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Abstract

Background: The nature of dynamic traits with their phenotypic plasticity suggests that they are under the control
of a dynamic genetic regulation. We employed a precision phenotyping platform to non-invasively assess biomass
yield in a large mapping population of triticale at three developmental stages.

Results: Using multiple-line cross QTL mapping we identified QTL for each of these developmental stages which
explained a considerable proportion of the genotypic variance. Some QTL were identified at each developmental
stage and thus contribute to biomass yield throughout the studied developmental phases. Interestingly, we also
observed QTL that were only identified for one or two of the developmental stages illustrating a temporal
contribution of these QTL to the trait. In addition, epistatic QTL were detected and the epistatic interaction
landscape was shown to dynamically change with developmental progression.

Conclusions: In summary, our results reveal the temporal dynamics of the genetic architecture underlying biomass
accumulation in triticale and emphasize the need for a temporal assessment of dynamic traits.
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Background
Quantitative trait locus (QTL) mapping approaches are
popular genomic tools to dissect the genetic architecture
underlying complex traits and to identify QTL [1]. The
basis for these approaches are mapping populations,
which are commonly phenotyped at only a single time
point. It is well known, however, that many traits of
agronomic importance are under the control of complex
dynamic regulation [2]. Consequently, the traditional
static examination completely neglects the developmen-
tal dynamics underlying trait formation. For example,
biomass changes with time and thus, two genotypes can
be phenotypically identical at a certain developmental
stage while the temporal patterns of genetic control may
vary between them. Until now, only little is known about
the genetic dynamics of complex traits. Yan et al. [3]
evaluated plant height in rice at different developmental
stages and observed some QTL that could be detected at
all stages whereas others were only detectable at one or

some of them. Busemeyer et al. [4] recently reported a
dynamic mapping for biomass in triticale and also ob-
served developmental stage specific QTL.
In order to assess the temporal changes in the genetic

control of trait formation, the phenome of the plants
must be assessed at several time points. A key compo-
nent for monitoring the phenotypic changes of plants is
the development of appropriate phenotyping technolo-
gies which for crops must enable phenotyping under
field conditions [5,6]. Busemeyer et al. [7] have recently
described the development of the ‘BreedVision’ precision
phenotyping platform for non-invasive, high-throughput
and high-dimensional phenotyping of small grain cereals
under field conditions. This platform incorporates light
curtains, laser distance sensors, a 3D-Time-of-Flight
camera and hyperspectral imaging and traits are pre-
dicted based on sensor fusion, i.e., the combination of
sensors and their information. This platform is of par-
ticular interest as it enables the evaluation of traits not
amenable to traditional phenotyping and in addition,
can replace destructive measurements thereby enabling
multiple measurements of the same plants. Biomass, for
example, is traditionally evaluated by harvesting yield
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plots with a field chopper. The major disadvantage of
this approach is, that it is destructive, thus prohibiting
the assessment of other traits as well as the biomass de-
velopment of the plots over time. The precision pheno-
typing platform has been calibrated for biomass yield of
triticale which yielded a high prediction accuracy and
heritability for the predicted biomass [4].
Triticale (× Triticosecale Wittmack L.) shows a broad

variation for biomass yield [8] and is therefore well
suited to study the genetics underlying this trait in small
grain cereals. A powerful approach for QTL mapping is
to employ multiple segregating families [9,10]. Buse-
meyer et al. [4] used biomass data from four families
predicted based on measurements of the precision phe-
notyping platform at three developmental stages in com-
bination with an association mapping approach to detect
QTL. Association mapping is an identity-by-state ap-
proach and the employed biometric model has been
shown to be rather conservative [11]. Consistenly, the
analysis of part of these data with an identity-by-descent
approach identified substantially more QTL [12]. The
aim of this study was therefore to reanalyse the triticale
biomass data [4] employing an identity-by-descent ap-
proach to assess the temporal dynamics of QTL contri-
butions to biomass yield. Here, we describe the
detection of main effect QTL for biomass yield in triti-
cale at three different developmental stages, the variation

in the contribution of these QTL to the genotypic variance
over time, and the dynamics of epistatic QTL contributing
to the genetic architecture underlying phenotypic develop-
ment of biomass yield.

