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As one of the most lethal cancers, primary liver cancer (PLC) has high tumor
heterogeneity, including the heterogeneity between cancer cells. Traditional methods
which have been used to identify tumor heterogeneity for a long time are based on large
mixed cell samples, and the research results usually show average level of the cell
population, ignoring the heterogeneity between cancer cells. In recent years, single-cell
sequencing has been increasingly applied to the studies of PLCs. It can detect the
heterogeneity between cancer cells, distinguish each cell subgroup in the tumor
microenvironment (TME), and also reveal the clonal characteristics of cancer cells,
contributing to understand the evolution of tumor. Here, we introduce the process of
single-cell sequencing, review the applications of single-cell sequencing in the
heterogeneity of cancer cells, TMEs, oncogenesis, and metastatic mechanisms of liver
cancer, and discuss some of the current challenges in the field.
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1 INTRODUCTION

Primary liver cancers (PLCs) are some of the most common malignancies and rank as the seventh
most prevalent cancer and the third leading cause of cancer-related deaths in the world (1). PLCs
comprise a heterogeneous group of malignant tumors with different histological features and an
unfavorable prognosis. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma
(ICC) are the most common PLCs, while the other neoplasms account for less than 1% of cases (2).
HCC and ICC can develop by transformation of mature hepatocytes and cholangiocytes,
respectively (2, 3). Furthermore, mature hepatocytes can also be reprogrammed into cells that
closely resemble biliary epithelial cells and result in the development of ICC (4). The heterogeneity
of PLCs is an important factor affecting the prognosis of patients (5). Conventional molecular
profiling which is based on an average molecular phenotype from a large population of cells has
been used to identify tumor heterogeneity for a long time (6). However, traditional methods such as
the one mentioned above, are based on large mixed cell samples, and their results usually show the
average level of cell population, whilst disregarding the heterogeneity between cells (7). In addition,
it is difficult to detect rare cancer stem cells (CSCs) and circulating tumor cells (CTCs) which play
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GRAPHICAL ABSTRACT |

Tian and Li Single-Cell Sequencing in Liver Cancer
important roles in tumor recurrence and metastasis using
traditional sequencing methods (8, 9). In recent years, single-
cell sequencing technologies have been increasingly applied in
researches of liver cancer. They are used to analyze the genomics,
transcriptomics, and epigenetics of tumor cells, tumor stem cells,
Frontiers in Oncology | www.frontiersin.org 2
individual cells in the tumor microenvironment (TME), and
CTCs. The use of single-cell sequencing can detect heterogeneity
between tumor cells and the clonal characteristics of each cell, as
well as distinguish cell subgroups in the TME, thus, helping
researchers understand the mechanisms of tumor evolution.
April 2022 | Volume 12 | Article 857037
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2 OVERVIEW OF SINGLE-CELL
SEQUENCING TECHNOLOGY

Single-cell sequencing methods are mainly divided into genome,
transcriptome, epigenome, and triple omics sequencing (10). The
first step for single-cell sequencing is single-cell isolation,
followed by multi-omics analyses (11).

2.1 Sample Preparation and Storage
In clinical research, it is difficult to perform single-cell
sequencing of fresh samples instantly due to the long distances
between clinics and laboratories in some areas. Hence, clinical
samples need to be handled or stored carefully after collection to
preserve their molecular integrity until molecular phenotyping is
performed. Cryopreservation and methanol fixation are
common methods for temporary storage of samples for single-
cell sequencing applications. Warm ischemia induced by
multiple stresses such as decreased oxygen supply, temperature
variations and mechanical and structural stress may lead to the
alteration of sample quality. Timely cryopreservation of samples
after resection contributes to avoiding warm ischemia and
protecting RNA quality and integrity (12). Cryopreservation
may result in crystallization and disruption of cellular
membranes; therefore, cryoprotectants such as dimethyl-
sulfoxide are usually added to ensure the integrity and vitality
of cells (13). Unlike aldehydes, methanol is a coagulating fixative
that does not chemically modify nucleic acids. Alcohols can act
as dehydrating agents; in the presence of salts and alcohol
content that is higher than 65%, nucleic acids occur in a
collapsed state but can be reverted to their original form
through rehydration (14, 15). Notably, methanol fixation is
challenging in tissues with a high content in proteases and
RNases, such as pancreas, gall bladder, skin, lymphatic, and
immune tissues (16). Interestingly, there are studies that show
that methanol fixation and cryopreservation of cells and tissues
would not lead to significant differences in single-cell
transcriptome profiles, comparing with fresh cells (13, 16). One
of the challenges to the clinical utility of CTCs is their inherent
fragility, which makes these cells very unstable during
transportation and storage of blood samples (17). In an
evaluation of collection devices with three preservative
reagents, K3EDTA, Cell-Free DNA BCT (BCT), and CellSave
(Cellsearch), results showed that BCT and CellSave can provide
the best conservation of CTCs, and BCT also provides the better
conservation of RNA in comparison with K3EDTA (17). A few
studies thus far have explicitly dealt with cell preservation
protocols for single-cell sequencing (16). Further development
and evaluation of cell preservation protocols are necessary to
enable wider application of single-cell sequencing based on
clinical samples (6).

