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Abstract

The human dopamine transporter gene SLC6A3 is involved in substance use disorders

(SUDs) among many other common neuropsychiatric illnesses but allelic association results

including those with its classic genetic markers 3’VNTR or Int8VNTR remain mixed and

unexplainable. To better understand the genetics for reproducible association signals, we

report the presence of recombination hotspots based on sequencing of the entire 5’ pro-

moter regions in two small SUDs cohorts, 30 African Americans (AAs) and 30 European

Americans (EAs). Recombination rate was the highest near the transcription start site (TSS)

in both cohorts. In addition, each cohort carried 57 different promoter haplotypes out of 60

and no haplotypes were shared between the two ethnicities. A quarter of the haplotypes

evolved in an ethnicity-specific manner. Finally, analysis of five hundred subjects of Euro-

pean ancestry, from the 1000 Genome Project, confirmed the promoter recombination hot-

spots and also revealed several additional ones in non-coding regions only. These findings

provide an explanation for the mixed results as well as guidance for selection of effective

markers to be used in next generation association validation (NGAV), facilitating the delin-

eation of pathogenic variation in this critical neuropsychiatric gene.

Introduction

By sequestering dopamine (DA) into presynaptic neurons, the dopamine transporter (DAT)

regulates spatio-temporal components of DA transmission. As a critical regulator of DA trans-

mission, DAT contributes to voluntary movement, reward and mnemonic functions of the

brain and modulates the efficacy of therapeutic drugs targeted to this plasma membrane pro-

tein. DAT expression is highly circumscribed in discrete regions throughout the brain and the

expression of the human DAT gene (SLC6A3) varies among subjects[1–5]. Thus DNA

sequence variations in the regulatory regions specially the promoter of SLC6A3 may contribute

to altered expressional patterns in the brain, dopamine-related individuality as well as diseases

[6, 7]. The essential roles of DAT in brain function have mandated extensive studies of

SLC6A3 associations with behaviors and diseases.
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During the last twenty five years SLC6A3 has been extensively studied for genetic associa-

tions but the association studies with different markers located in SLC6A3’s 3’ regions obtained

mixed results. On chromosome 5 (chr5), SLC6A3 spans 70 kilobase (kb) from the 5’ promoter

to 3’untranslated region (3’UTR, located in Exon 15). Sporadic genetic markers in several reg-

ulatory regions throughout SLC6A3, including the 5’ promoter, Intron 8 and 3’UTR, have

been used in hundreds of association studies on more than eight different diseases and a num-

ber of human behaviors. Vast majority of these studies used a classical variable number tan-

dem repeat located in the 3’UTR (3’VNTR/rs28363170) and another more recently used

VNTR in Intron 8 (Int8VNTR/rs3836790)[8, 9]. As a result, findings from these association

studies, especially those with 3’VNTR, in various populations were largely inconclusive or

showed small effect sizes, such as studies on schizophrenia and bipolar disorder among others

[10–15]. In particular, SLC6A3 has been well implicated in the etiology and treatment of atten-

tion deficit hyperactivity disorder (ADHD)[16–22] but human genetic association studies with

the 3’VNTR could not obtain consistent positive signals[23–25]. Another example was phar-

macogenetics of Parkinson’s disease (PD): 3’VNTR or In8VNTR was associated with differen-

tial response to pharmacotherapy of PD[26–30] but not based on other studies [31, 32].

Moreover, SLC6A3 genotype was found to modulate the risk of pesticide exposure for PD by

some studies [33]but not by others[34]. The lack of evidence-based selection of markers

resulted in the mixture, unfortunately causing little motivation to add more association studies

with any markers in the SLC6A3 genetic field. Importantly, the unreliable human genetic find-

ings are inconsistent with ample positively-related evidence for SLC6A3 activity versus pheno-

types from other approaches such as pharmacology, imaging and animal genetics[20, 35–39].

In contrast to 3’VNTR, its promoter markers were more consistently associated with

ADHD in various populations [40–47]. Consistently, we and others have shown that the 5’

promoter regions display varying regulatory activity and also in a haplotype-dependent man-

ner in vitro[48–51]. Findings from rodent genetic studies have demonstrated the causality of

reduced DAT activity on various phenotypes[37, 52–56]. These findings suggest that polymor-

phism- or haplotype-dependent SLC6A3 promoter activity may confer risk for related diseases

and that genetic association studies should have resulted in consistent positive findings.

