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Abstract: Varicella zoster virus (VZV) causes two diseases: varicella upon primary infection and
herpes zoster when latent viruses in the sensory ganglia reactivate. While varicella vaccines depend
on humoral immunity to prevent VZV infection, cell-mediated immunity (CMI), which plays a
therapeutic role in the control or elimination of reactivated VZV in infected cells, is decisive for zoster
vaccine efficacy. As one of the most abundant glycoproteins of VZV, conserved glycoprotein E (gE) is
essential for viral replication and transmission between ganglion cells, thus making it an ideal target
subunit vaccine antigen; gE has been successfully used in the herpes zoster vaccine ShingrixTM on
the market. In this report, we found that ionizable lipid nanoparticles (LNPs) approved by the Food
and Drug Administration (FDA) as vectors for coronavirus disease 2019 (COVID-19) mRNA vaccines
could enhance the synergistic adjuvant effect of CpG oligodeoxynucleotides (CpG ODNs) and QS21
on VZV-gE, affecting both humoral immunity and CMI. Vaccines made with these LNPs showed
promise as varicella vaccines without a potential risk of herpes zoster, which identifies them as a novel
type of herpes zoster vaccine similar to ShingrixTM. All of the components in this LNP-CpG-QS21
adjuvant system were proven to be safe after mass vaccination, and the high proportion of cholesterol
contained in the LNPs was helpful for limiting the cytotoxicity induced by QS21, which may lead to
the development of a novel herpes zoster subunit vaccine for clinical application.

Keywords: varicella zoster virus; subunit vaccine; adjuvant; lipid nanoparticle; CpG ODNs (CpG
oligodeoxynucleotides); QS21; humoral immunity; cell-mediated immunity

1. Introduction

Subunit vaccines meet priorities including efficacy and safety compared to live attenu-
ated vaccines for certain pathogens. Live attenuated varicella zoster virus (VZV) (e.g., the
Oka strain developed by Takahashi in 1974 and approved by the Food and Drug Adminis-
tration (FDA) in 1995) is the only vaccine on the market to prevent wild-type VZV infection,
which causes varicella/chickenpox, yet the live virus in this vaccine can remain dormant in
the sensory ganglia and reactivate as a wild-type strain, which may cause zoster/shingles
with similar chances following immune system senescence or compromise [1]. Correspond-
ingly, two forms of zoster vaccines were developed to boost the preexisting cell-mediated
immunity (CMI) that was induced by primary wild-type VZV exposure or varicella vacci-
nation, with the aim of playing a therapeutic role in the control or elimination of reactivated
VZV in infected cells. A single subcutaneous dose of ZOSTVAX® (developed by Merck &
Co., Inc., Kenilworth, NJ, USA, and approved by the FDA in 2005) containing 19,400 plaque-
forming units (PFUs) of attenuated virus can achieve 70% protection in people aged 50–59
but only 38% protection in people older than 70 years [2]. In addition, the difficulties related
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to virus purification and the strict conditions required for vaccine storage and shipping
need to be addressed [3]. In contrast, two intramuscular doses of ShingrixTM (developed
by GlaxoSmithKline (GSK), Rockville, MD, USA, and approved by the FDA in 2017) have
shown protective rates of approximately 90% against herpes zoster and postherpetic neu-
ralgia, including in people older than 80 years [4,5]. In addition, this vaccine showed
good efficacy and safety in immunocompromised patients, who are susceptible to herpes
zoster [6–11].

The key to the success of subunit vaccines lies in the selection of effective antigens and
the induction of appropriate adaptive immune responses. Unfortunately, immunization
with a purified antigen alone is usually insufficient for proper immune induction and
therefore requires the coadministration of immunostimulatory components called adju-
vants. A further challenge for shingles subunit vaccines is the need to induce CMI, which
plays a therapeutic role, rather than humoral immunity, which plays a preventive role,
to restrict latent VZV and prevent zoster, which excludes the consideration of aluminum
as an adjuvant [12–17]. ShingrixTM includes glycoprotein E (gE) of VZV as its antigen
because gE is one of the most abundant glycoproteins containing potential neutralizing
epitopes and T-cell epitopes and is essential for viral replication and transmission between
ganglion cells [18–25]. QS21 and monophosphoryl lipid (MPL) A have been shown to act
synergistically to induce a high frequency of gE-specific CD4+ T cells in the liposome-based
AS01B adjuvant system [26].