2.2 Single-Cell Isolation
At present, several well-established methods can be used to
isolate single cells, including serial dilution, micromanipulation,
laser capture microdissection (LCM), microfluidics, fluorescence-
activated cell sorting (FACS), magnetic-activated cell sorting
Frontiers in Oncology | www.frontiersin.org 3
(MACS), and the CellSearch system (18–25). FACS is one of
the most common single-cell isolation methods which uses a laser
beam to excite the target cells marked by a fluorescent probe, and
then uses an optical detector to sort these cells according to the
fluorescent signal (20). For instance, cancer cells are defined as
CD31−/CD45-/7-AAD- cells, and CSCs are defined as CD24+/
CD133+/epithelial cell adhesion molecule (EpCAM)+ cells after
immunofluorescence staining and sorting by flow cytometry in
some single-cell analyses of liver cancer (5, 26–28). By using a cell
sorting flow cytometer, this high throughput method can
accurately and sensitively separate cells according to their sizes,
granularities, fluorescence signals, and other features. However,
the disadvantages of FACS include its complexity, over-
stimulation of cells, and requirement of a large sample size and
highly trained operators (19). Serial dilution is a low-cost and
easy-to-operate technique which obtains single cells by
continuous dilution of samples, but errors such as loss of cells
during the isolation process can occur, and it is difficult to isolate
specific types of cells (29). Another isolation technique,
micromanipulation, is a simple and convenient method, which
uses glass capillaries or patch clamps to isolate cells under the
microscope. However, this method is low throughput and needs
highly skilled operators, which limits its use (19). Of note, LCM
can isolate target (individual) cells from mostly solid tissue
samples by laser cutting and its most prominent advantage is
its ability to separate cells accurately without destroying the
integrity of adjacent tissues. Due to the requirement of
selecting target cells, one disadvantage of LCM is the need of
experienced operators (30). Microfluidic technologies can also
isolate single cells based on three operating principles:
microstructures, hydrodynamic effect-based methods, and
droplet-based assays. This method has become increasingly
popular for single-cell studies because it can provide precise
fluid control and low sample consumption (19, 29). In contrast,
MACS uses antibodies, enzymes, lectins, or streptavidins
combined with magnetic beads to bind specific proteins on the
surface of target cells. When the cell mixture is placed in an
external magnetic field, the magnetic beads are activated, and the
labeled cells will polarize while other cells are washed out. The
target cells can then be collected after the magnetic field is
removed (19). MACS technology has high specificity and
causes little damage to cells, but it can only utilize cell surface
molecules as markers for isolation of live cells (19). The low
frequency and heterogeneity of CTCs makes their detection
extremely difficult (31). The CellSearch system is the first and
only Food and Drug Administration (FDA)-cleared method
designed for the enumeration of CTCs from peripheral blood.
This automated system utilizes immunomagnetic capturing of
cells that express EpCAM on the cell surface (32). Therefore, one
of the disadvantages of the CellSearch system is that this method
is limited by its reliance on the enrichment of EpCAMon the cells
surface and thus, only the EpCAM-positive subpopulation of
CTCs are detected while CTCs lacking EpCAM expression would
be invisible in the CellSearch system (33). The advantages and
limitations of the above-mentioned methods are briefly
summarized in Table 1.
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2.3 Sequencing Techniques
A single cell contains only 6 to 12 pg of DNA and 10 to 60 pg of
RNA; therefore, multiple rounds of amplification are required to
increase the amount of extracted nucleic acids (DNA and RNA)
and reach the detection limit (19, 55–57). We briefly summarize
the methods for single-cell analysis and their advantages and
disadvantages in Table 2.
2.3.1 Single-Cell Genome Sequencing
After a target cell is isolated and the DNA is extracted, whole
genome amplification (WGA) is performed. In the past, WGA
was mainly achieved by polymerase chain reaction (PCR),
including linker-adapter PCR (LA-PCR), interspersed
repetitive sequence PCR (IRS-PCR), primer extension pre-
Frontiers in Oncology | www.frontiersin.org 4
amplification PCR (PEP-PCR), and degenerate oligonucleotide-
primed PCR (DOP-PCR) (19).

In 2011, Navin et al. published the first study based on the use
of DOP-PCR to apply single-cell genome sequencing to reveal
the cancer genome heterogeneity (58). DOP-PCR is an
exponential amplification process, such that any bias will be
exponentially amplified, leading to some limitations which
include uneven amplification, low coverage, and amplification
errors (59, 61).

Due to its simplicity and high fidelity, multiple displacement
amplification (MDA) has become the most commonly used
method for WGA today. MDA is exponential like PCR, but
has a higher genome coverage and lower error rate in
comparison with PCR (61). However, in the initial stage of
MDA, there are differences in the binding ability of different
TABLE 1 | Single-cell isolation methods.

Methods Advantages Disadvantages References

Serial dilution Simple process; low cost Isolation errors; loss of cells (29, 34, 35)
Micromanipulation Visible operation; simple process; low cost Skilled personnel needed; low throughput; susceptible to errors (36–39)
Laser capture microdissection Intact fixed and live tissue Skilled personnel needed; low throughput; biased selection (30, 40–42)
Microfluidic High accuracy; low sample consumption Often restricted to one single application; high cost (43–47)
Fluorescence-activated cell sorting High specificity; multiple parameters Large amount of material needed; severe cell damage (20, 48, 49)
Magnetic-activated cell sorting High specificity; little cell damage Only cell surface molecules can be used as makers (50–53)
CellSearch system Enumeration and capture of CTCs; high throughput Biased toward markers used for isolation; high cost (31–33, 54)
April 2022 | Volume 12 | A
TABLE 2 | Summary of single-cell analysis methods.

Methods Advantages Disadvantages References

Genome DOP-PCR High throughput Uneven amplification, low coverage, amplification
errors, allele dropout

(58, 59)

MDA Simplicity, high fidelity, low false positive rate Amplification bias, allele dropout (60)
MALBAC High uniformity, low amplification bias Allele dropout (61)

Transcriptome STRT-seq Highly multiplexed method, pinpoint the exact location of the 5’
end of transcripts

Technical variation, cannot span the entire
transcript length

(62)

Smart-seq Full-length coverage across transcripts Distort the difference (63)
CEL-seq High specificity, ratio fidelity Low efficiency, reduced sensitivity for low-

expression transcripts
(64)

InDrop High throughput, low cost Low mRNA capture efficiency, high error rate (65)
Drop-seq High throughput, low cost Relatively low sensitivity (66)
10x Chromium
Genomics

High throughput, high molecular sensitivity and precision, low
technical noise, time saving

High cost (67)

Epigenome RRBS Relatively low cost Low throughput, low coverage (68)
WGBS Low amplification bias, correct assignment of paired-end

fragments
Low library complexity (69)

CGI-seq High efficiency, simplified procedure Inconsistent and/or low coverage (70)
ATAC-seq High coverage, high sensitivity Low recovery of DNA fragments (71, 72)
DNase-seq Simplicity Large amount of material needed, high error rate (73)
ChIP-seq High resolution, high coverage Highly dependent on the quality of antibody (74)
Drop-ChIP High throughput, high specificity Low coverage (75)

Multi-omics Trio-seq Simultaneous analyses of genome, epigenome, and
transcriptome in the same single cell

Low throughput (76)

CITE-seq Providing additional phenotypic information, high compatibility Only cell surface protein can be characterized (77)
10x multiome
ATAC+RNA

Powerful capability to characterize cellular diversity, high
accuracy

Low compatibility (78)
DOP-PCR, degenerate oligonucleotide-primed polymerase chain reaction; MDA, multiple displacement amplification; MALBAC, Multiple annealing and looping-based amplification cycles;
STRT-seq, single-cell tagged reverse transcription sequencing; Smart-seq, switching mechanism at 5’ end of the RNA transcript sequencing; CEL-seq, cell expression by linear
amplification and sequencing; InDrop, indexing droplets; RRBS, reduced representation bisulfite sequencing; WGBS, whole genome bisulfite sequencing; CGI-seq, genome-wide CpG
island methylation sequencing; ATAC-seq, assay for transposase accessible chromatin sequencing; ChIP-seq, chromatin immunoprecipitation sequencing; Trio-seq, triple omics
sequencing; CITE-seq, Cellular Indexing of Transcriptomes and Epitopes by sequencing.
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regions, which may result in over-amplification or under-
amplification of different genomic regions, causing
amplification bias (60).