One explanation for the current elusiveness of the association findings with the 3’VNTR

was that this marker is far away from upstream regulatory regions, including Int8VNTR and

the 50 kb-away 5’ promoter, and unable to capture the related information due to high recom-

bination rates or weak linkage disequilibrium (LD). Other explanation is that different popula-

tions carry different frequencies of the same markers or even different disease loci. In either

case, these already used genetic markers were unlikely the underlying disease loci. In vitro
studies have shown polymorphisms in the 5’ core promoter, Int8VNTR and 3’VNTR all regu-

lated promoter activity[49, 57–61]. This information suggests that it be critical for association

studies to use genetic markers in all distinct regulatory regions, in order to capture variable

SLC6A3 expression as a whole and identify the underlying haplotypes and signaling pathways

[51].

To clarify these possibilities, it is necessary to deeply sequence the regulatory regions for a

better understanding of the SLC6A3 genetic structure including the 3’ VNTRs, given the impli-

cations of SLC6A3 in a spectrum of diseases and other behavioral characteristics. This task

requires systemic discovery of polymorphisms and haplotypes in the regulatory regions,

through targeted deep-sequencing that is helpful in discovery of novel functional loci or muta-

tions in different fields[62–69]. In other words, the presence of multiple SLC6A3 regulatory

regions mandates mechanistic studies of the SLC6A3 genetics, to help delineating functionally

distinct SLC6A3 haplotypes.

Great DNA sequence diversity throughout SLC6A3
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In this targeted deep-sequencing study, we uncover unique and common polymorphisms

and haplotypes, and recombination hotspots for two major U.S. populations, African Ameri-

cans (AAs) and European Americans (EAs), for finding generalization. The findings may help

explain the mixed association findings[25, 70, 71] and instruct our future strategy for identify-

ing disease loci in SLC6A3[29, 72, 73].

Materials and methods

Subjects

Sixty unrelated subjects were selected from the Collaborative Studies on Genetics of Alcohol-

ism (COGA) pedigrees[74] and their de-identified genomic DNAs were provided by COGA

through the Coriell Institute (NJ, U.S.A.) with the approval of National Institute on Alcohol

Abuse and Alcoholism (NIAAA). Subjects gave their informed consent to the COGA study.

From each of the COGA pedigrees, we selected the grandparents and their offspring’s spouses

that came from outside the pedigree as unrelated subjects and the unrelatedness was verified

by genomic control[75]. They included two cohorts: 30 AAs and 30 EAs. Each cohort con-

sisted of 15 controls and 15 patients with substance use disorders (SUDs) (see Table 1). The 30

control subjects were all unaffected based upon the Diagnostic and Statistical Manual of Men-

tal Disorders III Revision (DSM-IIIR), Feighner Criteria and International Classification of

Diseases, Tenth Revision (ICD-10). All of the 30 affected subjects met at least two of the

DSM-IIIR, Feighner Criteria and ICD-10 criteria for alcohol dependence. This study was

approved by McLean Hospital Institutional Review Board.

DNA sequencing

A two-step "boost/nest" polymerase chain reaction (PCR) strategy was used to sequence the 18

kb promoter regions at Polymorphic DNA Technologies, Inc (Alameda, CA). We first did a

boost reaction for a larger PCR amplicon and then used this amplicon as a template for the

nest reaction, followed by sequencing of the nest product. The conditions for the boost PCR

reaction were identical to the nest with the following exceptions: 10 ng of genomic DNA was

used for the boost, then 1 μL of boost product as template for the nest reaction. The two reac-

tions used two different pairs of different primers. PCR cycle was: 94˚C for 4 min, 25 cycles of

94˚C for 20 sec, 55˚C for 25 sec and 72˚C for 1 min, followed by an extension of 72˚C for 7

min. Double-stranded DNA sequencing was carried out by using the Applied Biosystems

3730/3730xl chemistry in a 384-well format.

Genotyping

A multiplex PCR-restriction fragment length polymorphism (RFLP) method was used for

VNTR genotyping. PCR followed standard protocols, with Fast PCR Master Mix (Fermentas,

Glen Burnie, MD, U.S.A.) as described before[76]. For -14kb-VNTR, the PCR product was

913-bp, 733-bp, 652-bp, and 771-bp for 1-, 2-, 3-, and 4-repeat respectively. 5’VNTR was

Table 1. Demographic information on 60 COGA subjects used.

