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Abstract

Background: A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of
results to interpret the involvement of lipids in biological systems. Results: We built a new lipid ontology (LION) that
associates >50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment
algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of
lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from
well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the
microsomal fraction showed a significant enrichment of relevant LION-terms including “plasma membrane”, “headgroup
with negative charge”, ”glycerophosphoserines”, “above average bilayer thickness”, and “below average lateral diffusion”. A
second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with
arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and
by using LION/web, showing significant enrichment of terms associated with high membrane fluidity (”above average”,
”very high”, and ”high lateral diffusion” and ”below average transition temperature”). Conclusions: The results
demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.
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Background

The comprehensive study of lipids, also termed lipidomics, is
gaining momentum. Instrumentation is becoming increasingly
more sensitive, precise, and fast, and the use of lipidomics
to address key questions in membrane biology has become
widespread. As a result, datasets are rapidly increasing in terms
of both size and complexity. Owing to a lack of methods to per-

form global and in-depth data mining, lipidomic research tends
to focus on individual lipid classes or lipid species. A common
approach in other “omics” disciplines to reduce complexity is
the use of ontologies, e.g., Gene Ontology (GO) [1], Chemical En-
tities of Biological Interest ontology [2], combined with statisti-
cal tools to determine terms of interest. Although lipid structure
is closely related to lipid function, it is currently impossible to
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associate properties of individual lipids with complex lipid mix-
tures of cellular lipidomes. Examples of biophysical properties
that play an important role in membrane biology are numer-
ous and include membrane thickness (e.g., as driving force in
the sub-cellular localization of proteins [3]), membrane fluidity
(e.g., regulating bacterial survival [4], membrane heterogeneity
in cellular signaling [5]), intrinsic curvature (e.g., of lipids as key
player in lipid droplet biogenesis [6, 7] or coat protein I [COPI]
coat disassembly [8]), and net charge (e.g., of membranes as a de-
terminant in lipid-protein interactions [9]). Here, we aim to pro-
vide a lipid ontology database and complementary enrichment
analysis tool that (i) contains chemical and biophysical informa-
tion of lipid species, (ii) is platform independent and compatible
with routine mass spectrometry−based lipid analysis, (iii) can
be used by researchers without computer programming skills,
and (iv) is freely available to the scientific community.

Findings
Basic structure of LION

We constructed an ontology database called LION (File S1) that
links >50,000 lipid species with 4 major branches: “lipid classi-
fication” (the LIPIDMAPS classification hierarchy [10]), “chemi-
cal and physical properties” (fatty acid length and unsaturation,
headgroup charge, intrinsic curvature, membrane fluidity, bi-
layer thickness), “function”, and “sub-cellular component” (pre-
dominant sub-cellular localization). The resulting database con-
tains >250,000 connections (“edges”), providing a detailed sys-
tem for in-depth annotation of lipids. An example of all LION-
terms associated with a single phosphatidylserine (PS) lipid
species, PS(34:2), is depicted in Fig. S1. We describe the construc-
tion of LION in more detail in the Methods section. All LION-
terms, classification rules, and references are described in Data
S1; all lipids currently supported by LION are described in Data
S2.

Addition of biophysical properties to LION

An important feature of LION is the association of lipid species
with biophysical properties. We made use of experimental data
(from 5 phospholipid classes and sphingomyelin) [11] and data
(from 5 phospholipid classes) obtained by coarse-grain molecu-
lar dynamics simulation (CG-MD) [12], each providing distinct
biophysical properties. These data were used to estimate the
biophysical properties of all related lipids in the LION-database
by multiple linear regression analysis.

The regression models were validated in 2 ways. First, we per-
formed leave-one-out cross-validations (LOOCV) of all 3 mod-
els (Fig. S2A–C), showing satisfactory agreement between deter-
mined and predicted values. Second, we compared 2 properties
closely associated with membrane fluidity: “transition tempera-
ture” (from experimental datasets) and “lateral diffusion” (from
the CG-MD datasets) (Fig. S2D). As expected, lipids with low tran-
sition temperatures were predicted to have high lateral diffusion
values at a defined simulation temperature and vice versa.