Another new method is multiple annealing and looping-
based amplification cycles (MALBAC), which is a combination
of DOP-PCR and MDA, and also has the unique properties of
quasi-linear amplification (61). The key point of MALBAC is
that the 3′ end of the amplified product is designed with a specific
primer with a complementary 5′ end. After a round of
amplification, the complementary sequence tags at both ends
bind to form a self-enclosed “hairpin” structure to prevent the
amplified product from being copied and allow the original
genomic DNA to be copied. Therefore, MALBAC is
advantageous because it reduces amplification bias and
increases genome coverage. The amplified genome is then
sequenced and analyzed by DNA next-generation sequencing
technology, and different types of genetic changes can be
accurately detected.

2.3.2 Single-Cell Transcriptome Sequencing
Although mRNA is not as scarce as DNA in single cells, it still
needs to be amplified. The first step in whole transcriptome
amplification is to reverse-transcribe the mRNA into
complementary DNA, followed by PCR (79). The research
methodology of mRNA transcriptomics in a single cell based
on high-throughput sequencing was first reported in 2009 (80).
In 2011, Islam et al. invented single-cell tagged reverse
transcription sequencing which can detect various mixed cell
samples such as highly heterogeneous tumor cell samples on a
large scale (62).

Subsequently, Ramsköld et al. invented switching mechanism
at the 5′ end of the RNA transcript sequencing (Smart-seq) that
can detect the full length of mRNA in 2012 (63). This technology
can significantly improve the reading coverage of the
transcriptome, enabling detailed analyses of alternative splicing
and identification of single nucleotide polymorphisms and other
mutations. In 2014, Picelli et al. created Smart-Seq2, modifying
the primers in Smart-Seq into locked nucleic acids to improve
sensitivity, accuracy, and full-length coverage (81). In addition to
the above PCR-based amplification methods, in vitro
transcription methods such as the cell expression by linear
amplification and sequencing technique which uses linear
amplification to reduce the error rate to make sequencing
more accurate can also be used (64).

In these years, many droplet-based systems for high-
throughput single-cell RNA-seq have attracted attention, such
as inDrop, Drop-seq, and 10x Chromium Genomics (65–67).
These technologies use similar designs to generate droplets,
differentiate single cells by on-bead primers with barcodes, and
apply unique molecular identifier (UMI) for bias correction (82).
But different methods of bead manufacturing, barcode design,
and cDNA amplification lead to the difference in cost, time, cell
capture efficiency, and detection sensitivity of these technologies
(82, 83). The inDrop platform encapsulates single cells into
droplets with lysis buffer, reverse transcription (RT) reagents,
and barcoded hydrogel microspheres (84). Then, a library of
barcoded hydrogel microspheres (BHMs) co-encapsulated with
Frontiers in Oncology | www.frontiersin.org 5
cells can be synthesized. After encapsulation primers are
released, cDNA in each droplet is tagged with a barcode
during reverse transcription. Droplets are then broken and
material from all cells is linearly amplified before sequencing
(65). Like inDrop, Drop-seq also requires single cell suspension
and co-encapsulates each single cell with a barcoded bead in
nanoliter-scale droplets (84). However, photoactivation of the
oligonucleotides is unneeded in Drop-Seq. Cells are lysed after
they have been isolated in droplets, and then mRNAs are capture
on its companion microparticle, forming Single-cell
Transcriptomes Attached to Microparticles (STAMPs).
Subsequently, the STAMP barcodes are applied to infer each
transcript’s cell of origin (66). The core of 10x Chromium
Genomics is a Gel bead in EMulsion (GEM). RT takes place
inside each GEM, after which cDNAs are pooled for
amplification and library construction in bulk (67). Numerous
systematic comparisons of droplet-based high-throughput
single-cell RNA sequencing methods have been conducted to
reveal the distinguishing features and suitable applications (82,
83, 85). In summary, 10x Chromium Genomics is reported to
have the strongest consistent performance (82, 83). As a more
maturely commercialized system, 10x Chromium Genomics
generally requires less time but has higher molecular sensitivity
and precision and less technical noise (82). One of its few
disadvantages is the high price tag. By contrast, Drop-seq
exhibits a significant advantage in experimental cost.
Therefore, Drop-seq is a popular option for individual labs
because of its balanced performance and lower cost (82).

2.3.3 Single-Cell Epigenome Sequencing
In addition to the genome, the epigenome, especially DNA
methylation, also plays a significant role in regulating gene
expression. One method of single-cell DNA methylome
sequencing is reduced representation bisulfite sequencing
(RRBS) which can analyze the DNA methylation level of the
whole cell (68). Furthermore, in 2015, Farlik et al. invented whole
genome bisulfite sequencing which can detect DNA methylation
in a small number of cell populations and single cells (69).
Another single-cell DNA methylome sequencing method is
genome-wide CpG island (CGI) methylation sequencing for
single cells that sequences genomic regions with high CpG
content, providing 72.7% CGI coverage in each cell (70).

Regions of open chromatin possibly have some gene regulatory
functions. Methods of profiling open chromatin are usually based
on the conception that DNA regions in the open chromatin
conformation are more accessible to enzymes in vitro, such as
Tn5 transposase in the assay for transposase accessible chromatin
sequencing (ATAC-seq) and DNase I in the DNase-seq (73, 86).
Single-cell assay for transposase accessible chromatin sequencing,
which is a type of single-cell chromatin structure sequencing, is
applied to identify functionally relevant chromatin markers
among specific subpopulations of cancer cells (72).

Histone modifications contain many chemical modifications
on the varied histone sites, like methylation, phosphorylation,
and acetylation. Genome-wide histone modifications are
commonly profiled by chromatin immunoprecipitation (ChIP)
followed by the sequencing (ChIP-seq), which uses an antibody
April 2022 | Volume 12 | Article 857037
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to enrich the target chromatin carrying a specific histone
modification (74). Recently, Drop-ChIP has been developed
based on the strategy that combines drop-based microfluidics
and DNA barcoding for pooling thousands of individual cells
before antibody immunoprecipitation (75).