Oligodeoxynucleotides containing CpG motifs (CpG ODNs), which consist of a central
unmethylated CG dimer present at a high frequency in bacterial and viral DNA, is recog-
nized by mammalian Toll-like receptor (TLR) 9 and induces Th1 immune responses [27].
Although CpG ODNs have been approved by the FDA for use in a hepatitis B subunit
vaccine as an adjuvant, doses up to 3 mg per injection increase not only costs but also the
risk of side effects that are attributed to the systemic diffusion of this proinflammatory
material [28–30]. In our previous reports, we proved that encapsulation of CpG ODNs
into nanoparticles, including ionizable lipid nanoparticles (LNPs) that were proved to
show adjuvant effects for protein subunit vaccines and approved by the FDA as vectors
for coronavirus disease 2019 (COVID-19) mRNA vaccines, showed excellent efficacy in
enhancing the antigen-specific CMI responses induced by subunit vaccines with dose
sparing [31–35]. In other previous reports, synergy between QS21 and CpG ODNs in cancer
and hepatitis C subunit vaccines was shown to enhance CMI [36,37]. Considering that the
LNP system contains cholesterol, which is necessary to quench the hemolytic activity of
QS21, the LNP-CpG-QS21 adjuvant system reported in this study may pave the way for
the development of a novel herpes zoster subunit vaccine for clinical application [38–41].

2. Materials and Methods
2.1. Vaccine Preparation and Characterization

The components of the prepared vaccines are shown in Tables 1 and 2.

Table 1. Composition of each dose of vaccine for the adjuvant synergy study.

Vaccine
Group gE (µg/dose) Alum BW006

(µg/dose)
2395

(µg/dose)
QS21

(µg/dose)

BW006+2395 10 - 5 5 -
QS21 10 - - - 5
B2Q 10 - 5 5 5

Alum 10
√

- - -
PBS - - - - -

- Not added;
√

Added.
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Table 2. Feeding components of each dose of vaccine for the encapsulation study.

Vaccine
Group gE (µg/dose) Alum BW006

(µg/dose)
2395

(µg/dose)
QS21

(µg/dose)

B2Q 10 - 5 5 5
B2Q-Alum 10

√
5 5 5

B2Q-LNP 12 - 7.5 7.5 7.5
B2-LNP 12 7.5 7.5

PBS - - - - -
- Not added;

√
Added.

The extracellular domain of VZV-gE ((AtaGenix Laboratory Co., Ltd., Wuhan, China)
was expressed by Chinese hamster ovary (CHO) cells and dissolved in phosphate-buffered
saline (PBS, pH 7.4) before use. ImjectTM Alum and QS21 (Quillaja saponaria, QS) were
purchased from Thermo Scientific (Rockford, IL, USA) and Alpha Diagnostic (San Antonio,
TX, USA), respectively. Phosphorothioated CpG ODN products including BW006 (5′-tcg
acg ttc gtc gtt cgt cgt tc-3′) and 2395 (5′-tcg tcg ttt tcg gcg cgc gcc g-3′) were synthesized by
Sangon Biotech (Shanghai, China).

For the groups in Table 1 (BW006+2395, QS21, BW006+2395+QS21 (B2Q) and Alum
groups) and the B2Q and B2Q-Alum groups in Table 2, vaccines were formulated by mixing
the agents thoroughly in PBS before immunization. For vaccines containing alum, the
volume ratio of alum to the other vaccine constituent was 1:1.

For the B2Q-LNP and B2 (BW006+2395)-LNP group, vaccines were prepared using
a modified version of the procedure described in our previous report [31]. Briefly, lipids
(from AVT Pharmaceutical Technology Co., Ltd., Shanghai, China) were dissolved in
ethanol at molar ratios of ionizable lipids (Dlin-MC3-DMA, CAS No. 1224606-06-7): DSPC:
cholesterol: DMG-PEG2000 = 50:10:38.5:1.5. The protein gE, CpG ODNs and QS21 were
dissolved in 100 mM citrate buffer (pH 4.0), completely mixed and combined with lipid
mixtures at a ratio of 3:1 with a microfluidic mixer (Precision Nanosystems, Vancouver, BC,
Canada). The formulations were dialyzed against PBS and concentrated with a centrifugal
filtration tube (Millipore, Carrigtwohill, Ireland, MW 10000, 0.22 µm). The diameter and
polydispersity index (PDI) of particles were tested with a Zetasizer Nano ZS particle size
analyzer (Malvern Panalytical, Malvern, UK).