Subsequently, all numerical data points for each biophysi-
cal property were categorized into 5 predefined groups (“very
low”, “low”, “average”, “high”, “very high”). We aimed to find
group definitions with physiological relevance. Therefore, lim-
its of each group were calculated on the basis of 4 mammalian
lipidomics publications that served as a reference [13–16]. Using
these group definitions, numerical values of all applicable lipid

species present in LION were classified and connected to their
respective LION-term (Fig. S2E).

LION enrichment analysis and web-tool LION/web

Next, we used LION as a basis to build an ontology enrichment
tool that facilitates reduction of lipidome complexities in an un-
biased manner. To this end, we made use of an adapted ver-
sion of “topGO”, an R package designed for enrichment analy-
sis of GO-terms [17]. Subsequently, we designed a web-tool with
R package Shiny (“LION/web” [18]) that offers an intuitive user
interface and supports 2 major workflows (Fig. 1): enrichment
analysis of a subset of lipids of interest (“target-list mode”) and
enrichment analysis performed on a complete and ranked list
of lipids (“ranking mode”, referred to as “SAFE” and described in
the context of genes [19]). A detailed step-by-step description of
LION/web’s workflow can be found in Note S1.

Analogous to GO enrichment approaches [1], which facilitate
preselection of ontology subdomains or subsets of GO-terms
(“GO-slims”), LION/web offers the option to limit analysis to spe-
cific LION-terms of interest. Furthermore, the web-tool allows
removal of the most generic LION-term (the one with the highest
hierarchy) if a related term contains the same subset of lipids.
For example, the term “diacylglycerophosphocholines” might be
associated with the same lipids as “glycerophosphocholines”.
With this option switched on, only the most specific term (“dia-
cylglycerophosphocholines”) is included in the results.

Performance of “target-list mode” by LION/web

To test the functionality of LION/web, we made use of a pre-
viously published and well-characterized dataset containing
lipidomics data from several sub-cellular fractions of RAW 264.7
macrophages, with or without toll-like receptor 4 (TLR4) acti-
vation by Kdo2-lipid A (KLA) [13] (see Methods for a direct link
to the dataset). First, we renormalized the dataset by express-
ing all lipid species as fraction of the total amount of lipid per
sample. Subsequently, the data were visualized by construct-
ing a heat map graph (Fig. 2A). Lipid species were grouped
into 10 clusters by hierarchical clustering. Each lipid cluster
was subsequently analyzed by LION/web, which was able to
reformat and match the vast majority (>97%) of the submit-
ted lipids in the dataset. In the target-list mode, LION/web
assesses the enrichment of LION-terms in a subset of lipids,
as compared to all lipids in the experiment. For every clus-
ter, lipids (Data S3) were entered as target-list and compared
with the background list. Enrichment analysis of all 10 clus-
ters resulted in ≥1 significant LION-term (Fig. 2B). The heat
map showed that lipids present in clusters 7 and 8 were abun-
dant in the mitochondrial fractions (Fig. 2A). In line with this
observation, enrichment analyses of these clusters resulted in
significant terms associated with this organelle (e.g., “diacyl-
glycerophosphoetahnolamines”, “mitochondrion”, “diacylglyc-
erophosphoglycerols”, “headgroup with negative charge”). Sim-
ilar results were obtained for cluster 6 (terms related to the
plasma membrane), and to a lesser extent for cluster 9 (terms
related to endoplasmic reticulum [ER]). Lipids in cluster 5 were
more abundant in KLA-treated fractions and resulted in terms
reported by LION/web that were associated with low membrane
fluidity.

http://www.lipidontology.com
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Figure 1: Enrichment analysis approaches supported by LION/web. A lipidomics dataset containing lipid identifiers and abundances derived from 2 or more conditions

(1) can be processed by LION/web in 2 ways. In the “target-list mode” (left, red 2), a subset of lipids (e.g., derived from thresholding or clustering) is compared to the
total set of lipids. After standardization of lipid nomenclature (red 3), applicable LION-terms are associated and assessed for enrichment in the subset by Fisher’s exact
statistics. In the “ranking mode”, input lipids are ranked by numeric values (“local” statistics) (blue 2). After ranking, lipid nomenclature is standardized (blue 3). Appli-
cable LION-terms are subsequently associated to the dataset and distributions are compared to a uniform distribution by “global” statistics (here, Kolmogorov-Smirnov

[K-S] tests). Calculated P-values of LION-terms from both modes are corrected for multiple testing (Benjamini-Hochberg). PC: phosphatidylcholine; PA: phosphatidic
acid; PI: phosphatidylinositol.