2.3.4 Single-Cell Multi-Omics Sequencing
Sequencing methods for the single-cell genome, transcriptome,
and DNA methylome have been developed successively. In order
to accurately analyze the mutual regulation mechanisms among
the genome, transcriptome, and DNA methylome, these omics
methods need to be performed in the same single cell. Therefore,
Hou et al. invented single-cell triple omics sequencing (Trio-seq)
in 2016, which can be used to analyze the genomic copy-number
variations (CNVs), transcriptome, and DNA methylome of a
single mammalian cell simultaneously (76). Cellular Indexing of
Transcriptomes and Epitopes by sequencing (CITE-seq) combines
highly multiplexed antibody-based detection of protein markers
together with unbiased transcriptome profiling for thousands of
single cells in parallel (77). Compared with single-cell RNA-seq,
CITE-seq provides more detailed characterization of cellular
phenotypes, in which oligonucleotide-labeled antibodies are
applied to integrate cellular protein and transcriptome
measurements into an efficient, sequencing-based readout of
single cells. Additionally, other multi-omics sequencing methods
have been developed. For instance, weighted-nearest neighbor
(WNN) analysis of 10x multiome ATAC+RNA has been used to
integrate multiple data types measured within a cell and to obtain
a joint definition of cellular state (78). Recently, 15 gene signatures
associated with the survival prognosis of HCC patients have been
identified by analyzing and integrating ATAC-seq and RNA-
seq (87).

2.4 Experimental Design for
Single-Cell Sequencing
Most single-cell sequencing protocols begin by isolating single
cells from cell suspensions. Preparation of high-quality single-
cell suspensions is key to successful single-cell studies. Initially,
tissues are disaggregated by mechanical dissociation, and then
enzymatic digestion is used to separate cells. Finally, suspensions
are cleaned by filtering through a mesh or strainer before capture
of single cells. Although most studies use fresh samples,
alternatives include cryopreservation and methanol fixation for
temporary storage.

To perform any kind of single-cell sequencing assay, single cells
have to be isolated from the system of interest. The method of
choice to purify thousands of single cells is FACS (88). By using a
cell sorting flow cytometer, this high throughput method can
accurately and sensitively separate cells according to their sizes,
granularities, fluorescence signals, and other features. However,
FACS requires very large numbers of cells (typically tens of
thousands) as starting material. Thus, micromanipulation
provides an alternative approach when only a few cells are available.

A single cell contains only 6 to 12 pg of DNA and 10 to 60 pg
of RNA, therefore, multiple rounds of amplification are required
to increase the amount of extracted nucleic acids (DNA and
Frontiers in Oncology | www.frontiersin.org 6
RNA) and reach the detection limit. In addition, as current high-
throughput sequencing platforms are only able to sequence DNA
molecules, reverse transcription (from mRNA to cDNA)
followed by cDNA amplification is necessary before sequencing
can be performed (89). Methods for amplification, analysis, and
their advantages as well as disadvantages are introduced above.
Choosing appropriate strategies based on the actual situation,
such as sample quality, equipment, costs and targets.

Finally, in order to interpret data of single-cell sequencing in a
biological context and to assess the relevance of these data,
functional validation is an essential step (89). For example, if
analysis results in the identification of certain cell types
characterized by certain marker genes, immunohistochemistry
gene-specific fluorescence in situ hybridization (FISH) probes
and immunohistochemical antibody staining of sample sections
can be used to validate that the functional protein is present.
3 APPLICATIONS OF SINGLE-CELL
SEQUENCING IN LIVER CANCER

As a rapidly developing technology, single-cell sequencing has
already been used in the research of diversified cancers, such as
melanomas (90–92), colorectal carcinoma (93–96), lung (97–
100), breast (101–108), and prostate cancer (109, 110). Like the
above-mentioned cancers, single-cell sequencing has also been
widely used for liver cancer research. Therefore, we summarize
the studies that used single-cell sequencing to characterize liver
cancers in Table 3.

3.1 Heterogeneity of Liver Cancer
PLCs have high heterogeneity (intertumor and intratumor
heterogeneity) which is closely related to their occurrence,
progression, and recurrence (129). Intertumor heterogeneity
usually refers to PLCs from different patients whose variant
genotypes and phenotypes are induced by diverse etiological and
environmental factors. Contrastingly, intratumor heterogeneity
refers to genomic and biological variations that result from the
evolution of different tumor cells under the influence of various
microenvironments in a tumor lesion (129, 130).

Currently, the understanding of PLC heterogeneity is mostly
limited to intertumor heterogeneity, but single-cell sequencing
now provides a platform for the study of intratumor
heterogeneity. In 2016, Hou et al. applied single-cell Trio-seq
(scTrio-seq) to 25 single cancer cells derived from an HCC tissue
sample and identified two subpopulations within these cells
based on the genome, transcriptome, and DNA methylome of
individual cells (76). Cancer cells in the minor subpopulation
had more invasive markers, were more likely to escape immune
recognition, and CNV analysis indicated more copy-gain events
in comparison to the cancer cells in the other subpopulation.

Zheng et al. used Smart-Seq to perform single-cell RNA
sequencing (scRNA-seq) of CSCs from human liver cancer cell
lines (HuH1 and HuH7) and a biopsy HCC sample,
demonstrating that the CSCs of HCC exhibited biological and
transcriptome heterogeneity for the first time (5). In this study,
April 2022 | Volume 12 | Article 857037
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TABLE 3 | Single-cell sequencing in characterization of liver cancers.

lyses Single-cell technology Patients Cells Year Reference

tation profiling Trio-seq 1 25 2016 (76)
tions 10x Chromium Genomics 1 3,847 2018 (5)

RNA-seq 1 139 2019 (111)
subtyping RNA-seq 8 NA 2019 (112)
TME 10x Chromium Genomics 19 5,115 2019 (113)

10x Chromium Genomics 2 38,553 2020 (114)
10x Chromium Genomics 8 56,871 2020 (26)

pulations 10x Chromium Genomics 7 NA 2021 (115)
RNA-seq 6 5,063 2017 (116)

sets 10x Chromium Genomics 16 77,321 2019 (117)
10x Chromium Genomics 13 8,047 2020 (118)

profiles and distribution of DPT cells 10x Chromium Genomics, TCR-seq 13 17,432,600 2020 (119)
10x Chromium Genomics 15 150,000 2020 (120)
10x Chromium Genomics 18 16,498 2021 (121)

eneity, immune heterogeneity 10x Chromium Genomics 8 43,645 2021 (122)
WGS 3 111 2018 (27)
WGS 133 NA 2019 (123)
VCS, WGS 1 264 2019 (124)
DNA-seq, RNA-seq 14 28,975 2021 (125)
10x Chromium Genomics, WGS 2 10,234 2018 (126)

metastasis RNA-seq 73 NA 2018 (127)
and immune-escape mechanism of CTCs RNA-seq 10 131 2021 (128)

