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Abstract

In this study chemotherapy response in neuroblastoma (NB) was assessed for the first

time in a transplantation model comprising non-malignant human embryonic microenviron-

ment of pluripotent stem cell teratoma (PSCT) derived from diploid bona fide hESC. Two

NB cell lines with known high-risk phenotypes; the multi-resistant BE(2)-C and the drug

sensitive IMR-32, were transplanted to the PSCT model and the tumour growth was

exposed to single or repeated treatments with doxorubicin, and thereafter evaluated for

cell death, apoptosis, and proliferation. Dose dependent cytotoxic effects were observed,

this way corroborating the experimental platform for this type of analysis. Notably, analysis

of doxorubicin-resilient BE(2)-C growth in the PSCT model revealed an unexpected 1,5-

fold increase in Ki67-index (p<0.05), indicating that non-cycling (G0) cells entered the cell

cycle following the doxorubicin exposure. Support for this notion was obtained also in vitro.

A pharmacologically relevant dose (1μM) resulted in a marked accumulation of Ki67 posi-

tive BE(2)-C cells (p<0.0001), as well as a >3-fold increase in active cell cycle (i.e. cells

positive staining for PH3 together with incorporation of EdU) (p<0.01). Considering the

clinical challenge for treating high-risk NB, the discovery of a therapy-provoked growth-

stimulating effect in the multi-resistant and p53-mutated BE(2)-C cell line, but not in the

drug-sensitive p53wt IMR-32 cell line, warrants further studies concerning generality and

clinical significance of this new observation.

Introduction

Childhood cancers show fundamental differences to most common adult solid tumours in

their cancer-causing genetics, cell biology, and importantly also their local tissue microenvi-

ronment [1]. Neuroblastoma (NB) is the most common extracranial solid tumour during

infancy, half of which are clinically manifested before the age of 18 months [2]. Moreover, evi-

dence for early stage microscopic tumour-like NB lacking metastasis in young infants supports
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the notion of an origin already during the prenatal phase [3]. The diagnosis comprises a spec-

trum of embryonic tumours of the peripheral sympathetic nervous system and shows a high

degree of intra- and inter-tumoural heterogeneity on both genetic and phenotypic levels, as

well as unique abilities to spontaneously regress/differentiate or develop metastatic phenotypes

[2]. Metastasis and relapse are the main causes of death, which make it imperative to under-

stand metastatic dissemination and intra-tumour variations for therapy responsiveness. An

influence from the microenvironment on clonal dominance likely contributes to the disparity

between primary and metastatic tumours seen in many patients, as well as inter-tumour het-

erogeneity between patients with the same tumour type [4, 5]. Modelling of tumour micro col-

onisation reflects in this context the ability of cell subpopulations to comply or adapt to new

environments (i.e. subsets of cells either present in a minority at diagnosis or develop during

therapy), a feature with great impact on metastasis and clinical prognosis [6].

Several in vivo NB-models are available, including among others subcutaneous or orthoto-

pic xenografts, as well as genetically modified models to simulate tumour induction and

growth, ideally confined to the relevant tissue environment [7]. Patient-derived xenograft

(PDX) models generated by injection of fresh human tumours to mice is widely considered a

clinically more predictive alternative compared to serially transplanted tumour lines [8]. Spe-

cifically for NB, orthotopic PDX has been suggested as the model of choice for studying inva-

sion and metastasis ([9] and ref therein).

Progress will come from deciphering the complex cross talk between the primary tumour,

its immediate microenvironment, and metastatic niches. A comprehensive program to system-

atically evaluate anti-tumour agents for childhood cancers in various models for significant

clinical activity (The Pediatric Preclinical Testing Program; supported by The National Cancer

Institute) noted that the dominant difference between the gene expression of xenograft models

and their human counterparts was the signature contributed by stromal cells [10]. Considering

these findings it is noteworthy that a large study on colorectal cancer demonstrated that when

gene expression patterns in human tissue environment from patient material were compared

to results in a PDX model the analysis in mouse stroma showed significantly altered predic-

tions on clinical response to therapy [11]. Further, convincing data today link processes of can-

cer progression to induction of cellular potency [12, 13]. At the same time there is an

increasing insight regarding differences between human and mouse species for the signalling

pathways controlling the induction of cellular potency [14–16].