The formulation was lysed with 0.1 M NaOH containing 0.1% SDS (m/v) at room
temperature overnight. The loaded gE was detected with a bicinchoninic acid (BCA)
protein assay kit (Beyotime, Shanghai, China). The loaded nucleic acid adjuvants were
detected with a Quant-iT OliGreen ssDNA Reagent Kit (Thermo Fisher, Eugene, OR, USA).
With free QS21 as the standard, loaded QS21 was detected by high performance liquid
chromatography (HPLC) with an inside diameter of 4.6 mm × length 250 mm C18 column
(Waters, Ireland) and the flow gradient as follows: H2O + 0.1% (v/v) trifluoroacetic acid
(TFA) as eluent A and acetonitrile +0.1% TFA as eluent B, 5% eluent B in 20 min, 6–40%
eluent B in 21–27 min, 41–60% eluent B in 28–47 min, 100% eluent B for 10 min, and back to
5%. Flow rate was set as 1 mL/min by Waters 1525 Binary HPLC Pump, and UV at 205 nm
was detected by Waters 2998 Photodiode Array Detector [42].

2.2. Hemolytic Assay

Blood samples from specific pathogen-free (SPF) C57BL/6J mice (female, 6–8 weeks
old, 16–18 g, supplied by the Central Service of the Institute of Medical Biology, Chinese
Academy of Medical Sciences (IMB, CAMS)) were mixed with sterilized Alsever’s solution
(8.0 g/L citrate sodium, 20.48 g/L glucose, 0.548 g/L citric acid, 4.2 g/L NaCl, pH 6.1) at a
volume ratio of 1:1, centrifuged at 1000× g for 5 min, and washed three times with 0.9%
(w/v) saline. Erythrocytes were diluted with 0.9% saline to a concentration of 107 cells/mL.
When 10% Triton X-100 (v/v) dissolved in saline was used as the positive control and the
same volume of saline was used as the blank control, serial diluted samples (75 µL) were
incubated with 175 µL diluted erythrocytes at 37 ◦C for 30 min. The supernatants were
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gathered by centrifuge at 1000× g for 5 min, and absorbance at 540 nm was measured. The
hemolysis rate was calculated by [(Absorbance sample − Absorbance blank control)/
(Absorbance positive control − Absorbance blank control)] × 100%.

2.3. Mouse Studies

Female SPF C57BL/6J mice (6–8 weeks old, 20–22 g, from the Central Service of IMB,
CAMS) were divided randomly into 9 groups with 6 mice in each group (N = 6). The mice
were immunized intramuscularly in the tibialis muscle two times with 50 µL of immunogen
at 4-week intervals. Whole-blood samples and spleen cells were collected 2 weeks after the
final immunization as described elsewhere [43]. Sera were obtained after centrifugation at
1000× g for 30 min and stored at −80 ◦C before use.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

A recombinant gE protein (2 µg/mL) was used to precoat 96-well microplates overnight
at 4 ◦C and then washed with 0.05% (v/v) polysorbate 20 in PBS (PBST) 3 times before the
addition of 5% (w/v) skim milk in PBS for one hour to block the plates. Then, twofold-
diluted mouse serum samples in 1% skim milk were incubated in the plates for 1 h. Goat
anti-mouse IgG conjugated with horseradish peroxidase (HRP) (1:10,000. Bio–Rad, Her-
cules, CA, USA) was used as the detection antibody. Five minutes after the addition of the
mixed substrate 3,3,5,5-tetramethylbenzidine (TMB; BD, San Diego, CA, USA), the reaction
was stopped by addition of 1 M sulfuric acid. Optical density at 450 nm was detected with
a spectrophotometer (BioTek Instruments, Inc., Winooski, VT, USA). IgG titers were defined
as the maximum dilution multiple showing cutoff signals above OD450 = 0.15. According
to this definition, antibody titers of serum show OD450 lower than 0.15 at a dilution of
1:2000 were defined as 100 for statistical calculations.

2.5. Cytokine Analysis

Splenocytes were suspended in 1640 medium supplemented with 10% (v/v) fetal
bovine serum (FBS) and penicillin–streptomycin (Thermo Fisher) at a final concentration of
1 × 107 cells/mL. Then, 1 × 106 cells were added to each well of a 96-well plate (Corning
Inc., Corning, NY, USA). With 10 µL of PMA + ionomycin (stock solution concentrations:
500 ng/mL + 10 µg/mL; DAKEWE, Beijing, China) as positive control, gE was added
to each well at a final concentration of 10 µg/mL. After incubation at 37 ◦C for 24 h in a
5% CO2 atmosphere, the supernatants of the cells were collected to test the contents of
IL-2 and IFN-γ. Briefly, anti-IL-2 (3 µg/mL) and anti-IFN-γ (4 µg/mL) capture antibodies
(Invitrogen, Carlsbad, CA, USA) dissolved in PBS were added to coat 96-well plates and
incubated overnight at 4 ◦C. After blocking with 5% (w/v) skim milk at 37 ◦C for 1 h,
50 µL of cell supernatant was added to each well and incubated for another 3 h at room
temperature. PBS-dissolved standard mouse IL-2 and IFN-γ proteins (PeproTech, Cranbury,
NJ, USA) were used to generate standard curves. Biotin-conjugated detection antibodies
specific for IL-2 or IFN-γ (2 µg/mL, Invitrogen, USA) and HRP-conjugated streptavidin
(1 µg/mL, BioLegend, San Diego, CA, USA) were then added and incubated for 1.5 h. The
results were detected as mentioned above in the ELISA analysis.