AA (30) EA (30)

Control (15) Case (15) Total Control (15) Case (15) Total

Male 7 7 14 8 8 16

Female 8 8 16 7 7 14

Average age 40.4 ± 4.3 44.3 ±3.6 49.0 ± 3.8 48.1 ±3.6

Age range 21–72 27–70 24–77 24–63

https://doi.org/10.1371/journal.pone.0218129.t001
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426-bp, 486-bp, 546-bp, and 606-bp for 6-, 7-, 8-, and 9-repeat respectively. Int8VNTR was

291-bp and 321-bp for 5- and 6-repeat, and 3’VNTR was 441-bp, 481-bp and 521-bp for 9-,

10- and 11-repeat. These VNTR’s PCR products were subject to agarose electrophoresis

directly. The allele sequences of -10kb-pA (polyadenine) and simple sequence length polymor-

phism (SSLP) were verified by TA cloning (Invitrogen, Carlsbad, CA, U.S.A.) and DNA

sequencing of TA clones (five to six per subject for a 95% confidence on biallelic polymor-

phisms). All Chromas sequencing graphs were refereed manually by two researchers indepen-

dently for double-verification of sequence accuracy. All primers used are listed in S1 Table.

Genetic analysis

Linkage disequilibrium (LD), expressed as D’ and r2[77], was analyzed by using Haploview

(http://www.broadinstitute.org/haploview/haploview) for biallelic polymorphisms and SHEsis

(http://analysis.bio-x.cn/myAnalysis.php) for multiallelic polymorphism[78, 79]. Haplotyper

(http://www.people.fas.harvard.edu/~junliu/Haplo/click.html) and PHASE (http://www.stat.

washington.edu/stephens/phase/download.2.0.2.html) softwares were used for haplotype

inference[80]. Recombination fraction was estimated by LDhat (http://www.cecalc.ula.ve/

BIOINFO/servicios/herr1/LDhat/readme.html).

To evaluate general chromosomal recombination, five populations of European ancestry in

the 1000 Genomes Project (1KGP)[81, 82], including US Caucasians, Great Britain, Italy,

Spain, and Finland, were combined for reliability to reveal recombination hotspots in SLC6A3
by using the published FastEPRR protocol[83].

To localize genome wide association study (GWAS) markers in this gene, three SUDs

GWAS datasets, all past their embargo periods, were downloaded from the dbGaP,[84] includ-

ing Collaborative Study on the Genetics of Alcoholism [85] (COGA, phs000125.v1.p1), Study

of Addiction: Genetics and Environment (SAGE, phs000092.v1.p1) and the Australian twin-

family study of alcohol use disorder (OZALC, phs000181.v1.p1). Datasets were cleaned or

quality-controlled extensively by using a published protocol,[86] followed by imputation as

described before.[87] Basic manipulations of datasets used PLINK[88].

To estimate Tajima’s D statistic in 30 unrelated COGA subjects, we calculated nucleotide

diversity θ as the number of segregating sites, S, divided by a1, where a1 ¼
X59

i¼1

1

i
¼ 4:6632,

divided by the number of nucleotides sequenced. Heterogeneity π was estimated by

k ¼
XS

j¼1

2pjð1 � pjÞ, divided by 1–(1/59) = 0.983051, divided by the number of nucleotides

sequenced, where pj was the observed frequency of the jth diallelic polymorphism. Statistic D

was calculated using the θ and π, according to Tajima[89]. Phylogenic analysis was carried out

by ClustalX (http://www.bioinformatics.ubc.ca/resources/tools/index.php?name=clustalx),

with neighbor joining method for clustering and phylogenetic tree was displayed by TreeView

(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html) for cladistic analysis[90, 91]. Valida-

tions used MEGA7[92] under the Kimura 2 parameter with Gamma Distributed as rates

among sites model for nucleotide substitutions. The relatedness results were shown in a radia-

tion graphic, rather than in traditional trees, for better visualization.