Results
In the entire mapping population with 647 DH lines de-
rived from four families, we observed significant (P < 0.01)
genotypic variances σ2G

� �
and genotype-by-environment

interaction variances σ2G�E

� �
for biomass yield at all three

developmental stages (BM1 – BM3) (Additional file 1:
Table S1). The ratio of σ2G to σ2G�E ranged from approxi-
mately 3:1 for BM1 to 7:1 for BM2. The heritabilities were
high and ranged from 0.81 for BM1 to 0.91 for BM2.
Phenotypic correlations between biomass yield at the
three developmental stages were 0.84 for BM1-BM2, 0.89
for BM2-BM3 and 0.75 for BM1-BM3 (all significant at
P < 0.01). The phenotypic values of the parents differed to
varying degrees ranging from Δ0.4 to 1.2 for BM1, from
Δ0.0 to 1.7 for BM2 and from Δ0.1 to 1.9 for BM3
(Figure 1). Orthogonal contrasts of the means of the fam-
ilies and their respective parents were not significant ex-
cept for family EAW78 for BM3 (P < 0.05). The trait
distributions approximately followed a normal distribution
except for family EAW78 for which the distribution at
BM2 and BM3 became bimodal. The variation within each

Figure 1 Phenotypic development of biomass yield. Histograms of the phenotypic values of biomass yield at three developmental stages
(BM1-BM3) for the entire population and for each of the four families (DH06, DH07, EAW74, EAW78).
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family increased with increasing developmental stage
(Additional file 1: Table S1, Figure 1) and in each family
DH lines transgressed the respective parents for all three
developmental stages. Taken together, the data set captures
the progression of biomass yield over time and is therefore
well suited to study the underlying genetic dynamics.
Multiple-line cross QTL mapping revealed 10 QTL for

BM1 and BM2 and 9 QTL for BM3 (Table 1, Additional
file 1: Table S2, Figure 2). Interestingly, we observed bio-
mass QTL that were detected at all three developmental
stages as well as QTL that were only detected at one or
two of the developmental stages (Figure 3). Combined,
the QTL explained between 62.2 (BM1) and 64.7 (BM2)
percent of the genotypic variance. The proportion of
genotypic variance explained by single QTL ranged from
2.5 to 28.0 for BM1, from 1.7 to 34.0 for BM2 and from
2.2 to 35.6 percent for BM3 (Additional file 1: Table S2).
The major QTL detected at all three developmental
stages was located on chromosome 5R. Another QTL
which consistently contributed more than 5 percent to
the genotypic variance was identified on chromosome
5A and on chromosome 6A a QTL contributing a simi-
lar proportion to BM2 and BM3 was found. We used
fivefold cross-validation to assess the quality of the ob-
tained QTL results (Table 1). This revealed a bias in the
estimation of the proportion of genotypic variance which
cross-validated still ranged between 34.0 (BM1) and 44.8
(BM2) percent. The QTL frequency distributions revealed
some QTL that were detected in a high number of runs
whereas other QTL identified with the full data set were
only detected in few runs (Additional file 1: Figure S1). By
contrast, few QTL were detected in a considerable num-
ber of runs which have not been identified in the full data
set (e.g., BM2 QTL on chromosome 7A).
We next assessed the contribution to the genotypic

variance at BM1, BM2 and BM3 for all loci detected as
QTL for any of the three developmental stages. This
substantiated the presence of chromosomal regions
which stably contribute to biomass yield as opposed to

regions which only contribute to biomass yield in a tem-
porally restricted manner (Figure 4).
The full 2-dimensional epistasis scan revealed epistatic

QTL for all three developmental stages (Figure 5a). Eight
epistatic QTL were identified for BM1, three for BM2
and four for BM3. The contribution of these epistatic
QTL to the genotypic variance was small and ranged be-
tween 1.0 and 3.5 percent. The epistatic interaction
landscape undergoes temporal changes with develop-
ment as illustrated in Figure 5b for the QTL detected at
BM2 involving chromosomes 6A and 5B.

Discussion
Many traits of biological or agronomic importance
undergo dynamic changes with time and the develop-
mental progression of the individuals. It therefore ap-
pears obvious that these changes will at least in part be
reflected by similar changes in the underlying genetics.
However, a temporal assessment of the genetic architec-
ture of complex traits has thus far largely been neglected.
In this study we therefore performed a dynamic mapping
of biomass yield QTL in triticale to decipher the genetic
dynamics underlying phenotypic development of this trait.