Performance of “ranking mode” by LION/web

An alternative method to assess enrichment of LION-terms
in LION/web is the ranking-mode. In the ranking-mode, all
individual lipid species of 2 conditions are compared and
ranked on the basis of a “local” statistic. This local statistic is
any numeric value that associates individual (hence “local”)
lipids with the provided conditions. LION/web supports 3
different local statistics: 1-tailed Welch 2-sample t-test P-values
(comparison of 2 conditions); log2 fold-change values (com-
parison of 2 conditions), and 1-way ANOVA F-test P-values
(comparison of >2 conditions). Subsequently, the distributions
of all associated LION-terms over the ranked list are compared
to uniform distributions by using 1-tailed Kolmogorov-Smirnov
tests (“global” statistics, as full lipidomes are assessed). A
LION-term is enriched when its associated lipids are higher
ranked than expected by chance. To illustrate the ranking
mode, we compared the isolated plasma membrane (PM) frac-

tion (samples 19–21 from Fig. 2A) with the ER fraction (samples
13–15 from Fig. 2A) from non-stimulated macrophages using
1-tailed Welch 2-sample t-test P-values as local statistic. Sub-
sequently, LION/web assessed all LION-terms for enrichment
(Fig. 2C). In good agreement with current descriptions of the
selected organelles [20, 21], significant enriched LION-terms
included terms associated with chemical descriptions (e.g.,
“glycerophosphoserines”, “headgroup with negative charge”,
“phosphosphingolipids”), biological features (“plasma mem-
brane”), and biophysical properties (e.g., “above average bilayer
thickness”, “below average lateral diffusion”, “very low lateral
diffusion”, “very high bilayer thickness”, ”neutral intrinsic
curvature”). LION/web also reported the significant enrichment
of “very high transition temperature”, which is in line with the
(very) low lateral diffusion terms (see also Fig. S2D). The term
“very low transition temperature” was also reported to be sig-
nificantly enriched. Inspection of the lipid species responsible
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Figure 2: LION-term enrichment analysis of RAW 264.7 macrophages. (A) Heat map of scaled lipid amounts (z-score < 0: blue, z-score > 0: red) of sub-cellular lipidomics

data [13] with samples on the x-axis and individual lipid species on the y-axis. Lipids were clustered into 10 groups by hierarchical clustering. (B) Enrichment analyses
of all lipid clusters in the “target-list mode”. For each cluster, the first n + 2 significant LION-terms are shown. (C) Enrichment analysis of plasma membrane (PM) vs
endoplasmic reticulum (ER) fractions in the “ranking mode”. The gray vertical lines indicate the cut-off value of significant enrichments (q < 0.05). Bar colors are scaled
with the enrichment (−log q-values). FDR: false-discovery rate.
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for the LION-term “very low transition temperature” revealed
the presence of lipids that all contain polyunsaturated fatty
acids with ≥4 unsaturations. This may be a macrophage-
specific phenomenon, related to their involvement in
inflammation [22].

Enrichment performance of chemical and biophysical
LION-terms

To further characterize the enrichment of chemical and bio-
physical properties by LION/web, we used 2 different experi-
mental approaches. First, we investigated the enrichment of
chemical features that can be easily incorporated into lipids.
To this end, Chinese hamster ovary (CHO) K1 cells were incu-
bated overnight in the presence of palmitic acid (PAL), linoleic
acid (LIN), or arachidonic acid (ARA) complexed to bovine serum
albumin (BSA). Subsequently, lipids were analyzed by liquid
chromatography−tandem mass spectrometry (LC-MS/MS) and
quantified. When available, we used MS/MS data to annotate
lipids with their most abundant fatty acid composition. This
level of annotation is important because it enables LION to link
input lipids with terms associated with fatty acids (Data S4 and
Fig. S3). Next, the web-tool was set to use the ranking mode and
to limit analysis to LION-terms indicating the presence of fatty
acids as lipid building blocks. LION/web reliably reported the sig-
nificant enrichment of the respective fatty acid in the 3 different
conditions (Fig. 3A and Data S5).