Developmental and species aspects are thus of importance when analysing the relevant sig-

nalling between NB and the host. A driving momentum behind the here presented approach is

that compared to current animal xeno-models, a homologous embryonic setting may provide

a favourable micro-environmental setting for studies and preclinical evaluation of embryonic

tumours and their response to chemotherapy. Tzukerman, Skorecki and co-workers were first

to demonstrate the use of non-malignant human experimental teratoma as a more optimal

niche for intercellular interaction and a tool in cancer research investigating the stromal

response in human tumour cell growth [17–21]. The model represents increasingly chaotic

embryonic processes, comprising compartmentalised tissues or organoid-like development

including stages immediately preceding the positioning of adrenal sympatical progenitors in

embryonic mesenchyme [22]. This led us to test the PSCT milieu for in vivo support of

tumours of embryonic origin, establishing the NB-PSCT model ([23, 24] and reviewed in

[25]). The embryonic nature of the model makes the approach especially applicable for so-

called ‘embryonic childhood cancers’ originating early in life.

Here we apply the human embryonic PSCT experimental platform to explore chemother-

apy-responsiveness of two well-characterised NB tumours.
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Material and methods

Ethical permissions

This study was performed in strict accordance with permissions from the Local Ethics Com-

mittee at Karolinska Institute (114/00) and from the regional ethics committee (Stockholm

Northern Animal Review Board; Dnr N101/13; N118/14). All surgery was performed under

approved protocols for anaesthesia and all efforts were made to minimize suffering.

Cell lines

BE(2)-C and IMR-32 were obtained from ATCC (Manassas, VA, USA). Cell line authentica-

tions were performed using STR analysis.

BE(2)-C is a clonal subline of the multidrug-resistant and p53-mutated NB tumour line

SK-N-BE(2) which was derived 1972 from a metastatic site of the bone marrow from a

22-month old boy after repeated courses of chemotherapy and radiotherapy. IMR-32 was

derived from a metastatic site in abdominal mass of a 13 months old boy. Both cell lines have

been demonstrated to exhibit a poorly differentiated phenotype in vivo and genetic features

typical for high-risk NB [23]. NB-cells were cultured in Thermo Scientific HyClone RPMI

1640 medium supplemented with 10% fetal bovine serum, 1% L-glutamine (Invitrogen, Carls-

bad, CA, USA), and 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA), at 37˚C, 5%

CO2 with high humidity.

Chemotherapy

Doxorubicin (doxo) (Sandoz; Ebewe) was diluted in 1xPBS (DPBS GIBCO ™ Life technology)

to indicated doses and administered by intra peritoneal injections (PSCT model), or added to

indicated concentrations in cell culture medium (in vitro analysis). Control (mock) treatment

was performed with diluent (1xPBS). The in vitro IC50-value of doxo for IMR-32 (0.02 μM) is

400 times lower than for BE(2)-C (8.0 μM), classifying them as doxo-sensitive and doxo-resis-

tant, respectively.

PSCT in vivo model

Pluripotent stem cell induced experimental teratoma (PSCT) was generated in NOD SCID

gamma (NSG) mice from diploid bona fide hESC as described [23, 24, 26]. In brief; 8–12 weeks

old NSG male mice received an injection of 105 HS181 cells (46XX) under the testicular capsule

(one side) [27]. When the growth reached a diameter over 9mm, 2x106 NB cells in logarithmic

growth were injected in a 50μl medium suspension. Animal hosts were randomised into treatment

groups (5–6 animals per group) and doxo therapy started 14 days after transplantation of NB cells.

PSCT including NB growth was harvested at indicated time points, formalin-fixed, paraffin

embedded and processed as previously described [23, 24]. The blocks were consecutively cut

at 4μm or 10μm and stained with Hematoxylin&Eosin (HE) for histological orientation and

indicated analysis.

Positive engraftment of IMR-32 was verified by fluorescent in situ hybridization (FISH)

using probes specific for human chromosome X (spectrum orange) and Y (spectrum green)

(Vysis CEP X/Y DNA 30–16: nr 7J2050 Abbott). The presence of human Y-chromosome was

taken as evidence for tumour cells, growing in female (46XX) teratoma environment (PSCT).

The simultaneous signal for the X-chromosome was used as internal control of the assay. Posi-

tive engraftment of BE(2)-C, lacking a stable Y-chromosome centromere, was verified by FISH

using probe for detection of amplified NMYC (spectrum orange) (Vysis LSI N-MYC so 3219;

nr 5J5001 Abbott).
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The histological slides were scanned in a Hamamatsu 2.0 high-resolution scanner and ana-

lysed using the NDP.view2 software. The percentage of positive cells was determined through

blind assessment by two well-trained researchers. The immunohistochemistry (IHC) results

were verified using positive control slides from tissues known to express the antigen of interest.

Negative controls included using tissues known to be negative for the marker, omitting primary

antibody and the use of isotype control antibody. A list of used antibodies is presented in Table 1.