Results

Unique variation and ethnic differences

We sequenced the 18 kb promoter region including the 16 kb 5’ region, Exon 1, and the 2 kb

Intron 1 and further genotyped the two VNTRs in Intron 8 and 3’UTR among 30 AAs and 30
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EAs. A sample size of 30 allowed 80% confidence of detecting an allele with a frequency of

2.6% or 95% confidence of detecting an allele with a frequency of 4.9%. Based on more than

7,300 PCR reactions and sequencing of more than 2.4 mega-bases (Mb), the 60 subjects were

found to carry 134 polymorphisms in the 18 kb 5’ promoter regions and 20.1% of them were

novel (S2 Table). The 5’ promoter had two VNTRs, one novel at -14280 (-14kb-VNTR) and

another at -11000 (5’VNTR/rs70957367); a novel -15.0kb-indel (insertion/deletion), one novel

variable poly A at -10331 (-10kb-pA) and one novel SSLP at +1531 (use of the first base of

Exon 1 as +1 and negative numbers for upstream of the promoter). All of these polymorphisms

were all confirmed by TA cloning and DNA re-sequencing. The novel -14kb-VNTR had four

alleles that were formed by multiple indels, di-nucleotide polymorphisms (DNPs) and single

nucleotide polymorphisms (SNPs) (see S1 Fig upper panel). 5’VNTR had 7–9 repeats of imper-

fect 60 bp, whose primary sequence was reported previously[76]. -10kb-pA had 9–11 As. SSLP

in Intron 1 had nine different length polymorphisms (S1 Fig lower panel). Int8VNTR had two

alleles, 5 and 6 repeats of 30 bp and 3’VNTR had 9–11 repeats of 40 bp as previously discov-

ered[8, 60, 93, 94].

For the sample size of 30 subjects, the AA group had 108 promoter polymorphisms and the

EA group, 79 polymorphisms (see Fig 1A for distribution). The polymorphism density was

6.1/kb in AA and 4.5/kb in EA. Between AA and EA, 53 of the 134 polymorphisms were

shared; the former carried 55 additional unique polymorphisms and the later carried 26 addi-

tional EA-specific ones. +24G/T (rs45611137) was the only Exon 1 mutant (minor allele fre-

quency (MAF): 0.0167), present in the AA, not in the EA cohort.

Recombination rate (ρ)

The core promoter region at -2.3 kb and Intron 1 at +1.6 kb both displayed higher recombina-

tion rates than upstream promoter regions (Fig 1B). Two other hot spots were at -10.4 kb and

-12.6 kb. In the core promoter region, ρ was 3.57 in AA and 2.55 in EA, representing the hot-

test region for recombination in the SLC6A3 promoter. This rate decreased sharply as the dis-

tance from the -2.3 kb spot increased towards either side (see Insert in Fig 1B). In this core

promoter region, the average ρ value was 1.48 in the AA cohort, 1.4-fold higher of the ρ value

in the EA cohort. The Intron 1 had another hotspot. The largest difference in recombination

rate between the two cohorts was three-fold at -15.7 kb, the 5’ end of the promoter regions

where ρ value was 1.29 in the AA and 0.43 in the EA cohort. The average ρ value was 1.26 in

the AA, 1.3-fold higher of the ρ value in the EA cohort. Although we have not stratified the

analysis by sex, the findings persistently pointed to four recombination hotspots in the

SLC6A3 promoter of the COGA cohorts.

LD

The overall AA LD was low across the entire regulatory regions (average D’ = 0.8214 and

square of the Pearson correlation coefficients r2 = 0.1283). There was a weak 6 kb block from

-6234A/G (rs1354139) to -68T/A (rs2975226) (D’ = 0.8487 and r2 = 0.1621, see Fig 1C left
panel). Intron 1 displayed relatively weak LD within the Intron (D’ = 0.8414 and r2 = 0.0964).

In particular, the 5’ end of Intron 1 from +24G/T (rs45611137) to +579G/A (rs28382214) rep-

resented a major subregion of weak LD (D’ 0.8938 and r2 0.0438). Int8VNTR displayed low

LD (D’ 0.6126 and r2 0.06524) with the upstream polymorphisms. Int8VNTR had perfect LD

with 1787G/A (rs11564757) (D’ and r2 both = 1) and high LD with -15.0kb-indel, -10250C/T

(rs72717506), -9701C/T (rs10063727), -4913A/G (rs10079467), -1675T/C (rs11564751) and