Second, to investigate the enrichment of biophysical LION-
terms, we incubated CHO K1 cells with ARA. This procedure is
known to increase membrane fluidity [ 23]. After incubation, the
membrane fluidity properties of the samples were analyzed both
experimentally and by LION/web. Membrane fluidity was exper-
imentally assessed using pyrene decanoic acid (PDA) (Fig. 3B).
This fluorescent probe can exist as monomer or excimer, result-
ing in a shift of its emission spectrum. The ratio of excimer over
monomer fluorescence is proportional to the degree of mem-
brane fluidity [24]. As expected, the ratio of excimer/monomer
forms of PDA revealed a significant increase in membrane flu-
idity of lysates in the presence of ARA (Fig. 3C). For parallel
LION/web analysis of membrane fluidity properties, lipids were
extracted from the same samples and analyzed by LC-MS/MS
(Data S6 and Fig. S4). LION contains 2 sets of terms associated
with membrane fluidity: “transition temperature” and “lateral
diffusion”. Accordingly, LION/web was set to limit enrichment
analyses to these sets, after which the lipidomic data were ana-
lyzed (ranking mode). In line with the experimentally measured
increase in membrane fluidity, terms associated with high mem-
brane fluidity (”above average”, ”very high”, and ”high lateral dif-
fusion” and ”below average transition temperature”) were signif-
icantly enriched in cells that had been treated with ARA (Fig. 3D
and Data S7).

Discussion

Despite the quick growth of lipidomics and the rise of many tools
to process raw data into lipid compositions [25], no automated
pipeline to reduce complexity in lipidomic datasets using prior
knowledge was yet available. Such a tool facilitates the genera-
tion of hypotheses, which is an important aim in many omics ex-
periments. Here, we have presented a new ontology called LION
and have used this ontology to build a web-based online LION-
term enrichment tool suited to fulfill this need. In a single anal-
ysis, trends in complex lipidomic datasets can now be assessed
in a standardized way. The web-tool ensures that the pipeline

is accessible to users who are not familiar with programming
languages.

Just like enrichment analysis approaches in other omics
fields, LION-term enrichment analysis comes with specific
strengths and limitations. The quality and coverage of the un-
derlying ontology is of great importance. For LION, we aimed
to support most commonly found lipid species in mammalian
systems. In our examples, >85% of the input lipids could
be matched to the ontology. Owing to the great diversity of
lipidomes in different organisms, this coverage could be lower
in user-provided datasets from non-mammalian systems. We
hope to support LION’s coverage of plant, bacterial, and yeast
lipidomes better in the future. LION/web offers users several
feedback options to keep track of missing annotations and to
act specifically upon users’ needs.

It is important to note that the enrichment of biophysical
properties such as membrane fluidity, membrane thickness, and
curvature cannot replace functional assays. More factors than
lipids alone—e.g., protein composition, temperature—are play-
ing important roles. Moreover, the effect of cholesterol is com-
plex and depends on the interaction with other lipids. Therefore,
the biophysical effects of cholesterol are not included. Also, the
relative amounts of lipids in the described enrichment analysis
methods are not taken into account: low-abundant lipids con-
tribute equally to enrichment as their high-abundant counter-
parts.

This limitation can be circumvented by defining local statis-
tics that takes abundances into account. This type of statistic
will become more urgent when lipidomic analyses shift from
mostly semi-quantitative to quantitative analyses in the future.

In summary, LION/web reveals changes in lipid patterns that
allow researchers to study the complexity of lipidomes in a bi-
ological context. With future expansions of the LION database
and of LION/web (also upon request of the scientific commu-
nity), LION/web will increasingly successfully bridge the gap be-
tween lipidomics and cell biology.

Methods
Creation of lipid ontology (LION)

We built an ontology database that connects lipid species to
the following 4 major branches: “lipid classification”, “function”,
“cellular component”, and “physical or chemical properties”. For
readability, a term is included at the top of each branch to indi-
cate the nature of a LION-branch. These “category” terms are
distinguished from other LION-terms with an ID containing the
prefix “CAT”.