NA-seq, RNA sequencing; ICC, intrahepatic cholangiocarcinoma; TME, tumor microenvironment; DPT cells, double-positive T cells; TCR-seq, T-cell
C-ICC, combined hepatocellular and intrahepatic cholangiocarcinoma; VCS: virome capture sequencing; CTC, circulating tumor cell.
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Hou et al. HCC Intratumor heterogeneity, subtyping, mu
Zheng et al. HCC Heterogeneity of CSCs, CSC subpopula
Ho et al. HCC Intratumor heterogeneity, subtyping
Zhang et al. HCC Intertumor and intratumor heterogeneity
Ma et al. HCC, ICC Intertumor and intratumor heterogeneity
Losic et al. HCC Intratumor heterogeneity
Zhang et al. ICC Intertumor heterogeneity, TME
Wu et al. HCC, ICC, cHCC-ICC Spatial heterogeneity, TME, CSC subpo
Zheng et al. HCC TME, subtyping of T cells
Zhang et al. HCC TME, immune profiles, macrophage sub
Liu et al. HCC TME, molecular profiles of T cells
Zheng et al. HCC Immune heterogeneity, TME, molecular
Li et al. HCC TME, subtyping of T cells
Sun et al. HCC TME, tumor recurrence
Ho et al. HCC TME, Intertumor and intratumor heterog
Duan et al. HCC Clonal origins, evolutionary mechanisms
Xue et al. cHCC-ICC Clonal origins, genomic profiles
Chen et al. HCC Clonal origins
Guo et al. HCC Clonal evolutions
D’Avola et al. HCC Heterogeneity of CTCs
Sun et al. HCC Heterogeneity of CTCs, mechanisms of
Sun et al. HCC Spatial heterogeneity, metastatic seedin

HCC, hepatocellular carcinoma; Trio-seq, triple omics sequencing; CSC, cancer stem cell;
receptor sequencing; DNA-seq, DNA sequencing; WGS, whole-genome sequencing; cH
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CSCs were defined as CD24+/CD133+/EpCAM+/CD45- cells.
This study showed that CSCs were phenotypically,
functionally, and transcriptionally heterogeneous at the single-
cell level, with distinct CSC subpopulations containing various
molecular signatures. Moreover, different gene expression levels
in each CSC subpopulation were independently associated with
prognosis in HCC, which indicated that diverse CSC
transcriptomes influenced intratumor heterogeneity and tumor
progression. In another study, a rare CD24+/CD44+ cell subclone
with specific oncogenic gene expression signature was identified
within the EpCAM+ cells (111). The combination of CD24 and
CD44 expression, such as CD24+/CD44+ and CD24-/CD44+, had
been used to define CSCs in various other cancers, including
breast, ovarian, prostate, pancreatic, colorectal, lung and renal
cancer, but this had not yet been reported in HCC (131–142).
These researches identified rare CSC subpopulations and
explored inter-relationship between different liver CSC markers
and their unique gene expression signatures by means of single-
cell sequencing, providing crucial clues for the definition and
annihilation of liver CSCs.

Zhang et al. performed scRNA-seq on 42 samples from eight
patients with HCC and identified three different HCC subtypes
based on their different immune statues, revealing the expression
levels of chemokines/cytokines and the metabolic characteristics
of different subtypes (112). Another study confirmed that tumors
with higher transcriptomic diversity were more aggressive and
were associated with worse overall survival and progression-free
survival of patients (113).

In 2020, Losic et al. performed scRNA-seq using 38,553 cells
from seven tumoral regions from two patients with HCC to
identify tumor heterogeneity (114). HCC cells in all regions of
one patient mostly belonged to one molecular class, while the
HCC cells in the other patient belonged to multiple molecular
classes. At the gene regulatory level, this study found profound
differences in transcription factor signaling among the tested
tumoral regions of the two patients, revealing significant
heterogeneity in the activation status of transcription factors
across distant regions within the same tumor nodule (114).

Zhang et al. performed scRNA-seq on 56,871 single cells from
eight ICC tissues. This study identified various tumor, immune,
and stromal cells, and divided these tumor cells into four main
subclusters (0, 1, 2, and 3) based on their CNVs and DEGs;
notably, a high degree of intertumor heterogeneity was observed
(26). Interestingly, tumor cells in subcluster 0 were characterized
by high expression levels of mesenchymal markers such as
collagen type I alpha I, fibronectin, and insulin-like growth
factor-binding protein 7, indicating epithelial-mesenchymal
transition (EMT) characteristics. In subclusters 1 and 2, tumor
cells displayed high expression levels of the malignancy-
promoting factors S100P and fatty acid binding protein 5 and
the immune-associated genes CD74 and HLA-DRA, respectively.
In subcluster 3, tumor cells from a recurrent patient displayed
high expression levels of serine protease inhibitor Kazal-type
1 (SPINK1).

High-resolution spatial transcriptomes of PLCs were
constructed by scRNA-seq to reveal the extensive global and
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local intratumor heterogeneities of tumors and TMEs (115). It
was reported to be the first study to analyze the genome-wide
TME characteristics from normal to leading-edge to tumor
regions, identifying the vital role of complete fibrous capsule
for both TME architecture and intratumor heterogeneity.
Furthermore, spatial heterogeneity was proved in a very early
stage of HCC (a tiny tumor nodule with a 1-cm diameter) based
on the asymmetrical distribution and biological behaviors of
tumor cell subpopulations.
3.2 TMEs of Liver Cancer
TMEs, including various types of cells and non-cellular
materials, play a critical role in the occurrence, progression,
and metastasis of tumors (143). There may be great distinctions
between TMEs among different types of cancers and among
different patients with the same type of cancer. Moreover, TMEs
can constantly change as the tumor progresses. Therefore, it is
impossible to accurately identify the state of a TME in theory
(144). However, in some cases, the TME can be specialized to
show typical traits which may affect tumor progression.
Understanding the characteristics of TMEs can help to profile
the crosstalk between the TMEs and cancer cells, and develop
novel strategies for tumor treatment (145).

Immune cells play crucial roles in the liver cancer
microenvironment and crosstalk with tumor cells. The
recruitment and function of immune cells are regulated by the
TMEs, and these immune cells can also affect adjacent tumor
cells (144, 146). Zheng et al. performed scRNA-seq on 5,063 T
cells isolated from peripheral blood, tumor samples, and adjacent
normal tissues from six patients with HCC, identifying 11 T cell
subsets based on their molecular and functional characteristics
(116). These findings provided evidence for the differential
distribution of CD8+ T cells as a feature in the TME of HCC.
In tumor samples, the proportion of mucosal-associated
invariant T cells was significantly lower than that of adjacent
normal tissues. In addition, tumor-infiltrating exhausted CD8+ T
cells and regulatory T cells (Tregs) were enriched in HCC TMEs.