2.6. Enzyme-Linked Immunospot (ELISPOT) Assay

An ELISPOT assay was performed to analyze IL-2 and IFN-γ production by using an
ELISPOT assay kit (BD) according to the manufacturer’s instructions. Briefly, splenocytes
from immunized mice were seeded in 96-well plates, and the final concentrations of
splenocytes from mice immunized as shown in Tables 1 and 2 were 5 × 105 cells/well
and 2 × 105 cells/well, respectively. The protein gE was used at a final concentration
of 20 µg/mL to stimulate gE-specific T-cell responses for 16 h, and the same volumes of
medium or PMA + ionomycin were used as the negative control and positive control,
respectively. After removal of the cell supernatants, spots were developed by an ALL-
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IN-ONE mouse ELISPOT Accessory kit and counted with an ELISPOT reader system
(Autoimmun Diagnostika GmbH, Strassberg, Germany) [33].

2.7. Flow Cytometry

Flow cytometry reagents were all supplied by BioLegend (San Diego, CA, USA).
1 × 106 splenocytes were incubated with 10 µg/mL protein gE at 37 ◦C in 5% CO2 for
2 h to stimulate the expression of antigen-specific cytokines, and 5 µg/mL brefeldin A
was then added and incubated overnight under the same conditions to block cytokine
release. After washing with staining buffer, 100 µL of Zombie NIR™ was added to each
well and incubated for 30 min to determine the proportion of dead cells in the sample.
Then, 5 µg/mL anti-CD16/CD32 antibodies was added and incubated at 4 ◦C for 10 min to
block nonspecific binding to Fc receptors. PerCP-Cy5.5-conjugated anti-mouse CD4, FITC-
conjugated anti-mouse CD8, BV510-conjugated anti-mouse CD44, and BV421-conjugated
anti-mouse CD62L antibodies were subsequently added and incubated for another 30 min at
4 ◦C for surface maker staining. PE-conjugated anti-mouse IFN-γ and APC-conjugated anti-
mouse IL-2 antibodies were used for intracellular staining. After staining, live cells were
gated (forward and side scatter, FSC/SSC), and acquisition with more than 20,000 events
for CD4+ or CD8+ T cells in each sample were analyzed with a CytoFLEX flow cytometer
(Beckman, Indianapolis, IN, USA) and FlowJo_V10 software (BD, Franklin Lakes, NJ, USA).

2.8. Statistical Analysis

Data were analyzed with GraphPad Prism 9.2 (GraphPad Software Inc., La Jolla, CA,
USA) and are expressed as the mean ± standard deviation (SD). Significant differences
among experimental groups were analyzed by one-way analysis of variance (ANOVA) fol-
lowed by Dunnett’s multiple comparisons test. Asterisks represent the p value classification:
* p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001.

3. Results
3.1. CpG ODNs and QS21 Act Synergistically to Enhance VZV-gE-Specific CMI but Not the
Humoral Response

The gE-specific IgG titer was 298,667 in B2Q (adjuvanted with CpG BW006+2395
and QS21)-immunized mouse serum, which was the highest titer among all the vaccines
designed for the adjuvant synergy study (Figure 1). This titer was 5.3 times greater
than that of the CpG alone-adjuvanted group (group BW006+2395, IgG titer of 56,000,
p < 0.001), 1.6 times greater than that of the QS21 alone-adjuvanted group (group QS21,
IgG titer of 192,000, p = 0.18), and 5.9 times greater than that of the alum-adjuvanted group
(Alum group, p < 0.001). The difference between the B2Q group and the QS21 group was
not significant (p = 0.18), which was defined as no synergistic effect.