Proliferation was assessed using IHC for the expression of Ki67 [28]. Early apoptosis was

assayed using IHC staining for cleaved caspase 3 (c-casp3). Cell death was assayed by morpho-

logical appearance of mitotic catastrophe, i.e. multiple micronuclei and nuclear fragmentation

visualized by DAPI staining [29].

In vitro analysis

NB cells in logarithmic growth were suspended and dispersed into petri dishes containing

glass-coverslips (VWR #631–0149). For BE(2)-C: 2x105 cells, and for IMR-32: 1x106 cells, were

added per plate (Day 0). A minimum of three separate experiments were performed, each

experiment in duplicates.

Doxo was added to a concentration of 1μM (Day 1). For mock-treatment, the same amount

of 1xPBS was added. Forty-eight hours later (Day 3), the cells were fixed for 15 min in ice-cold

freshly prepared 4% paraformaldehyde (then washed and stored in 1xPBS at +4˚C); or alterna-

tively received a second treatment (1μM doxo or 1xPBS) given 1 hour after replacement of

medium (allowing culture condition to recover before adding the chemotherapy). The cells

were then cultured for another 48 hours before fixation (Day 5). Forty-eight hours before fixa-

tion 1μM of EdU was added to each plate.

Immunocytochemistry was performed accordingly; following fixation, cells were incubated

in TNB Buffer: 0.5g of blocking reagent (#FP1020) to 100 ml TBS buffer (Tris/NaCl pH 7.4)

for 30 min at room temperature. Cells were then incubated with the 1´ab diluted in 0.3% TX-

100, 0.1% NaN3 in 1xPBS over night at +4˚C. Following washing, cells were incubated with 2

´ab diluted in TNB buffer, for 2 h at room temperature. The cells were washed and mounted

with Prolong Gold anti-fade with DAPI to visualize nuclei. Stained cells were analysed using a

Metafer1 Slide Scanning Platform.

A list of the antibodies and kits used is presented in Table 1.

Statistical analysis

Collected data was analysed using one-way analysis of variance (Anova). Bonferroni correction

or Tukey´s multiple comparison post-hoc test was applied to adjust for multiple testing. The

Table 1. Antibodies and kits used for immunohistochemistry.

Antigen Source Dilution 2:nd detection

Ki67 Abcam, AB:833.500. Rabbit pk ab. Lot 713408 1:50 Vectastain Universal Elite

DAB-ABC, or goat anti rabbit Cy3.5 1:300

Cleaved caspase 3 (c-casp3) BD-Pharamingen, Purified rabbit anti-active

caspase-3, Cat: 559565

1:1000 Vectastain Universal Elite ABC; or goat anti

rabbit Cy3.5 1:300

Histone H3 phosphorylated at

serine 3 (PH3)

Merck, Purified rabbit Anti-phospho-Histone H3

Cat: 06–570

1:2000 Goat anti rabbit AF488 1:1000

5-ethynyl-20-deoxyuridine (EDU) Click-iT™ EdU Alexa Fluor™ 488 Imaging Kit,

C10337; Invitrogen™
According to manufacturer´s

protocol

NA

TUNEL DeadEnd Flourometric TUNEL, (G3250,

Promega)

According to manufacturer´s

protocol

NA

https://doi.org/10.1371/journal.pone.0190970.t001

Response to doxorubicin in high-risk neuroblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0190970 January 17, 2018 4 / 16

https://en.wikipedia.org/wiki/Analysis_of_variance
https://doi.org/10.1371/journal.pone.0190970.t001
https://doi.org/10.1371/journal.pone.0190970


software GraphPad Prism 6.0 or 7.03 was used for testing normal distribution and generation

of graphs. The in vitro data was analysed in RStudio and percentage of positive cells followed

by the mean (±SEM) for each combination of labelling was calculated. All scores presented in

percentages were transformed into rationalized-arcsine-units [30], the transformation of data

makes the distribution normal, thereby reducing problems related to the use of a percentage-

scale.

Results

A. In vivo analysis

Micro colonisation of BE(2)-C and IMR-32 in the PSCT model. Tumour growth could

be observed two weeks after transplantation of BE(2)-C or IMR-32 cells to the PSCT model, in

line with previous reports (24). Micro-colonies were initiated by migrating NB-cells showing

tropism to loose mesenchyme in immediate proximity of blood vessels, the preferred cellular

context/niche supporting micro-colonisation (Fig 1) (24).