The classification system is based on the LIPIDMAPS clas-
sification [10]. LIPIDMAPS does not support lipid species with
summed fatty acid. However, this extra layer is useful because it
enables mapping when exact fatty acid compositions of mea-
sured lipids are not known. This concept is also used in the
SwissLipids system [26]. Downstream, individual lipid species
belonging to classes described in Data S1 were constructed as
combinations of the following fatty acids: C12:0, C14:0, C14:1,
C16:0, C16:1, C18:0, C18:1, C18:2; C18:3, C20:0, C20:1, C20:2, C20:3,
C20:4, C20:5, C22:0, C22:1, C22:2, C22:3, C22:4, C22:5, C22:6, C24:0,
C24:1, C24:2, C24:3, C24:4, C24:5, C24:6, C26:0; C26:1, C26:2, C26:3,
C26:4, C26:5; C26:6, and C26:7. For sphingolipids, sphingosine
(d18:1) and sphinganine (d18:0) were used as possible back-
bones. In the current version, LION does not distinguish between
sn-positions. Fatty acids were ordered by chain length (low to
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Figure 3: LION-term enrichment and membrane fluidity of CHO K1 cells. CHO K1 cells were incubated overnight with PAL, LIN, or ARA (100 μM) (A) or with ARA (250 μM)
(B–D). All incubations were performed in triplicate. For control (CON) incubations, cells were incubated with fatty acid free–BSA. (A, D) After extraction and lipidomics
profiling by LC-MS/MS, enrichment analyses of the conditions of interest vs control incubations were performed by LION/web of (A) LION-terms indicating the presence

of selected fatty acids or (D) LION-terms indicating the degree of membrane fluidity. Dot sizes in the dot plots are scaled to the number of associated lipids; colors are
scaled to the level of enrichment (–log q-values). (B, C) After incubation, fluorescence emission spectra of lysates containing pyrenedecanoic acid (PDA) were measured
(B). Fluorescence spectra examples of either control (black) or ARA-stimulated lysates (red). Gray shades indicate monomer and excimer fluorescence filters. (C) Mean
ratios (bar) and individual data points (dots) of excimer over monomer fluorescence (representative data of 3 independent experiments). Statistical significance was

determined by Welch’s 2-tailed t-test. (A, C, D) Asterisk indicates P or q < 0.05, double asterisk P or q < 0.01, and triple asterisk P or q < 0.001. FDR: false-discovery rate.
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high) and number of unsaturations (low to high). Altogether,
LION contains ∼50,000 lipid species.

The branch “function” comprises 3 subcategories: “mem-
brane component” (associated with lipids that are primarily
regarded as a structural component of lipid bilayers), “lipid-
mediated signaling” (lipids that have been implicated in sig-
naling), and “lipid-storage” (lipids that are associated with stor-
age, primarily in lipid droplets). In the category “cellular com-
ponent”, lipid classes that are enriched in particular cellular
organelles are linked to their corresponding organelle terms
[7, 20, 21]. The branch “physical or chemical properties” com-
prises a number of subcategories. First, a number of chemi-
cal descriptions (“contains fatty acid”, “fatty acid unsaturation”,
“fatty acid length”, and “type by bond”) was inferred from the
species names. Second, data about “intrinsic curvature” [7, 27]
were categorized into either negative, neutral, or positive curva-
ture. Because data on the species level are limited, curvature was
assumed to be predominantly headgroup-dependent and fatty
acid composition was neglected. The third subcategory, “charge
headgroup”, was divided into 3 groups based on structural data:
“negative”, ”positive/zwitter-ion”, and “neutral” [26]. This last
term also comprises lipids lacking a headgroup. The fourth sub-
category in “physical or chemical properties” is “chain-melting
transition temperature”. This property is derived from a num-
ber of sources, comprehensively reviewed by Marsh [11]. This
dataset covers a range of lipid classes in both glycerophos-
pholipids (phosphatidylcholine [PC], phosphatidylethanolamine
[PE], phosphatidylglycerol [PG], phosphatidic acid [PA], phos-
phatidylserine [PS]) and sphingolipids. We made use of multi-
ple linear regression analysis with lipid class, fatty acid length,
and unsaturation as predictors to facilitate data extrapolation to
previously unreported lipid species. The obtained model (coeffi-
cients are available via Data S8) was validated by LOOCV. Briefly,
1 data point from the dataset was taken out, after which the
model was rebuilt with the remaining points as training set. Sub-
sequently, the selected data point was used as validation sam-
ple. This procedure was repeated for all the data points (Fig. S2C).