Significant synergistic effects between CpG ODNs and QS21 were detected for CMI
(Figure 2). By ELISA, the IL-2 level in the supernatant of the B2Q-adjuvanted group was
2532 pg/mL (Figure 2A). This concentration was 26.9 times greater than that of the CpG
alone-adjuvanted group (94.03 pg/mL, p < 0.001) and 6.6 times greater than that of the QS21
alone-adjuvanted group (384.4 pg/mL, p < 0.001). The IFN-γ level in the supernatant of
the B2Q-adjuvanted group was 20952 pg/mL (Figure 2B). This concentration was 6.5 times
greater than that of the CpG alone-adjuvanted group (3245 pg/mL, p < 0.001) and 2 times
greater than that of the QS21 alone-adjuvanted group (10417 pg/mL, p < 0.001). These
synergistic effects were more obvious in the results of the ELISPOT assay. When splenocytes
were seeded at 5 × 105 cells/well, the cytokine-secreting cells in the B2Q-adjuvanted group
were so numerous they could not be counted (Figure 2C).
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Figure 1. Humoral responses of mice in the adjuvant synergy study. For enzyme-linked immunosor-
bent assay (ELISA) analysis of each serum sample from immunized mice, the horizontal coordinate is
the fold change in the serum dilution, and the vertical coordinate is the absorbance value measured
at 450 nm. The dashed lines (OD 450 = 0.15) were set as the cutoff signal for the values of IgG titers.
For statistical analysis, each dot represents data from a single mouse, N = 6. Data are shown as the
mean ± standard deviation (SD) and were analyzed by one-way analysis of variance (ANOVA), with
the mean of the B2Q group used as a control. *** p ≤ 0.001.
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Figure 2. ELISA and ELISPOT analyses performed with splenocytes isolated from immunized mice
in the adjuvant synergy study. The concentrations of IL-2 (A) and IFN-γ (B) secreted by splenocytes
upon stimulation with 10 µg/mL protein gE were measured by ELISA. N= 6, each dot represents
an independent mouse. Data are shown as the mean and SD and were analyzed by ANOVA,
with the mean of the B2Q group used as a control. (C) IL-2- and IFN-γ-producing splenocytes
(per 5 × 105 cells) induced by stimulation with 20 µg/mL protein gE were detected by ELISPOT.
Images for all immunized mice are presented. N = 6. *** p ≤ 0.001.
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3.2. CpG ODNs and QS21 Act Synergistically to Induce VZV-gE-Specific CD4+ but Not CD8+

T Cells

According to flow cytometric analysis (Figure 3A), the proportion of IL-2-expressing
CD4+ T cells after gE stimulation in the B2Q-adjuvanted group was 0.3155%. This level
was 3 times greater than that of the CpG alone-adjuvanted group (0.1067%, p < 0.001) and
1.6 times greater than that of the QS21 alone-adjuvanted group (0.2013%, p = 0.006). The
proportion of IFN-γ-expressing CD4+ T cells after gE stimulation in the B2Q-adjuvanted
group was 0.4457%. This level was 9.3 times greater than that of the CpG alone-adjuvanted
group (0.04767%, p < 0.001) and 4.3 times greater than that of the QS21 alone-adjuvanted
group (0.1025%, p < 0.001). In contrast, no VZV-gE-specific CD8+ T cells were induced
after immunization with any of the designed vaccines, with the IL-2- and IFN-γ-producing
CD8+ T-cell proportions in the vaccinated groups being comparable to those in the PBS-
immunized control group by flow cytometric analysis (Figure 3B).
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Figure 3. Flow cytometry assay assessing gE-specific cytokine-producing CD4+ (A) and CD8+ (B) T
cells in mice in the adjuvant synergy study. Splenocytes from immunized mice were treated with
10 µg/mL protein gE, and after blocking with brefeldin A, IL-2- and IFN-γ-producing CD4+ (A)
or CD8+ (B) T cells were detected. Pseudocolor images displaying representative results near the
average value are presented in the left panel. N = 6, points represent individual mice. Data are
shown as the mean and SD and were analyzed by ANOVA, with the mean of the B2Q group used as
a control. ** p ≤ 0.01; *** p ≤ 0.001.
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3.3. LNPs Efficiently Encapsulated gE, CpG ODNs and QS21 with a Uniform Particle Size

When 200 µg of QS21 was fed for LNP encapsulation, approximately 100–160 µg
was detected by HPLC analysis (Figure 4A), which resulted in 50–80% of encapsulation
efficiency and 4–6 µg of QS21 in each dose of prepared LNPs, comparable to 5 µg per dose
in the other mixed vaccines. A total of 12 µg of gE was included in each dose of the LNP
vaccine. The average encapsulation efficiency of the gE protein was 41.64% (Figure 4B),
which resulted in 5 µg of gE in each dose of prepared LNPs, which was half that in the
other mixed vaccines. A total of 15 µg of CpG ODNs was added to each dose of the LNP
vaccine. The mean value of the CpG ODN encapsulation efficiency was 37.71% (Figure 4C),
which resulted in 5.66 µg of CpG ODNs in each dose of prepared LNPs compared to 10 µg
per dose in the other mixed vaccines. The average LNP diameter was 196.1 nm (Figure 4D),
with good uniformity, showing a low PDI (a measure of the heterogeneity of a sample
based on size) of 0.28 (Figure 4E).
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hemolytic assay. (A) The encapsulation efficiency analysis of QS21 by high performance liquid
chromatography. Flow gradient is shown with dotted lines and eluted QS21 is indicated by ar-
rows. (B) The encapsulation efficiency of protein gE. (C) The encapsulation efficiency of CpG ODNs.
(D) diameter. (E) polydispersity index. (F) hemolysis analysis. Experiments were repeated three
times, and the data are shown as the mean ± SD.