-1479G/T (rs6413429) (D’ = 1 and r2 = 0.4).
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Fig 1. SLC6A3 regulatory region polymorphisms. (A) Asymmetric distribution of common polymorphisms between the AA (upper panel) and the EA (lower panel)
cohorts. Each polymorphism is indicated by small black square. Gray areas indicate paucity of polymorphisms for indicated MAF range. Black horizontal bar, location
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The overall EA LD (D’ = 0.9119, r2 = 0.1876) was bit higher than the AA LD, consistent

with the lower recombination rate in EA than in AA. There was a 10 kb block covering from

-12499 to -2315, which was located towards the 5’ end, approximately 4 kb up compared to the

location of the AA weak block (indicated by asterisks in Fig 1C right panel). The average LD

within this block was D’ = 0.9458 and r2 = 0.2985. Polymorphisms at -5487, -6731, -3182, and

-2600 displayed weak LD, D’ = 0.5333 and r2 = 0.06459 on average within this block. There is

no LD between -10397G/A (rs6860992) and -4825T/C (rs188332761). Weak LD regions sur-

rounded the transcription start site (TSS), covering the regions from -2296 to +1298 (D’ =

0.9507, r2 = 0.0835). Similar to what was observed in the AAs, the 5’ end of the EA Intron 1

also displayed weak LD. Different from the AAs was the 3’ end of Intron 1 that displayed

strong LD within the region or with upstream regions. Again, Int8VNTR displayed weak LD

(D’ = 0.6255, r2 = 0.08734) with upstream polymorphisms. However, Int8VNTR displayed

strong LD with -15.0kb-indel, -10250C/T, -1675T/C (rs11564751) and +1787G/A

(rs11564757) (D’ = 1 and r2 = 0.4).

When we stratified the 30 subjects by phenotypes, the control LD (D’ = 0.8774) was stron-

ger than the case (D’ = 0.7992) in the AAs and differences in multifocal pairs were quite signifi-

cant, by comparing the upper panels of S2 Fig. This phenotype-related difference in LD was

also observed in EAs, especially for core promoter-Intron 1 versus the upstream regions (S2

Fig). Therefore, SUDs-related changes in LD might represent a major difference in SLC6A3
genetics between AA and EA.

In addition to the biallelic polymorphisms, we also analyzed LD by using the five multialle-

lic polymorphisms, including -14kb-VNTR, 5’VNTR, -10kb-pA, SSLP and 3’VNTR. Consis-

tently, the AA LD was weaker than the EA LD (S3 Fig far right panels). 3’VNTR displayed

weak LD with upstream markers: r2 = 0.049–0.170 in the AAs and 0.115–0.200 in the EAs.

Stratification with phenotypes showed that LD in these patients was stronger than in the con-

trols for both populations, based on color intensity (S3 Fig left panels).

Genetic selection of polymorphisms

Genetic selection may indicate functionality of polymorphisms. We utilized Tajima’s statistic

D to evaluate these genetic processes. The average D values for the entire 18 kb promoter were

slightly positive (0.48) for EA and slightly negative (-0.29) for AA. However, when we stratified

the polymorphisms by variation types, significant D values were revealed. In the AA cohort,

VNTRs and SSLP both had significantly positive D values. In particular, the Intron 1 SSLP

(heterogeneity or h = 0.7556), 5’VNTR (h = 0.5915) and -10kb-pA (h = 0.6228) in the 5’ region

had D values of 3.28, 2.67 and 2.48. Between two DNPs, the 5’ DNP had a negative D value but

the Intron 1 DNP (DNPi) had a positive D (-1.09 and 1.47). The Intron 1 SSLP and DNP were

the only types with positive D values in this region. Neither Int8VNTR nor 3’VNTR had signif-

icant D values (S4A Fig).