Phenotypic development of biomass yield
A prerequiste for efficient QTL detection in multiple
families is the precise estimation of phenotypic values
[13]. In addition, for traits which are traditionally
assessed by destructive measurements, alternative non-
invasive approaches are required to enable monitoring
dynamic changes of the trait over time. In this study we
focused on biomass yield as the accumulation of bio-
mass is central to agricultural productivity, employing
triticale as model crop for small grain cereals. The earli-
est developmental stage (BM1) was chosen at BBCH
stage 49 as this represents the earliest time point when
triticale would be harvested for biomass. Biomass was
predicted based on sensor measurements of the preci-
sion phenotyping platform and we observed high herita-
bilities for all three developmental stages at which
biomass yield was assessed. This in combination with
the high prediction accuracies underlines the great po-
tential of precision phenotyping, especially for a tem-
poral assessment of dynamic traits.
Biomass yield was characterized by a progression with

time and the development of the plants (Figure 1). The
correlations of biomass yield at the different time points
were highest for the directly successive time points
(BM1-BM2, BM2-BM3) and decreased with increasing
temporal and thus developmental distance between time
points (BM1-BM3). The variation in phenotypic values
increased with development of the plants (Figure 1,
Additional file 1: Table S1). This does not appear to be
caused by an increased influence of the environment as

Table 1 Results of QTL mapping and fivefold
cross-validation

BM1 BM2 BM3§

QTLDS 10 10 9

pG-DS 62.2 64.7 62.8

QTLES 7.1 9.4 7.3

pG-ES 55.8 64.0 57.0

pG-TS 34.0 44.8 38.2

Relative bias 39.1 30.0 33.0

Number of detected QTL (QTLDS), proportion of genotypic variance (in
percent) explained by the detected QTL across all families in the data set
(pG-DS), proportion of genotypic variance averaged over estimation sets (pG-ES)
and averaged over test sets (pG-TS), and relative bias (%) in the estimation of
pG.

§ reported in Alheit et al. [12].
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the contribution of the genotype-by-environment inter-
action variance was strongest at BM1. Rather, the effects
of the genetic factors contributing to biomass yield be-
come more pronounced the longer they act on the trait.
This is exemplified by the development of biomass in fam-
ily EAW78. Gowda et al. [8] have recently shown that
grain yield, heading time, spikes per square meter, 1000-
kernel weight, and early plant height are key contributors

to early biomass yield. Family EAW78 segregates for a
major plant height QTL which likely corresponds to the
rye dwarfing gene Ddw1 and which causes the observed
bimodal distribution [12]. However, the distribution of the
biomass yield values in family EAW78 shows a strong
temporal plasticity. At BM1 the biomass values are nor-
mally distributed, then turn into the bimodel distribution
at BM2 which at BM3 becomes less pronounced. Thus,
Ddw1 appears to have the strongest contribution to bio-
mass yield at BM2 after which its influence on biomass
declines or that of other factors becomes more prominent.
This illustrates the plasticity of the trait and the temporal
contribution of genetic factors to its expression and high-
lights the need for a temporal assessment of the under-
lying genetics.

Detection of biomass yield QTL
Busemeyer et al. [4] used an association mapping ap-
proach to analyze the data but identified only the major
QTL on chromosomes 5A and 5R. By contrast, the linkage
mapping approach applied here appears more powerful
with regard to QTL detection in this data set as we identi-
fied nine or ten QTL for biomass yield at all three develop-
mental stages. These QTL were supported by the QTL
frequency distributions (Table 1, Figure 2, Additional file 1:
Figure S1). Consequently, the proportion of genotypic
variance (pG) explained by the QTL detected here was ap-
proximately twice as high as that described in the previous
study. For all three developmental stages the pG was
around 60 percent and even cross-validated still amounted
to a considerable 30 to 39 percent (Table 1). This is in ac-
cordance with the quantitative nature of the trait which
implies many QTL with effects too small to be detected in
QTL mapping given a reasonable population size.

Figure 2 Main effect QTL. QTL for biomass yield detected at three developmental stages (BM1-BM3).