In another study, the single-cell transcriptomic landscape of
5,115 single cells from 19 patients with HCC and ICC was
determined by scRNA-seq (113). Subsequently, eight samples
with a highly heterogeneous composition of stromal cells were
selected for further analysis and divided into high-diversity and
low-diversity groups based on the diversity of the tumor cells.
Subsequent analysis showed that vascular endothelial growth
factor (VEGF) was the most differentially expressed gene
between high-diversity and low-diversity groups, especially in
cancer-associated fibroblasts (CAFs), tumor-associated
macrophages (TAMs), and tumor-associated endothelial cells
(TECs). Furthermore, they demonstrated that VEGF took part in
the regulation of hypoxia-related genes and might be a key player
in the reprogramming of TMEs, providing a mechanistic
rationale for the combination therapy of immune checkpoint
inhibitors and anti-VEGF.

Different types of single-cell sequencing methods are
powerful instruments to study the state and dynamics of
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different immune cells. Zhang et al. applied two different scRNA-
seq technologies based on more than 75,000 CD45+ individual
immune cells from the tumor, adjacent liver, hepatic lymph
node, blood, and ascites of 16 patients with HCC to explore a
sufficient resource for understanding/characterizing the immune
cells in HCC (117). In this study, enrichment of two distinct
macrophage states, myeloid-derived suppressor cell (MDSC)-
like macrophages and tumor-associated macrophage (TAM)-like
macrophages were identified in HCC tumor tissues. TAM-like
macrophages in HCC were very similar to the TAMs identified in
lung cancer, and highly expressed marker genes associated with
poor prognosis, indicating this type of tumor-infiltrating TAMs
as a possible cellular candidate for therapeutic targeting in HCC
(117, 147).

Distinct fibroblast subpopulations were identified by scRNA-
seq based on 2,941 high-quality fibroblasts from patients with
ICC (26). Each subpopulation expressed high levels of canonical
fibroblast markers and displayed distinct transcriptomic
signatures. The fibroblasts in the largest subpopulation were
characterized by microvasculature signature genes, such as
CD146 (MCAM), MYH11, GJA4, and RGS5, and designated as
vascular cancer-associated fibroblasts (vCAFs). In vivo and in
vitro experiments showed that vCAFs can significantly promote
the proliferation of tumor cells and tumor stem cells. These
results proved novel cellular crosstalk between ICC cells and
vCAFs at single-cell resolution and revealed potential
therapeutic targets.

Zheng et al. described the spatial heterogeneity of the immune
microenvironment in HCC (119). This study revealed that the
number of CD4+ effector memory T cells gradually increased
when moving from the nontumor region to the tumor core, while
CD8+ effector memory T cells showed the opposite trend.
Additionally, the number of Tregs decreased from the tumor
core and leading-edge to the nontumor region as previously
reported (148). Further analysis found that in 70% of patients
with HCC, a group of double-positive T (DPT) cells with CD4
and CD8 characteristics were enriched in the leading-edge
region; PD-1+CD45RO+T cells accounted for a major
subpopulation of DPT cells . By applying multiplex
immunofluorescence tissue staining, the enrichment of DPT
cells and PD-1+DPT cells in the leading-edge region was
confirmed once again.

Sun et al. compared the transcriptomes of 16,498 cells between
primary and early-relapse HCC cases, revealing a distinct immune
ecosystem in early-relapse HCC. Remarkably, they described a
unique subgroup of CD8+T cells, with high expression of CD161,
innate-like dysfunctional cytotoxicity and low clonal expansion.
The enrichment of these cells was associated with a worse
prognosis. Some previous studies suggested that CD161 was
associated with the memory function of T cells, constituting the
adaptive immune response system (149, 150). Further analysis
indicated that the origin of early-relapse tumor cells was subclonal
and might result in the loss of major clonal neoantigens during
recurrence. Moreover, they demonstrated that CD161+CD8+T
cells secreted significantly less granzyme B and showed lower
clonal expansion than CD161-CD8+T cells. Therefore, early
Frontiers in Oncology | www.frontiersin.org 9
recurrence developed, regardless of the significant elevation of
CD161+CD8+T cell infiltration, suggesting that these T cells are
unable to prevent the intrahepatic dissemination of HCC.
Interestingly, in another study, the identification and functional
analysis of CD161+PD-1+CD8+T cells in HCC by scRNA-seq
came to nearly opposite conclusions (120). This research
revealed that CD8+PD-1+CD161+T cells was significantly
decreased in tumor tissues and had stronger cytotoxicity, as well
as proliferative capacity. Besides, the higher infiltration level of
CD8+PD-1+CD161+T cells indicated better prognosis. The
opposite conclusions might partially result from the difference of
T cell subset with or without PD-1 positive and the distinction
between primary and relapse HCC. The proportion and function
of CD161+T cells in HCC remain controversial. Hence, further
study with a larger cohort in HCC cases should be warranted. In
addition, it is noteworthy that inhibitory CD161 receptor has been
identified as a potential immunotherapy target in glioma-
infiltrating T cells (151). The anti-tumor function of CD161
blockade in liver cancer is a subject worthy of study, and CD161
may become a promising immunotherapy target in liver cancer.

Wu et al. progressively compared the spatial TME
characteristics from nontumor to leading-edge to tumor
regions, demonstrating that the tumor capsule potentially
affected intratumor spatial cluster continuity, transcriptome
diversity, and immune cell infiltration (115). Their results
revealed that the integrity of the capsule was closely related to
the distribution of their surrounding stromal and immune cells
but had few effects on the activities of hallmark pathways in
neither normal nor tumor regions.
3.3 Oncogenesis of Liver Cancer
Tumorigenesis, a multi-stage complex process, is the result of
diverse gene changes. Genes or cell subclusters that play crucial
roles in the development of tumors can be found by single-cell
sequencing, which can not only predict the potential targets for
treatment, but also provide biomarkers for diagnosis and
prognosis (152).