Ontologies contain categorical data and are not compati-
ble with numeric values. Therefore, we classified chain-melting
transition temperature values into 5 distinct categorical data
groups: “very low”, “low”, “average”, “high”, or “very high”. To
define the limits of these intrinsic subjective groups, we used 4
previously reported datasets to serve as reference lipidomes [13–
16]. From all reported lipids, the transition temperature was pre-
dicted by the model. The obtained transition temperature distri-
bution was used to define the groups: the lowest 20% (first quin-
tile) was classified as “very low”, the second 20% (second quin-
tile) as “low”, etc. Subsequently, these limits were used to cat-
egorize all lipid species present in LION. Lipids with transition
temperature values lower than the lowest limit were defined as
“very low”, whereas values higher than the highest limit were
defined as “very high”. A flow chart of this procedure is depicted
in Fig. S2E.

In addition to these experimental data sets, we also used
data [12] that were obtained by coarse-grain molecular dynamics
simulation (Martini force field [28]) and which include the mem-
brane properties “bilayer thickness” and “lateral diffusion”. The
dataset contains lipids from 5 common classes of glycerophos-
pholipids (PC, PS, PG, PA, PE) but lacks sphingolipids and sterols.
By definition, coarse-grained lipids represent a range of struc-
tures. So that the dataset could be used in the ontology system,
names of coarse-grained lipids were translated into their rep-
resenting counterparts. Subsequently, lipid properties were ex-
trapolated to the entire database by multiple linear regression

analysis models (with lipid class, fatty acid length, and unsat-
uration as predictors; coefficients are available via Data S8) and
validated by LOOCV (Fig. S2A and B). We followed the same pro-
cedure as used for transition temperatures; extrapolated results
for both properties were categorized into representative classes:
“very low”, “low”, “average”, “high”, or “very high”, based on val-
ues, predicted by our models, of the reference datasets [13–16].

The initial structure of LION was built with OBO-Edit v.2.3.1
[29] and formatted as an OBO file. Subsequently, custom R scripts
connected specific terms with more general terms based on the
described datasets. The entire ontology can be found as File S1.

Implementation of enrichment analysis tool

To use LION with existing ontology enrichment tools, we used
an adapted and generalized version of the Bioconductor R pack-
age topGO [17]. This version, called “topOnto”, allows users to
include ontologies other than those provided with the package.
TopOnto’s attached Perl script was used to convert the ontology
file from OBO to SQLite format. Apart from this extra feature, the
topOnto package provides the same functionality as the original
version.

To perform the enrichment analysis, 2 statistical approaches
are used. In the target-list mode, 1-tailed Fisher exact statistics
are used to test enrichment. To this end, 2 × 2 contingency ta-
bles are constructed for every LION-term, containing the num-
ber of lipids associated and not associated with the given term
for both the target-list and the background set, and analyzed. In
the ranking mode, 1-tailed Kolmogorov-Smirnov tests are used
as “global” statistics to assess enrichment of LION-terms over a
ranked (by “local” statistics) list of lipids. For every LION-term,
the cumulative distribution of associated lipids over the ranked
list is compared with the uniform distribution. Enrichment is de-
fined as over-representation of highly ranked lipids associated
with the term. To rank input lipids, LION/web offers 3 different
local statistics: P-values from 1-tailed Welch t-tests (2-condition
comparison), log2 fold-change values (2-condition comparison),
and P-values from 1-way ANOVA F-tests (>2 conditions com-
parison). Ranking direction (from high to low, or vice versa) is
automatically updated after local statistic selection but can be
set manually. In addition, users can use custom local statistics.
In both modes, topGO’s classic algorithm is selected [17]. After
LION enrichment analysis, raw P-values are corrected for mul-
tiple testing (Benjamini-Hochberg). The R scripts were used to
build the user-friendly web-based tool LION/web (Note S1) with
R package Shiny. The application has been made available on
the Shiny applications server as a free online tool, accessible
through LION/web [18].