3.4. LNPs Quenched the Hemolytic Activity of QS21

Nearly 100% erythrocytes were lysed with 20 µg/mL free QS21 with or without CpG
ODNs (QS21 or B2Q in Figure 4F). When encapsulated with LNPs (B2Q-LNP in Figure 4F),
QS21 at the same concentration showed hemolytic activity as low as that comparable to
the B2-LNP group without QS21 (hemolysis rate at approximately 2.6%), which indicates
quench of hemolytic activity.

3.5. LNPs Enhanced the Synergistic Adjuvant Effect of CpG ODNs and QS21 on VZV-gE-Specific
Humoral Responses

The gE-specific IgG titer was 213,333 in the B2Q-LNP-immunized mouse serum,
which was the highest titer among those induced by all the vaccines designed for the LNP



Pharmaceutics 2022, 14, 973 9 of 17

encapsulation study (Figure 5). It was 2.1 times greater than that of the unencapsulated
B2Q group (IgG titer of 101,333, p < 0.001) and 1.7 times greater than that of the B2Q-
Alum-adjuvanted group (IgG titer of 128,000, p = 0.003). The differences between the
B2Q-LNP group and the other groups were all significant and were therefore defined as
synergistic effects.
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Figure 5. Humoral responses of mice in the LNP encapsulation study. For ELISA analysis of each
serum sample from immunized mice, the horizontal coordinate is the fold change in the serum
dilution, and the vertical coordinate is the absorbance value measured at 450 nm. The dashed lines
(OD 450 = 0.15) were set as the cutoff signal for the values of IgG titers. For statistical analysis, each
dot represents data from a single mouse, N = 6. Data are shown as the mean ± SD and were analyzed
by ANOVA, with the mean of the B2Q-LNP group used as a control. ** p ≤ 0.01; *** p ≤ 0.001.

3.6. LNPs Enhanced the Synergistic Adjuvant Effect of CpG ODNs and QS21 on VZV-gE-Specific
CD4+ but Not CD8+ CMI

LNP encapsulation enhanced the synergistic adjuvant effect of CpG ODNs and QS21
on VZV-gE-specific CMI (Figure 6). By ELISA analysis, the IL-2 level was 2843 pg/mL in
the supernatant of the B2Q-LNP-adjuvanted group (Figure 6A). This level was 1.6 times
greater than that of the B2Q-adjuvanted group (1752 pg/mL, p = 0.04) and 7.7 times greater
than that of the B2Q-Alum-adjuvanted group (368.6 pg/mL, p < 0.001). The IFN-γ level
was 6366 pg/mL in the supernatant of the B2Q-LNP-adjuvanted group (Figure 6B). This
level was 1.3 times greater than that of the B2Q-adjuvanted group (5059 pg/mL, p = 0.05)
and 5.2 times greater than that of the B2Q-Alum-adjuvanted group (1216 pg/mL, p < 0.001).
By ELISPOT analysis, the number of IL-2-secreting cells after gE stimulation in the B2Q-
LNP adjuvanted group was 229.3 per 2 × 105 splenocytes (Figure 6C). This number was
1.7 times greater than that of the B2Q-adjuvanted group (137.5 per 2 × 105 splenocytes,
p = 0.03) and 2.8 times greater than that of the B2Q-Alum-adjuvanted group (81.33 per
2 × 105 splenocytes, p < 0.001). The number of IFN-γ-secreting cells after gE stimulation in
the B2Q-LNP-adjuvanted group was 287.5 per 2× 105 splenocytes (Figure 6D). This number
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was 1.8 times greater than that of the B2Q-adjuvanted group (159 per 2 × 105 splenocytes,
p < 0.001) and 2.9 times greater than that of the B2Q-Alum-adjuvanted group (99.67 per
2 × 105 splenocytes, p < 0.001).
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Figure 6. ELISA and ELISPOT analyses performed with splenocytes isolated from immunized mice
in the LNP encapsulation study. The concentrations of IL-2 (A) and IFN-γ (B) secreted by splenocytes
upon stimulation with 10 µg/mL protein gE were measured by ELISA. (C) IL-2- and (D) IFN-γ-
producing splenocytes (per 2 × 105 cells) induced by stimulation with 20 µg/mL protein gE were
detected by ELISPOT. Images displaying representative results near the average value are presented
in the left panel. Cells treated with the same volume of medium or PMA+ionomycin were used as
the negative control and positive control, respectively. N = 6, points represent individual mice. Data
are shown as the mean and SD and were analyzed by ANOVA, with the mean of the B2Q-LNP group
used as a control. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

