, respectively.
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Table 2. Measurement results of rotation angle θ about the YC axis.

True–Value θr(◦) θL–V(
◦) eL–V(%) θC–H(◦) θC–IPPE(

◦)

10 10.837 8.37 0 3.368
−10 −10.220 2.20 −0.004 −31.023
20 19.126 −4.37 0.008 15.538
−20 −20.287 1.44 0 −10.447
30 29.521 −1.60 −0.002 9.903
−30 −31.774 5.91 0 −17.143
40 41.549 3.87 0 34.355
−40 −37.445 −6.39 0 −9.613
50 48.585 −2.83 0 26.053
−50 −49.933 −0.13 0 0

Table 3. Measurement results of rotation angle ϕ about the ZC axis.

True–Value ϕr(◦) ϕL–V(
◦) eL–V(%) ϕC–H(◦) eC–H(%) ϕC–IPPE(

◦) eC–IPPE(%)

10 10.690 6.90 10.893 8.93 8.364 −16.36
−10 −10.055 0.55 −10.420 4.20 −11.277 12.77
20 21.245 6.23 23.324 16.62 17.562 −12.19
−20 −21.902 9.51 −22.201 11.01 −22.436 12.18
30 30.586 1.95 31.890 6.30 27.156 −9.48
−30 −30.695 2.32 −31.854 6.18 −32.697 8.99

Table 4. Measurement results of rotation angle (θ, ϕ) around the YC axis and then around then
ZC axis.

Number True–Value L–V C–H C–IPPE

1 (0, 0) (1.809, −1.716) (0, 0) (1.954, −0.306)
2 (10, −10) (8.574, −10.997) (0.002, −11.160) (−7.772, −9.972)
3 (−10, 10) (−9.922, 11.275) (−0.006, 11.717) (−1.680, 12.052)
4 (20, −20) (19.281, −18.633) (0.001, −18.823) (−8.735, −17.86)
5 (−20, 20) (−21.357, 20.311) (0.007, 20.555) (−3.137, 21.256)
6 (30, −30) (25.617, −28.421) (0.001, −26.565) (5.394, −26.909)
7 (−30, 30) (−25.576, 28.086) (0, 27.416) (0, 25.713)

(a) Only rotate θ about YC axis

As can be seen from Table 2, the C–H method is unable to detect the changes caused
by the rotation of the target object around the YC axis, and the detection result is close to
0, that is, it is insensitive to the rotation around the YC axis. The C–IPPE method is very
inaccurate in the detection of angle θ. The absolute value of relative error eL–V is less than
9%, the absolute value of absolute error is less than 3◦, and the average absolute percentage
error is 3.711.

(b) Only rotate ϕ about ZC axis

As can be seen from the results in Table 3, the measurement error of the L–V method
for the rotation angle ϕ is not more than 10%, and the absolute value of the absolute error
is not more than 2◦. At the same time, it is better than the C–H method and C–IPPE
method. The C–H method and C–IPPE method can perceive the change of ϕ, and have
better measurement results.

(c) Rotation angle (θ, ϕ) about the YC axis and then about the ZC axis

In Table 4, the C–H method and C–IPPE method are still insensitive to the change of θ.
In Table 5, the relative error percentage and average absolute percentage error eMAPE of
each method in Table 4 are calculated, but the detection error of θ by the C–H method and
C–IPPE method is not included.
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Table 5. Measurement error of (θ, ϕ).

Number eL–V(%)(θ) eL–V(%)(ϕ) eC–H(%)(ϕ) eC–IPPE(%)(ϕ)

2 −14.26 9.97 11.60 −0.28
3 −0.78 12.75 17.17 20.52
4 −3.60 −6.84 −5.89 −10.67
5 6.79 1.56 2.78 6.28
6 −14.61 −5.26 −11.45 −10.30
7 −14.75 −6.38 −8.61 −14.29

eMAPE 9.132 7.127 9.583 10.390

By comparison with Tables 2 and 5, for the L–V method, the detection accuracy of
θ is reduced due to the presence of ϕ. The L–V method is still superior to the other two
methods; the absolute value of relative error is less than 15%, the absolute value of absolute
error is less than 5◦, and the average absolute percentage error is 9.132%.

Taking the experiment numbered 4 in Experiment (c) as an example, i.e., θ = 20◦ and
ϕ = −20◦, the detection value of 100 frames of images is shown in Figure 9. θL–V is the
detection result of the LV method, and ϕC–H is the detection result of the C–H method.
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Figure 9. θ = 20◦, ϕ = −20◦ detection value respectively through L–V and C–H methods.

As can be seen from Figure 9, the state detection results of the L–V method and C–H
method are relatively stable, fluctuating around the true value, and the difference of the
peak value is within 4◦.

In the subsequent work, this paper increased the experimental valid frame n to
1000 frames. The experimental results are compared with those of n = 100 frames, and there
is little difference between them. In addition, it is tested that this method can complete the
grasping and docking of the shore power plug with the manipulator in the shore power
docking experiment.

The reason why the C–H method cannot achieve perception of the rotation angle θ
about the fixed axis YC is mainly as follows: weak perspective projection problems of the
beacon, namely the similar depth of the beacon at the four corners, causing a failure of
the homography matrix on θ state estimation. The L–V method in this paper realized the
detection of θ and a more accurate and stable detection of the rotation angle ϕ about axis
ZC, namely to achieve state estimation of an axisymmetric target.

5. Conclusions

Aiming at a target that lacks texture and has the characteristics of axial symmetry,
in this paper, we add bright–colored straight–line beacons to the target artificially, and
successfully extract the straight–line features of the beacons through the Hough transform
and thinning process. Finally, the state estimation of a highly axisymmetric target, including
the state angle about its axis of symmetry, is realized by using the features of a single linear
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and view relation. In addition, through the comparison of the success rate of line extraction
under different illumination and image frame numbers, the success rate of line extraction
is maintained at about 80%, which indicates that the robustness of line feature extraction
is strong. Therefore, the reason why the subsequent C–H and C–IPPE methods can not
accurately estimate θ is that the anti–interference ability of corner points is weaker than
that of straight lines, and the robustness is poor. By comparing the experimental data
measured by the L–V method, C–H method, and C–IPPE method, it is shown that the L–V
method is not only more accurate than the latter two methods in estimating the state angle
ϕ, but also can more accurately estimate the state angle θ at which the highly axisymmetric
target rotates about the axis of symmetry. In summary, it is verified that the L–V method
can estimate the state of axisymmetric targets with higher accuracy and robustness.

6. Future Work

As for the future research of this topic, in order to reduce environmental interference
and improve the feasibility of application, it is necessary to combine this algorithm with
a deep–learning network, which can identify and capture target objects in the image, so
as to reduce the interference of the external complex environment. Compared with the
deep–learning network that directly trains and estimates the target state through images,
the deep–learning network for target recognition is more mature, and its training set and
network complexity are simpler. In addition, the state estimation in this paper takes into
account the factor of the small rotation angle of a shore power plug around the XC axis in
the actual situation, and ignores it. In order to expand its application range and improve the
accuracy of state estimation, its rotation angle around the Xc axis still needs to be discussed
in 3D space. The Euler angles of the axisymmetric object rotating about its own co-ordinate
axis are used as its attitude description, and its rotation order is X–Y–Z. According to this
rotation order, rotation about the Y–axis only changes the length projection of the target
object on its Z–axis, and has no effect on the θ and ϕ angle solving method mentioned in
this paper. Then, the angle of rotation around the Y–axis can be calculated according to the
change in the length of its beacon projection. Since there are no experiments, we are simply
making assumptions here.
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