In the EA cohort, all types of variations (-10kb-pA, DNP, VNTR and SSLP) except SNPs

had significantly positive D values (2.37, 2.32, 2.45, 4.57 versus -0.02857 for SNPs). This EA

SSLP displayed the highest heterogeneity of 0.9647 among all of the polymorphisms. The posi-

tive DNP D was attributable to both DNPs in the 5’ region and in Intron 1. The positive

of Intron 1; black triangles, Int8VNTR and 3’VNTR; horizontal double-arrow, block; inverted open triangle, recombination hotspot for both populations; blue square,

genetic selection; large red squares, SUDs-associated polymorphisms. Upper brace, clustering of selections. (B) Distribution of recombination rate across the 18 kb

SLC6A3 promoter regions. Red, AA; blue, EA. Insert, a close-up for the region indicated by two arrow heads, by using a finer scale (see x axis). Arrow, transcription

start site (TSS). (C) Haploview-based linkage disequilibrium (LD) in SLC6A3 regulatory regions (18 kb and Int8VNTR). Left, AA; right, EA. �, block; arrow, location of

Int8VNTR. 3’VNTR was not included due to multiple alleles. Parenthesis contains the number of polymorphisms used for the LD analysis. Color: red for stronger LD;

white, little LD. Brackets, haplotype blocks defined by Haploview.

https://doi.org/10.1371/journal.pone.0218129.g001
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VNTR D was attributable to 5’VNTR (h = 0.6395) in the 5’ region. Unlike the AA D values,

SNPs and -15.0kb-indel were the only types that showed negative D values in the EA. The two

VNTRs at the 3’ side of the gene showed positive but insignificant D values (S4B Fig). It was

noticed that SSLP, 5’VNTR and -10kb-pA were all positively selected in both populations.

Haplotypic relatedness

The AA and EA cohorts carried 108 and 79 polymorphisms plus Int8VNTR and 3’VNTR, and

these polymorphisms constituted 57 different AA haplotypes (#1–57; #1-#29 from the patients

and #30-#57 from the controls; #2, #34 and #40 each occurred twice in the controls) and 57 dif-

ferent EA haplotypes (#58-#114; #58-#87 from the patients and #88-#114 from the controls;

#62 and #65 each occurred once in a control and once in a patients and #107 occurred twice in

the two controls). That is, three haplotypes each occurred twice and 54 other haplotypes each

occurred only once in each cohort of 30 subjects. None of the AA haplotypes were present in

the EA and vice versa, suggesting that SLC6A3 carries great diversity not only between different

ethnicities but also within the same population.

Co-analyses of the AA and EA haplotypes for relatedness could help understand whether or

not the SLC6A3 haplotypes co-evolved independently between AA and EA during human his-

tory. Therefore, we generated a phylogenic tree containing all 114 haplotypes (Fig 2). It turned

out that the AA and EA haplotypes were mixed up in terms of relatedness. Overall, the top half

of the phylogenetic tree represented a major mosaic of the AA and EA haplotypes, including

pairs of 10/61 and 2/68.

Haplotype analysis of three of the EA polymorphisms -14kb-VNTR2/4, Int8VNTR5/6 and

3’VNTR9/10/11 showed that 4-6-10 occurred eight times in the patients but did not occur in

controls, with a nominal p value of 0.0046 by Fisher’s Exact Tests (odds ratio (OR) 23.0; 95%

confidence interval (CI) 1.26–420.39). The consistencies in allele-specificity of association ten-

dency and the suggestive haplotypic association warrant future investigation of these potential

risk factors in large samples.

Recombination hotspots in general populations of European ancestry

To confirm the recombination results from the COGA cohorts, we consulted with the 1KGP

and analyzed the entire 70 kb chromosomal region of SLC6A3. We combined five European

ethnicities, including EA (99 persons), Italy (108 persons), Spain (107 persons), Finland (99

persons), Great Britain (92 persons), for a total of 505 persons. Several hotspots were revealed

but the most significant one was in Intron 2 and next to Exon 2. The ones in the core promoter

and in Intron 1, revealed by the COGA subjects, were confirmed. Others were located in

Introns 4, 7, 8, 11 and 14. None of them were localized to any coding regions. The distal pro-

moter regions were relatively quiet, with six minor ones (Fig 3 upper part).

Discussion

It is important to uncover novel, potentially functional polymorphisms and distinct haplo-

types, and recombination hotspots because SLC6A3 activity can be haplotype-dependent partly

due to cis-antagonism between 5’ and 3’ sides of SLC6A3[95]. The most significant findings

from this deep-sequencing study included discovery of novel and selected polymorphisms and

the presence of recombination hotspots throughout SLC6A3. Although association analysis of

SUDs and SLC6A3 haplotypes was not a primary purpose here, five implications are

highlighted as follows.
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Fig 2. Unrooted neighbor-joining phylogenetic tree of AA (1–57 in red) and EA (58–114 in blue) regulatory haplotypes of SLC6A3 (violet, shared branches). 1–