According to flow cytometric analysis (Figure 7A), the proportion of IL-2-expressing
CD4+ T cells after gE stimulation in the B2Q-LNP-adjuvanted group was 0.9217%. This
level was 3.7 times greater than that of the B2Q-adjuvanted group (0.2462%, p < 0.001)
and 6.5 times greater than that of the B2Q-Alum-adjuvanted group (0.1422%, p < 0.001).
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The proportion of IFN-γ-expressing CD4+ T cells after gE stimulation in the B2Q-LNP-
adjuvanted group was 1.058%. This level was 3.5 times greater than that of the B2Q-
adjuvanted group (0.306%, p < 0.001) and 8.2 times greater than that of the B2Q-Alum-
adjuvanted group (0.1298%, p < 0.001). In contrast, no VZV-gE-specific CD8+ T cells were
induced after immunization with any of the designed vaccines, with the IL-2- and IFN-γ-
producing CD8+ T-cell proportions in the vaccinated groups being comparable to those in
the PBS-immunized control group by flow cytometric analysis (Figure 7B).
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Figure 7. Flow cytometry assay assessing cytokine-producing gE-specific CD4+ (A) and CD8+ (B)
T cells in mice in the LNP encapsulation study. Splenocytes from immunized mice were treated
with 10 µg/mL protein gE, and after blocking with brefeldin A, IL-2- and IFN-γ-producing CD4+ (A)
or CD8+ (B) T cells were detected. Pseudocolor images displaying representative results near the
average value are presented in the left panel. N = 6, points represent individual mice. Data are shown
as the mean and SD and were analyzed by ANOVA, with the mean of the B2Q-LNP group used as a
control. *** p ≤ 0.001.
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3.7. LNP-Encapsulated CpG ODNs and QS21 Induced gE-Specific CD4+ Memory T Cells

According to flow cytometric analysis (Figure 8), the proportion of CD4+ central
memory cells (CD44+CD62L+) was comparable between the B2Q-LNP-adjuvanted group
and the other groups (Figure 8A). For the proportion of CD4+ effector memory cells
(CD44+CD62L−, Figure 8B), the proportion was 18.77% in B2Q-LNP-immunized mouse
splenocytes, which was the highest proportion among all those induced by the vaccines
designed for the encapsulation study. This level was 1.4 times greater than that of the
B2Q-adjuvanted group (13.28%, p = 0.008) and 1.2 times greater than that of the B2Q-Alum-
adjuvanted group (16.22%, p = 0.3 without a significant difference).
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Figure 8. Flow cytometry assay assessing gE-specific CD4+ memory T cells in the LNP encapsulation
study. Splenocytes from immunized mice were treated with 10 µg/mL protein gE, and after blocking
with brefeldin A, memory CD4+ T cells were detected by CD44+/CD62L+ gating. (A) Proportion of
central memory T cells. (B) Proportion of effector memory T cells. Pseudocolor images displaying
representative results near the average value are presented in the left panel. N=6, points represent
individual mice. Data are shown as the mean and SD and were analyzed by ANOVA, with the mean
of the B2Q-LNP group used as a control. ** p ≤ 0.01.

4. Discussion

Until recently, aluminum salts, including aluminum hydroxide and aluminum hydrox-
yphosphate, were the only adjuvants licensed for human vaccines worldwide. These salts
primarily induce humoral immunity typical of Th2 responses when subunit or inactivated
vaccines are administered but inefficiently induce CMI, which is essential for vaccines tar-
geting intracellular pathogens or tumors [44,45]. QS21 is a mixture of two isomeric saponins
(65% QS21-Apiose and 35% QS21-Xylose) extracted from the bark of the evergreen tree
Q. saponaria native to temperate central Chile. Its amphipathic structure endows QS21 with
the capacity to disrupt cellular membranes, including endosome-lysosome destabiliza-
tion, which facilitates antigen translocation into the cytosol for proteasome-independent
cross-presentation by major histocompatibility complex (MHC) class I to induce CMI,
instead of classic MHC II presentation inducing humoral responses [38–41]. Related to
its membrane-disrupting characteristics, the cytotoxicity of QS21 can be quenched by for-
mulations containing cholesterol (e.g., adjuvant systems, including the AS01 series and
ISCOMATRIX), which reduce the affinity of its triterpene nucleus for cholesterol in cell
membranes [26,46,47]. While the synergistic adjuvant effect of QS21 and CpG ODNs has
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been reported to enhance CMI induced by cancer and hepatitis C subunit vaccines, the
absence of cholesterol in these combinations may hinder their clinical application due to
safety concerns [36,37].