Cell culture and preparation of fatty acid−albumin
complexes

CHO K1 cells were cultured in Ham’s F-12 medium (Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 7.5%
fetal bovine serum (Thermo Fisher Scientific, Waltham, MA,
USA), 100 units/mL penicillin, and 100 μg/mL streptomycin
(Thermo Fisher Scientific). Cells were grown in a humidified in-
cubator at 37◦C containing 5% CO2 and passaged twice a week.
Stocks of 10 mM ARA, LIN, or PAL (all obtained from Sigma, St.
Louis, MO, USA) were complexed to 2 mM fatty acid−free BSA
(Sigma), filter-sterilized, and stored at −20◦C. Control incuba-
tions without fatty acid contained equivalent amounts of fatty
acid−free BSA. All experimental incubations were performed in
plastic 6-well culture dishes (Corning, Tewksbury, MA, USA).
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Measuring membrane fluidity

After overnight incubation in the absence or presence of fatty
acids (using fatty acid−free BSA or fatty acids coupled to BSA,
respectively), cells were washed and scraped in phosphate-
buffered saline. Cells were subsequently homogenized on ice
with 26-gauge needles (BD Bioscience, San Jose, CA, USA). Ho-
mogenates (equivalent to 40,000 cells) were mixed 1:1 with the
manufacturer’s supplied dilution buffer (Membrane fluidity kit,
Abcam, Cambridge, UK) in the absence (background) or presence
of 5 μM PDA and transferred into a 96-well plate (black plastic
with glass bottom, Greiner Bio-One, Frickenhausen, Germany).
After 30 minutes of incubation at 37◦C, fluorescence spectra
(excitation at 360 nm, emission between 375–500 nm, 37◦C)
were measured with a temperature-controlled fluorescence mi-
croplate reader (CLARIOstar, BMG Labtech, Offenburg, Germany).
Data were processed in R by expressing monomer (370–390 nm)
and excimer (470–490 nm) as ratios of mean fluorescence af-
ter subtraction of background fluorescence (samples with cells
but without PDA). Results were expressed as means. Differences
were analyzed by 2-tailed Welch’s t-tests.

Lipidomics by LC-MS/MS

After incubation, lipids were extracted as described previously
[30]. Lipid extracts were dried under nitrogen and dissolved in
100 μL chloroform/methanol (1:1) and injected (10 μL) on a hy-
drophilic interaction liquid chromatography (HILIC) column (2.6
μm HILIC 100 Å, 50 × 4.6 mm, Phenomenex, Torrance, CA, USA).
Lipid classes were separated by gradient elution on an Infin-
ity II 1290 UPLC (Agilent, Santa Clara, CA, USA). At a constant
flow rate of 1 mL/min, acetonitrile/acetone (9:1, v/v) was used as
solvent A. Solvent B consisted of a mixture of acetonitrile/H2O
(7:3, v/v) with 10 mM ammonium formate. Both solvents con-
tained 0.1% formic acid. The gradient was as follows (time in
min, %B): (0, 0), (1, 50), (3, 50), (3.1, 100), (4, 100). Samples were
injected without re-equilibration of the column. The column ef-
fluent was connected to a heated electrospray ionization source
of an Orbitrap Fusion mass spectrometer (Thermo Scientific) op-
erated at –3,600V in the negative ionization mode. Temperatures
for the vaporizer and ion transfer tube were 275◦C and 380◦C,
respectively. Full scan MS1 measurements in the mass range
from 450 to 1,150 u were collected in the Orbitrap at a resolution
of 120,000. Parallelized data-dependent MS2 experiments were
done with higher-energy collisional dissociation fragmentation
set at 30V, using the dual-stage linear ion trap to generate up to
30 spectra per second.

Lipidomics data analysis

Acquired raw datafiles were converted to mzXML files by msCon-
vert (part of ProteoWizard v3.0.913) [31] and processed with
the R package xcms v2.99.3 [32]. After deisotoping, annotation
of lipids was performed by matching measured MS-1 m/z val-
ues with theoretical m/z values. Lipids with the same or sim-
ilar m/z values—e.g., bis(monoacylglycero)phosphate(38:4) and
PG(38:4)—could be distinguished by differences in retention time
(Figs S3 and S4). Lipid annotation containing individual fatty
acids (extra column “most abundant isomer annotation” in Data
S4) as used in Figs 2A and S3 was accomplished by examining
MS-2 spectra. When MS-2 spectra were available for a given MS-1
peak, the most abundant fatty acid combination was used to an-
notate the lipid. The resulting experimental datasets, as well as
the public RAW 264.7 macrophage dataset [13], were normalized

by expressing all lipids as ratios of the sum of all intensities per
sample. MetaboAnalyst 3.0 [33] was used to replace missing val-
ues (of the RAW 264.7 dataset) by half of the minimum positive
value in the original data, and to perform principal component
analysis (with Pareto scaling).