Figure 3 Specific and overlapping QTL. Venn diagram for biomass
yield QTL detected at three developmental stages (BM1-BM3).
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Figure 4 Temporal dynamics of QTL. Temporal development of the contribution of the QTL detected for any of the three developmental
stages (BM1-BM3) to the proportion of explained genotypic variance for biomass yield.

Figure 5 Epistatic QTL. (a) Epistatic QTL for biomass yield at three developmental stages (BM1-BM3). (b) Temporal development of the epistatic
interaction landscape for the QTL detected at BM2 involving chromosomes 6A and 5B.
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Contribution of epistasis to biomass yield
Epistasis refers to interactions between the alleles at two
or more genetic loci [14]. It contributes to the genetic
architecture of many complex traits and has recently
been reported for different crops including maize, wheat
and rapeseed [10,13,15-17]. The orthogonal contrasts
between family means and the means of the respective
parents were only significant for BM3 in family EAW78
which indicates the presence of epistasis. It must be
noted however, that non-significant orthogonal contrasts
do not imply abscence of epistasis. Our analysis revealed
epistatic QTL for all three developmental stages (Figure 5).
The detection power for epistatic QTL, however, more
strongly depends on the population size than that for
the detection of main effect QTL. Thus, despite the
relatively large mapping population employed here,
many epistatic QTL may have remained undetected due
to insufficient QTL detection power. In contrast to the
main effect QTL for which similar numbers were de-
tected for each developmental stage, we identified sub-
stantially more epistatic QTL for BM1 as compared to
BM2 and BM3. This corroborates previous findings
from Busemeyer et al. [4] and suggests a varying contri-
bution of epistasis to the genetic architecture of biomass
yield over time. The proportion of genotypic variance ex-
plained by these epistatic QTL was rather small and aver-
aged 2.4, 1.2 and 1.5 percent for BM1, BM2 and BM3,
respectively. Nevertheless, this result illustrates the contri-
bution of epistasis to the genetic architecture of biomass
yield, especially assuming that a number of epistatic QTL
had remained undetected.

Temporal genetic patterns of biomass regulation
The nature of dynamic traits with their temporal
changes suggests at least some plasticity in the under-
lying genetic control. We observed an almost equal
number of QTL for biomass yield for each of the three
developmental stages but the Venn diagram indicated
both specific and overlapping QTL (Figures 2 and 3).
The detection of a QTL at all three time points indicates
that it stably contributes to biomass yield throughout
the studied development, ranging from the stage where
the awns are just visible to very early dough develop-
ment. By contrast, some QTL were only detected at one
or two of these developmental stages. Two QTL were
identified at two developmental stages which in both
cases were successive stages, i.e., BM1 and BM2 or BM2
and BM3. For each developmental stage we identified
four or five QTL that were only detected for that par-
ticular stage. As illustrated by the LOD profiles (Figure 2)
this does not appear to be caused by peaks close to the
significance threshold, being by chance slightly above or
below it for the different time points. By contrast, it ap-
pears to reflect the dynamic genetics underlying biomass

accumulation in triticale. This is supported by the vari-
able contribution of the loci detected for any of the three
developmental stages to the genotypic variance at BM1,
BM2 and BM3, respectively (Figure 4). Interestingly, we
observed a similar plasticity for the epistatic interactions
suggesting that the entire genetic architecture of bio-
mass yield undergoes dynamic changes during the devel-
opmental progression of the plants.

Conclusions
In this study, we employed phenomics data of biomass
yield generated at three developmental stages by preci-
sion phenotyping of a large mapping population of triti-
cale. We show the phenotypic plasticity of this trait and
demonstrate that this is reflected in a similar plasticity
of the underlying genetics. Thus, the genetics of dynamic
traits should best be assessed in a temporal manner to
capture all the genetic factors that contribute to the trait
during development.