LNP systems contain a high proportion of cholesterol (38.5–42.7% molar ratios) and
have been approved by the FDA for use in COVID-19 mRNA vaccines and proven to be
safe after mass vaccination. In theory, the extracellular domain of VZV-gE as a hydrophilic
protein could be effectively encapsulated by the LNP system like nucleic acid substances.
In fact, the encapsulation efficiency of gE could be 100% when gE alone at the input of
15 µg/dose was administered into LNP, which is deduced to be encapsulating instead
of co-administering for absorbance by LNP. We also noticed that the addition of other
components including CpG and polyinosinic-polycytidylic acid (poly(I:C)) lowered the gE
encapsulation efficiency to 80% [31]. The gE encapsulation efficiency in this LNP-CpG-QS21
adjuvant system seems to be lower than expected, which is only 41.64% when gE were
at the input of 10 µg/dose. Except for the potential influence of of QS21 on either gE
character or the wrapping mode of LNP, the LNP mixtures we used in this study were not
freshly mixed. They were in fact cryopreserved for several months after dissolution and
sub-package. We suspect that this process may affect the encapsulation ability of the LNPs.
Because LNP systems are still new, we have not retrieved any relevant information on this
aspect yet.

When used as a carrier in the LNP-CpG-QS21 adjuvant system, the LNP systems
studied doubled (i.e., 2.1 times) the VZV-gE-specific humoral response induced by the com-
bination of CpG and QS21 alone, indicating their superiority to alum as an adjuvant carrier
(i.e., 1.7 times) for the combination of CpG and QS21 as immunostimulators. Considering
that VZV-gE containing potential neutralizing epitopes and VZV-gE-specific antibodies
could efficiently block VZV infection, this LNP-CpG-QS21 adjuvanted subunit vaccine may
show promise as a safe varicella vaccine to prevent chickenpox and the risk of shingles
derived from live attenuated VZV vaccination [24,31].

CMI, which plays a therapeutic role, rather than humoral immunity, which plays a
preventive role, is decisive in restricting latent VZV and preventing zoster [12–16]. Among
CMI indicators, gE-specific Th1 CD4+ T cells are studied more frequently than CD8+ T
cells when evaluating the potential of herpes zoster vaccines in animal experiments and
clinical trials because CD8+ T cells are always undetectable or present at low frequencies
after VZV infection or vaccination [20,26,48–51]. According to our previous experiences,
LNP alone could only elevate gE-specific CMI slightly by ELISPOT analysis [31]. From
this point of view, the LNP-CpG-QS21 adjuvant systems studied tripled (3.5–3.7 times)
the VZV-gE-specific Th1 CD4+ T cell population induced by the combination of CpG and
QS21 alone. Interestingly, while alum, as an adjuvant carrier, slightly elevated the VZV-
gE-specific humoral responses (from 101333 to 128000) induced by the combination of
CpG and QS21 as immunostimulators, its addition as a carrier reduced the ability of the
combination of CpG and QS21 as immunostimulators to induce antigen-specific CMI based
on all of the indicators tested, which may be attributed to its Th2 characteristics.

In addition to the magnitude and type of adaptive immune responses induced, the du-
ration of the immune response should be evaluated for vaccines. In mice, when naive T cells
(CD44lowCD62L+) were activated, they developed into central memory (CD44highCD62L+)
and/or effector memory (CD44highCD62L−) T cells. While central memory skewing is
observed in CD8+ T cells and effector memory skewing is observed in CD4+ T cells in the
resting state, both the CD4+ and CD8+ T-cell subsets are predominantly of the effector
memory phenotype in the peripheral organs [52–56]. Consistent with previous reports
showing that nanoparticles are helpful in inducing CD4+ effector memory T cells, the
addition of LNP carriers was helpful in elevating gE-specific CD4+ effector memory T cell
levels compared with the combination of CpG and QS21 alone in our results [57,58].
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5. Conclusions

In conclusion, our study showed that LNPs enhanced the synergistic adjuvant effect of
CpG and QS21. The components of this LNP-CpG-QS21 adjuvant system have been proven
to be safe after mass vaccination, and the high proportion of cholesterol contained in LNPs
is helpful for quenching the cytotoxicity induced by QS21. Although the LNP alone and
LNP mixed gE as controls should be added for further confirmation of the pattern of this
LNP-CpG-QS21 adjuvant system wrapping gE, and the mechanisms of synergy between
the components of this adjuvant system remains to be further clarified, the robust induced
VZV-gE-specific humoral and CMI responses showed promise as varicella vaccines without
the potential risk of zoster and as a novel type of zoster vaccine similar to ShingrixTM.
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