29 and 58–87 (labeled in gray bold), carried by the patients and the rest by the controls. For top clade (at least five haplotypes), red arrows, AA clades; blue arrow, EA

clade; violet arrow, clades with mixture of two ethnicities. �, carried by two subjects (the rest each carried by one subject). The proportion of sites where at least one

unambiguous base was present in at least one haplotype for each descendent clade was either 99% or 100% for each internal node in the tree. The analyses utilized a

total of 114 haplotypes.

https://doi.org/10.1371/journal.pone.0218129.g002
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Great diversity

The levels of variation including novel polymorphisms in the regulatory regions have never

been expected. In either of the two cohorts, 60 chromosomes were represented by 57 regula-

tory haplotypes. The haplotypic diversity was attributable to both high density of polymor-

phisms and several recombination hotspots. Because of the genetic diversity, the overall LD

was generally low, based on the r2 values of< 0.2 across the regulatory regions and the previ-

ously observed balancing selection of promoter haplotypes disappeared here[96, 97]. Such

information explains the inconsistent findings on associations between SLC6A3 and ADHD

from genetic studies that used markers located in “random” regions for different populations

[98–101]. The rationale of choosing SLC6A3 markers in most of the studies suffered from the

lack of a mechanistic understanding of regulatory genetics in ethnic SLC6A3 and because of

that, the obtained results were more marker- and sample-dependent than phenotype-depen-

dent. Our systemic observations suggest that use of markers that cover more regulatory regions

could result in more consistent and positive associations, a notion that has been supported by

two studies[42, 46].

Convergence

Phylogenetic analysis indicated for the first time the convergence of the SLC6A3 regulatory

regions between the AAs and the EAs, which means that DNA sequence variation occurred in

this promoter independently in the two ethnicities. Despite one main EA clade and three local-

ized minor AA clades, the majority of the haplotypes between two populations were mixed by

being localized to many subclades of various sizes. Given the observations that two thirds of

the EA polymorphisms were shared by the AA and that the four 5’ recombination hotspots

were shared between the two ethnicities, it is a reasonable assumption that SLC6A3 evolves in

a largely context-dependent manner. In addition, the mosaic patterns could also be attribut-

able to history of gene flow between European male and African female ancestry [102]. Finally,

Fig 3. Caucasian recombination hotspots throughout SLC6A3. Recombination rate was obtained from combined five European ancestry populations (CEU, TSI,

FIN, GBR and IBS for a total of 505 subjects) whose genotype data were collected by the 1000 Genomes Project. Indicated are also two frequently used genotyping

markers, 3’VNTR (4), Intron 8 VNTR (◆), DNPi (�), 5’VNTR (@), -14kb-VNTR (♠) and effective GWAS markers (red ▲ for COGA, gray for SAGE and blue for the

Australian twin-family study all from dbGaP; “effective” means surviving after the data quality control). Below the GWAS markers is SLC6A3 gene structure in green

(vertical bars are 15 exons in the opposite strand of the chromosome), localizing the polymorphisms and mostly intronic recombination hotspots in the gene. Six

populations of African ancestry in the 1KGP (African Caribbean’s in Barbados (ACB), Americans in SW USA (ASW), Luhya in Webuye of Kenya (LWK), Esan (ESN)

and Yoruba in Ibadan (YRI) of Nigeria, and Mende in Sierra Leone (MSL)) all carried the main hotspots at 1395, 1415, and 1443 (details not shown).

https://doi.org/10.1371/journal.pone.0218129.g003
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this phylogenetic tree indicates a tendency of bidirectional diversion among the 114 18kb-hap-

lotypes. By analyzing twenty six 1KGP populations together (thousands of haplotypes), a

much stronger bidirectional diversion of the 18kb promoter was observed (without geographic

correlation, data not shown), validating the COGA subjects-based finding and implying again

a functional correlation between genetics of the SLC6A3 promoter and related phenotypes

[103].

Ethnicity

As Fig 1C shows, the AAs had clearly overall lower LD than the EAs. Specifically, there were

three lines of evidence showing genetic differences in SLC6A3 between the AAs and the EAs.