Duan et al. used single-cell whole-genome sequencing (WGS)
to profile 96 tumor cells and 15 normal liver cells from three
male patients with hepatitis B virus (HBV)-associated HCC and
demonstrated that HCCs might be of single or multiple origins
(27). A single-nodular HCC tumor with a portal vein tumor
thrombus (PVTT), a multifocal HCC tumor, and a confluent
multinodular HCC tumor were detected by single-cell WGS.
Results showed that both single-nodular HCC with PVTT and
multifocal HCC tumors were derived from a single cell that was
stimulated by the HBV integration events, in view of the same
HBV integration sites found in each tumor cell. On the contrary,
confluent multinodular HCC tumors had multiple origins, and
each tumor clone was derived from different cells harboring
various clone mutation groups. In addition, they found that
ZNF717, a potential driver gene with high mutation frequency at
both single cell and population levels, acted as a tumor
suppressor by regulating the interleukin 6/signal transducer
and activator of transcription 3 pathway in HCC. This study
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reveals the multiple distinct tumor evolutionary mechanisms in
HCC. These different evolution patterns lead to different HCC-
specific morphologies and severely call for different treatment
strategies. Accordingly, understanding cancer evolution may aid
to guiding the individualized treatment in HCC.

In 2019, a large-scale integrative analysis of 133 combined
hepatocellular and intrahepatic cholangiocarcinoma (cHCC-
ICC) cases was performed, including single nucleus sequencing
(123). In this study, nuclei were individually isolated and
subjected to WGA using MALBAC, followed by sequencing
and analysis. According to Allen and Lisa’s criteria, cHCC-ICC
cases were divided into separate-, combined-, and mixed types
(153). The results showed that separate type cHCC-ICCs had
both mono- and multiclonal origins, while both combined and
mixed type cHCC-ICCs exhibited monoclonal origins.
Moreover, combined type cHCC-ICC showed strong ICC-like
characteristics, whereas mixed type cHCC-ICC showed HCC-
like characteristics. Additionally, the expression of nestin was
remarkably higher in both combined and mixed type cHCC-
ICCs than in separate type HCC. Although, the former two types
are distinct molecular subtypes, they both showed stem-like
characteristics and poor prognosis (123). Therefore, nestin was
expected to replace EpCAM as a better biomarker for diagnosing
cHCC-ICC.

Whether tumor progression follows gradual or punctuated
evolution is controversial (152). Guo et al. performed scDNA-seq
and scRNA-seq on 28,975 cells from 14 patients with HCC,
proposing a novel dual-phase copy number evolution (DPCNE)
model (125). Accumulation of Copy number alterations (CNAs),
elicited by genome instability, plays a pivotal role in
hepatocarcinogenesis. They assessed CNA profiles of each cell,
revealing that both punctuated copy number evolution (PCNE)
and gradual copy number evolution (GCNE) coexisted in HCC.
Subsequent mathematical analysis demonstrated that DPCNE
model outperformed both GCNE model and PCNE model.
Therefore, this research showed that punctuated evolution and
gradual evolution are not mutually exclusive. Instead, both
evolution patterns can coexist in the same tumor and may
drive hepatocarcinogenesis at different stages. This discovery
makes a crucial breakthrough in the oncogenesis of HCC,
contributing to the clearer understanding of tumor progression.
3.4 Mechanisms of Metastasis in
Liver Cancer
As an important biological behavior, metastasis is one of the
hallmarks of cancer (154). CTCs are tumor cells that are shed
from primary tumors and become metastatic deposits in the
blood stream (155). The count and dynamic monitoring of CTCs
can be used to evaluate the therapeutic effects of different agents
and patient prognosis. However, further applications of CTCs in
clinical diagnosis and treatment are limited by only counting
CTCs and ignoring the genomic characteristics and
heterogeneity of CTCs. Single-cell sequencing can be used to
analyze the genome and transcriptome of CTCs, thus, clarifying
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the mechanisms of tumor metastasis and discovering new
CTC biomarkers.

Substantial researches focus on the temporal heterogeneity in
CTC phenotypes during anticancer treatments. However, the
spatial heterogeneity of CTCs within anatomically distinct
regions of the human circulatory system has been severely
neglected. Sun et al. used scRNA-seq based on CTCs isolated
from the peripheral veins and arteries, hepatic veins, infrahepatic
inferior venae cavae, and portal veins of patients with HCC to
demonstrate a profound spatial heterogeneity in cellular
distribution and biological features which exists among CTCs
(127). These CTCs were classified into three subsets (epithelial,
intermediate, or mesenchymal) based on their EMT-related gene
expression profile. CTCs of the epithelial subset mainly came
from hepatic veins while the CTCs of the intermediate and
mesenchymal subsets mostly came from peripheral veins, which
suggested that mutations in blood CTCs were accumulated
continually with the changes in the microenvironment,
resulting in the heterogeneity of CTCs.

In another study of the same research team, scRNA-seq was
applied to prove a previously unappreciated spatial heterogeneity
and an immune-escape mechanism of CTCs based on 113 single
CTCs from 4 different vascular sites (128). They examined the
gene profiles of CTCs that specifically expressed in each vascular
site, suggesting remarkable intravascular and intervascular
heterogeneity in single CTCs from different vascular
compartments. Notably, results of scRNA-seq demonstrated
that CTCs developed a variety of immune-evasion strategies,
including EMT, platelet-CTC aggregates, and the production of
immunosuppressive chemokines. Among these methods,
chemokine CCL5 was identified as the top differentially
upregulated transcriptome related to immune evasion,
indicating its significance in immune-escape mechanism of
CTCs. Further analysis revealed that CCL5 promotes the
metastatic potential of CTCs via recruiting Tregs during
hematogenous transportation and Treg-derived TGF-b1
induced CCL5 production via p38-MAX signaling in turn.
Their unique discovery of the CTC-CCL5-Tregs axis explains
why CTCs can successfully escape from immune-mediated
killing after leaving the protective immunosuppressive TME.
Additionally, blocking CCL5 or CCR5 can be designed as
promising anti-metastasis therapeutic strategies in HCC.
Targeting CCL5 or CCR5 may provide an opportunity to
eradicate CTCs within blood vessels, preventing their arrival at
distant organs. This may effectively hinder the distant metastasis
of HCC.
4 DISCUSSION AND PERSPECTIVE

Intratumor heterogeneity which plays a key role in diagnosis,
treatment response, disease progression, and survival outcomes,
is a typical feature of liver cancers. Since the tumor tissue is a
mixture of various cells, traditional analyses of tumor tissue
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usually show the average level of cell population, ignoring the
intratumor heterogeneity. In recent years, single-cell sequencing
has enabled analysis of the gene expression profiles at the single-
cell level and provides novel insights for cancer precision
medicine. High throughput sequencing of tumor cells, CSCs,
single cells in TMEs, and CTCs can reveal the heterogeneity of
liver cancer cells and their immune microenvironment, which
allows more in-depth research on the occurrence, progression,
and metastasis of liver cancers and provide more suitable
biomarkers for precision medicine, including clinical diagnosis,
individualized treatment, efficacy evaluation, and prognosis. The
landscape of TMEs in liver cancers has been revealed by single-
cell sequencing gradually, and this may contribute to the more
precise immunotherapy of liver cancers.