Heat map, hierarchical cluster analysis, and
LION-enrichment analyses

The heat map of the RAW 264.7 dataset was constructed af-
ter calculating z-scores for all lipids (all lipids were scaled to a
mean of zero and a standard deviation of 1) using the R package
pheatmap v1.0.10. Lipids were grouped by hierarchical cluster-
ing. The dendrogram of the lipids on the y-axis of the heat map
used Euclidean distance as the similarity measure and was per-
formed with complete linkage. The number of clusters was set
to 10. Enrichment analysis of each of the 10 clusters was per-
formed using the target-list mode with default settings.

Enrichment analyses used in Figs 2C and 3A and D were per-
formed using the ranking mode, with 1-tailed Welch 2-sample
t-test P-values as local statistics. The analysis for Fig. 2C was
performed with default settings, whereas LION-terms to be con-
sidered were limited to all child-terms of “contains fatty acid”
(CAT:0000100) for Fig. 3A and all child-terms of “chain-melting
transition temperature” (CAT:0001734) and “lateral diffusion”
(CAT:0080950) for Fig. 3D.

Software and R packages

All R scripts were run with RStudio v1.0.153 (R v3.4.4) with the
following packages: Shiny v1.1.1, visNetwork v2.0.1, data.table
v1.10.4-2, GMD v0.3.3, igraph v1.0.1, reshape2 v1.4.2, ggplot2
v2.2.1, ggthemes v3.4.0, shinyTree v0.2.2, shinyWidgets v0.4.1,
shinythemes v1.1.1, RSQLite v2.1.1, topOnto v0.99.0, pheatmap
v1.0.10, and xcms v2.99.3 [32]. Perl scripts provided with the to-
pOnto package were run with Perl v5.26.0. All figures were built
in R and processed in Cytoscape v3.5.1 or Inkscape v0.92.2.

Availability of source code and requirements

The source code of the web-tool is available via github.
Project name: LION-web
Project home page: https://github.com/martijnmolenaar/LION-
web/
Operating system(s): platform independent
Programming language: R
License: GNU General Public License v3.0
RRID: SCR 017018

Availability of supporting data and materials

The LION database (OBO format) and raw lipidomics data
are available as Supplementary Data. The public RAW 264.7
macrophages dataset [13] is available on the journal’s website
[34]. The R package topOnto is available at [35], the associated R
package containing the LION database in topOnto-friendly for-
mat at [36]. Snapshots of our code and other supporting data are
available in the GigaScience repository, GigaDB [37].

Additional files

Additional Figure S1. LION-terms associated with PS(34:2)
Additional Figure S2. Model validations of biophysical properties
in LION

https://github.com/martijnmolenaar/LION-web/
https://scicrunch.org/resolver/RRID:
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Additional Figure S3. Lipidomics of CHO K1 cells incubated with
free fatty acids
Additional Figure S4. Lipidomics of CHO K1 cells incubated with
ARA
Supplementary Data 1. XLSX-file containing all LION-terms ex-
cluding lipids with classification rules and sources
Supplementary Data 2. CSV file containing all lipids present in
LION
Supplementary Data 3. CSV file with lipid clusters
Supplementary Data 4. CSV file with lipidomics dataset support-
ing Fig. 2D
Supplementary Data 5. CSV file with LION/web output values
supporting Fig. 2D
Supplementary Data 6. CSV file with lipidomics dataset support-
ing Fig. 2A
Supplementary Data 7. CSV file with LION/web output values
supporting Fig. 2A
Supplementary Data 8. XLSX file containing the coefficients of
the biophysical models
Supplementary Data 9. CSV file with test set for lipid names con-
version
Supplementary File 1. LION database in OBO format
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serum albumin; CAT: prefix for category term; CG-MD: coarse-
grain molecular dynamics simulation; CHO: Chinese ham-
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ues; ER: endoplasmic reticulum; GO: gene ontology; HILIC: hy-
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