First, the AA gene had many more common polymorphisms (Fig 1A upper panel) than the EA

gene (Fig 1A lower panel), noticing that most polymorphisms appeared clustered around the

recombination hotspots (indicated as inverted triangles). Second, the AA gene lacked poly-

morphisms with MAF > 0.3 but the EA gene lacked polymorphisms with 0.3 < MAF < 0.45

(see gray areas in Fig 1A), suggesting that the AA mutations were less likely to be selected and

that the commonest EA variants had been selected. The lack of mutation fixation might have

been compensated by the higher mutation frequency in the AA SLC6A3. The third evidence

was that a haplotype block covered the core promoter region in the AA gene but was larger

and covered the center of the 5’ region in the EA gene. These genetic differences between the

two populations are consistent with the fact that dopamine-related brain function has ethnic

differences and suggest that association study needs to use different sets of markers for differ-

ent populations. These potentially functional polymorphisms might have contributed to the

observed genetic selection of particular polymorphisms (see upper braces in Fig 1A).

Selection

Despite the haplotypic diversity, selections of polymorphisms were observed. In both popula-

tions, polymorphisms with MAF of 0.31–0.40 were de-selected. For the most common or eth-

nicity-specific polymorphisms (MAF of> 0.40), de-selection was the most significant in the

AAs whereas selection was the most significant in the EAs, representing the largest difference

between the two ethnicities. Tajima’s D statistic has been used in trying to identify functional

polymorphisms[104, 105] and indicates here the selection of some polymorphisms in both

cohorts. We now report indeed that Tajima’s D results are consistent with the functionality of

DNPi because the EA DNPi was positively selected and this DNPi indeed mediates a long non-

coding RNA (lncRNA) regulation of the SLC6A3 promoter[75]. Significantly, SSLP in Intron

1, 5’VNTR and -10kb-pA were all selected in both populations, consistent with the fact that

SLC6A3 cis-acting elements such as the 5 kb super enhancer (5KSE) can be localized to distal

5’ regions[95] and that 5’VNTR was positively correlated with the mRNA levels in postmortem

dopamine neurons[76]. These positive selections thus generate testable hypotheses for func-

tionality and associations.

Localized recombination

SLC6A3 is located at 1.4 Mb, near a telomere of chr5, and harbors several hotspots, consistent

with previous observations that regions near telomeres tend to have higher recombination

rates than those near centromeres[106–109]. The identified recombination hotspots not only

help explain negative findings on SLC6A3 in previous GWAS but also guide selection of new

association markers. Fig 3 lower part indicates genetic markers used by three previous GWAS,

in reference to the distribution of the recombination hotspots. It is noticed that all of these

markers are separated from the core promoter by recombination hotspots. The two widely
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used VNTRs, located in last exon and Intron 8, are each separated from the promoter regions

(also as previously suggested [110]) by several recombination hotspots, suggesting that these

markers are unable to capture information effectively on varying promoter activity[51]. As

such, the previous association studies have not effectively used genetic markers for this gene

yet. The recently identified functional DNPi (indicated by an asterisk)[75] is buried in two hot-

spots, suggesting that none of the previously used markers could capture the DNPi-related

information. We have tried to use either the 1KGP or the COGA genotype as the templates to

impute DNPi in the other GWAS datasets but failed completely. This is partly explained by the

fact that DNPi has low LD with other markers and is located in a small, isolated haplotype

block (S5 Fig). When sample sizes get large enough and using the 1KGP with strong LD as the

template (S5 Fig), DNPi could be imputed but the results would not be reliable for cohorts of

interest[111]. Therefore, this marker should be experimentally typed for accurate association

information.

We acknowledge that the main limitations of this study include small sample sizes which

aimed at common variants only, limited number of ethnicities and mainly the promoter

regions. Including the patients might affect any ethnic comparisons and LD might cause over-

estimation of distances in the phylogenetic tree. The results, however, should provide guidance

for rational selection of genetic markers for functional and association studies, as we have

done before[51, 76], and for in-depth interrogations of the entire gene in more ethnicities.

Conclusions

Extensive DNA sequence variations not only around the core promoter but also in other distal

regulatory regions may work in concert or in haplotypes and influence dopamine-related indi-

viduality and diseases. Such genetic diversity of SLC6A3 may help explain the elusiveness of

previous association findings with the classical markers in the 3’ side. The findings also lay a

foundation for a better understanding of the roles that the polymorphic SLC6A3 plays in

human brain.
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