Among all single-cell sequencing technologies, scRNA-seq is
the most advanced and widely used in liver cancer studies due to
relatively higher throughput and lower cost than the other single-
cell sequencing methods. It has also been used in non-coding
RNA studies. Through scRNA-seq of circular RNA, circASAP1
was identified as a significant regulator of HCC metastasis and
serves as a prognostic predictor in patients with HCC (156).
Furthermore, single-cell genomic and epigenomic sequencing
technologies have also been gradually developed and scTrio-seq
has already been applied in a heterogeneity study in HCC that
reveals the mechanism by which the transcriptome, genome, and
DNA methylome regulate each other (76). Of note, single-cell
VCS has been used in HBV-associated HCC studies (123). In
contrast, single-cell proteomics is rarely applied in liver cancer
studies because of the extremely low copy number of individual
proteins and the lack of amplification methods. Similarly, the use
of single-cell histone modification sequencing and single-cell
chromatin structure sequencing is not widespread.

Most of the above-mentioned studies capture single cells from
less than 15 patients, perhaps due to the limitations of cost.
However, more patients should be included in future studies to
analyze the connection between the data from single-cell
sequencing and patient outcomes. In addition to this, few
researches are focused on multiple aspects of liver cancer to
date. Therefore, studies that cover multiple distinct aspects might
be more convincing. In the meantime, since a growing number of
cells are used for single-cell sequencing, more powerful
bioinformatics technologies are needed to identify subtle
distinctions (in databases) that reflect cell states.

Our understanding of tumor biology has been significantly
advanced, on account of the development and applications of
single-cell technologies. Some fundamental questions in liver
cancer can be explored by single-cell sequencing. First, intricate
ecosystem poses significant challenges to precision medicine in
liver cancer, in view of the highly heterogeneous cancer cell
population both between tumors and within a tumor.
Applications of these powerful single-cell technologies make it
possible to search for the key to the creation of such a
sophisticated ecosystem. Subsequently, therapeutic strategies
designed to target the pivotal cells or factors in liver cancer
may contribute to the individualized medicine. Second, targeted
therapy and immunotherapy are transforming the treatment
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approach for liver cancer. Single-cell sequencing technologies
have been used to detect the response of immune checkpoint
therapy in cutaneous basal cell carcinoma and melanoma (91,
157). Recently, a multiomic analysis has been applied to reveal
the impacts of intertumor heterogeneity on patient response to
targeted therapy and immunotherapy in multifocal ICC (158).
However, no similar study has been performed for patients with
HCC to date. Such studies need to be applied in the field of HCC
to help optimize patient selection for targeted therapy or
immunotherapy, predict the prognosis, treatment response,
and treatment resistance. Finally, analysis of CTCs holds great
potential to be a noninvasive solution for clinical cancer
management. A novel integrated system has been developed
for the detection and downstream single-cell analysis of CTCs
(159). Heterogeneity of CTCs can be unveiled by precise, highly
automated single CTC enumeration and molecular
characterization. Single-cell sequencing of CTCs will not only
be useful for studying tumor evolution and dissemination but
will also be a powerful tool to enable the personalized
therapeutics of liver cancer.
5 CONCLUSION

In conclusion, single-cell sequencing is a rapidly developing
technology that enables the analys i s of genomic ,
transcriptomic, and epigenetic information at the single-cell
level and provides novel insights for cancer precision medicine
(6). However, several challenges need to be solved before single-
cell sequencing can be widely used in clinics. For instance, the
cost of single-cell sequencing is so expensive that the detection of
a large number of cells is unaffordable for most patients.
Consequently, only a few cells are used for single-cell
sequencing at any given time. In addition, the data of single-
cell sequencing is rarely associated with clinical outcomes.
Understanding how heterogeneity, TMEs, and tumor evolution
contribute to clinically relevant outcomes from the aspect of a
single cell may be a promising potential application of this
sequencing technology and can promote the development of
precision medicine. Moreover, the detection of CTCs depends on
the analysis of only a small number of surface markers, which
makes the isolation of CTCs difficult. In fact, the only device that
FDA approves to detect CTCs is based on the expression of
EpCAM (160). Nevertheless, this CTC assay is unable to isolate
CTCs from de-differentiated tumors and carcinomas undergoing
loss of this epithelial phenotype during the process of invasion
and metastasis (161). As a result, numerous teams of researchers
are developing many different methods for CTC detection (161,
162). These technologies that have the capability to efficiently
isolate and evaluate CTCs in a sensitive manner would broaden
the potential applications of non-invasive liquid biopsies of
patients with PLCs and single-cell sequencing of CTCs.

Inspiringly, the solutions of reducing costs, shortening
sequencing time, enhancing the sensitivity and specificity of
sequencing, improving the coverage and accuracy of
April 2022 | Volume 12 | Article 857037

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tian and Li Single-Cell Sequencing in Liver Cancer
amplification, and finding more suitable single cell markers are
forthcoming due to the continuous optimization of amplification
methods and the rapid development of bioinformatics.
Therefore, it is undoubtedly reasonable to foresee that single-
cell sequencing will be applied in numerous novel fields of liver
cancer research in the near future.
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GLOSSARY

PLC Primary liver cancer
TME Tumor microenvironment
HCC Hepatocellular carcinoma
ICC Intrahepatic cholangiocarcinoma
CSCs Cancer stem cells
CTCs Circulating tumor cells
LCM Laser capture microdissection
FACS Fluorescence-activated cell sorting
MACS Magnetic-activated cell sorting
EpCAM Epithelial cell adhesion molecule
FDA Food and Drug Administration
WGA Whole genome amplification
PCR Polymerase chain reaction
CNVs Copy-number variations
DOP-PCR Degenerate oligonucleotide-primed polymerase chain reaction
MDA Multiple displacement amplification
MALBAC Multiple annealing and looping-based amplification cycles
STRT-seq Single-cell tagged reverse transcription sequencing
Smart-seq Switching mechanism at 5’ end of the RNA transcript sequencing
CEL-seq Cell expression by linear amplification and sequencing
RRBS Reduced representation bisulfite sequencing
WGBS Whole genome bisulfite sequencing
CGI-seq CpG island methylation sequencing
ATAC-seq Assay for transposase accessible chromatin sequencing
Trio-seq Triple omics sequencing
RNA-seq RNA sequencing
DPT cells Double-positive T cells
TCR-seq T-cell receptor sequencing
DNA-seq DNA sequencing
WGS whole-genome sequencing
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