Methods
Plant material, field trials and phenotypic data
The plant material, field trials and the collection of
phenotypic data used in this study have been described
by Busemeyer et al. [4]. In brief, phenotypic data for bio-
mass yield were obtained by non-invasive prediction
based on a precision phenotyping platform [7]. A cali-
bration experiment was performed based on 25 diverse
triticale genotypes at three developmental stages: BM1 =
BBCH stage 49 (awns visible), BM2 = BBCH 69 (late
flowering), and BM3 = BBCH 81 (very early dough devel-
opment) [18]. The plants were harvested with a field
chopper to determine reference fresh weight based on
which the calibration models were established. With
these calibration models biomass yield was predicted at
the three developmental stages in a mapping population
consisting of 647 doubled haploid (DH) [19,20] triticale
lines. The results for BM3 have in part been reported by
Alheit et al. [21]. The population consisted of four fam-
ilies designated DH06 (131), DH07 (120), EAW74 (200),
and EAW78 (196) which have been described by Alheit
et al. [12]. The DH lines were grown in partially repli-
cated designs [22] including common checks with 960
plots per location, at two locations in two years. Pheno-
typic data were analyzed by ordinary lattice analysis of
variance [23]. Variance components were determined by
the restricted maximum likelihood (REML) method as-
suming a full random model and heritability (h2) on an
entry-mean basis was estimated from the variance com-
ponents as the ratio of genotypic to phenotypic variance
[24]. Best linear unbiased estimates (BLUEs) were esti-
mated across environments assuming fixed effects for
the genotype. All statistical analyses were performed
using ASReml 3.0 [25].
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Multiple-line cross QTL mapping
The DH lines were genotyped with DArT markers and
QTL mapping was done based on the integrated consen-
sus linkage map described by Alheit et al. [12]. For QTL
mapping, an additive genetic model was chosen and the
joint analysis across families was performed with a
model assuming specific QTL effects for every family
(disconnected model) [26] as described in detail by
Steinhoff et al. [9]. In brief, the multiple-line cross QTL
mapping model was:

Y ¼ JMþ XqBq þ
X

c≠ q

XcBc þ ε

where Y was a N × 1 column vector of the BLUE values
of phenotypic data of N progenies coming from P fam-
ilies. J was a N × P matrix whose elements were 1 or 0
according to whether or not individual i belonged to
family p and M was a P × 1 vector of family specific
means. Xq (Xc) a N × P matrix containing the expected
number (ranging from 0 to 2) of allele k for each individ-
ual in family p at QTL q (cofactor c), and Bq (Bc) was a
P × 1 vector of the expected allele substitution effects of
QTL q (cofactor c) in family p. ε was the vector of the
residuals.
Cofactor selection was performed using PROC GLMSE-

LECT implemented in the statistical software SAS [27].
The presence of a putative QTL in an interval was tested
using a likelihood-ratio test with the statistical software R
[28]. LOD-thresholds of 4.8 for BM1, 4.6 for BM2 and 4.6
for BM3 were used corresponding to an experiment-wise
type I error of P < 0.10, based on 2000 permutations [29].
Cofactors were excluded within a distance to the marker
interval under consideration smaller than 10 cM and the
support interval of a QTL was defined as a LOD fall-off of
1.0 expressed as position on the chromosome in centi-
morgans (cM) [30]. The proportion of genotypic variance
explained by the detected QTL was estimated as R2adj/h

2

[31]. Biomass yield QTL were declared as overlapping
between the three developmental stages if they fell
within an arbitrarily defined 10 cM interval surrounding
the QTL. Fivefold cross-validation was done as described
by Liu et al. [32].
The epistasis scan for pairwise interactions was done

with the model described above which was extended by
the term Xq’Bq’ for the second locus and the interaction
term between the two loci q and q’ Xqq’Bqq’. We used an
α-level of 0.05 and followed the suggestion of Holland
et al. [33] dividing the α-level by the number of possible
independent pairwise interactions between chromosome
regions, assuming two separate regions per chromosome
(P < 5.3e-5). The circular plots illustrating the epistatic
interactions were created with Circos [34]. The detected
epistatic QTL were illustrated by these circular plots

(Figure 5a) showing the interactions among different
chromosome regions. The temporal development of one
QTL detected at BM2 involving chromosomes 6A and 5B
was illustrated by the 3-dimensional interaction landscape
between these two chromosomes. In Figure 5b the –log10
(P values) of all tested pairwise interactions were plotted
and consequently the higher the peak, the stronger the as-
sociation of the epistatic interaction with the trait. Signifi-
cant interactions are marked in red.

Additional file

Additional file 1: Table S1. Summary statistics for biomass yield
[t ha-1] at the three developmental stages. Table S2. QTL detected for
biomass yield at three developmental stages (BM1-BM3). Figure S1.
QTL frequency distributions.
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