Doxo-induced cell death of BE(2)-C and IMR-32 in the PSCT model. Next, doxo was

administered to the mouse host by single or repeated intraperitoneal injections as described

below and illustrated in Tables 2 and 3 and Fig 2. Considering the reported multi-resistance

and high doxo-IC50 value of BE(2)-C [31], we titrated intraperitoneal regimens with host

sub-lethal doses of doxo, aiming to attain significant levels of cytotoxicity (Table 2). A dose of

4mg/kg did not result in significant levels of cell death in BE(2)-C cells. Raising the dose to

8mg/kg resulted in a significantly higher mitotic catastrophe compared to mock-treatment.

Repeated doses of 4 + 4mg/kg given with a 48 hour interval increased the frequency of mitotic

catastrophe in BE(2)-C cells (Table 2, Fig 2). Besides mitotic catastrophe we were interested in

investigating early apoptosis. Positive staining for c-casp3 was used as an indication of early

apoptosis. The 8mg/kg dose resulted in a significantly higher value compared to mock-treat-

ment in BE(2)-2 cells. Similar levels of c-casp3 were observed after repeated doses (4 + 4mg/

kg) as with a single dose (8mg/kg) (Table 2). Based on these findings, the 8mg/kg and 4

+ 4mg/kg regimens were chosen for further studies.

Administration of 8mg/kg doxo resulted in 12±12% cells presenting mitotic catastrophe

and 14±9.9% cells staining positive for c-casp3 in IMR-32 cells. This was not significantly dif-

ferent from mock-treatment (Table 3, Fig 2). Repeating the dose (4 + 4mg/kg doxo given with

a 48 hour interval) resulted in 28±15% presenting mitotic catastrophe (not significantly differ-

ent from mock-treatment: 4.3±0.2%) and 39±12% cells staining positive for c-casp3 (mock-

treatment: 9.6±7.5%; p<0.05) (Table 3) in IMR-32 cells. Notably, a high variability in therapy

response between individual PSCTs was observed for these tumours (Fig 2), affecting the sta-

tistical outcome.

Effects on proliferation of BE(2)-C and IMR-32 in the PSCT model. BE(2)-C tumours

in PSCT exhibited a Ki67-index of 43 ± 6.1%, similar to our earlier findings [20]. A single

administration of 8mg/kg doxo did not result in altered Ki67-index (Table 3 and Fig 2), How-

ever, repeated treatment (4+4mg/kg) resulted in a significant increase of Ki67-index; from

43% to 64% (p<0.01): (Table 3 and Fig 3).

IMR-32 tumours in PSCT exhibited a Ki67-index of 63±8.3%, similar to previous findings

[20], and this proliferative index was not significantly altered by either of the administered

doses of doxo, when compared to control (Table 3, Fig 3).

Effects on the PSCT microenvironment. PSCT-tissues with high mitotic activity were

tested for doxo-induced toxicity, as an indication of toxic side effects in adjacent non-malig-

nant tissues. The Ki67-index in proliferative neural epithelium was not significantly affected

following treatment with 8mg/kg or 4+4mg/kg doxo (Table 4). Low levels of early apoptosis
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Fig 1. Micro colonisation of IMR-32 tumours in the PSCT model. (A) Schematic illustration; NB cells were injected

into an arbitrary position centrally in the PSCT cellular mass, resulting in multiple micro-colonisations from migrating

NB cells. (B) A representative FFPE section of a PSCT with four IMR-32 colonies indicated (red borders). (C) IMR-32

colony surrounded by loose mesenchyme. LM = loose mesenchyme; NE = neural epithelium; C = cartilage;

M = muscle; Blue arrows = vessels. Size bars: B:5mm, C:500μm.

https://doi.org/10.1371/journal.pone.0190970.g001

Response to doxorubicin in high-risk neuroblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0190970 January 17, 2018 6 / 16

https://doi.org/10.1371/journal.pone.0190970.g001
https://doi.org/10.1371/journal.pone.0190970


(c-casp3) were indicated in NE following either treatment regimes (3.3±1.7% and 3.0±3.0%,

respectively; Table 4). Frequencies of mitotic catastrophe however showed no significant dif-

ferences in treated compared to mock-treated tumours (Table 4).

Embryonic cartilage and embryonic muscle are additional examples of components exhibit-

ing strong proliferation in PSCT [26, 32]. Fig 4 illustrates a typical staining for c-casp3 in

embryonic cartilage and embryonic muscle, 96 hours after administration of doxo, illustrating

low or absent apoptosis.

B. In vitro analysis

Tables 5 and 6 summarise the in vitro data for BE(2)-C and IMR-32, respectively.

Doxo-induced cell death. The doxo-resistant phenotype of BE(2)-C and doxo-sensitivity

of IMR-32 was confirmed by TUNEL assay (Tables 5 and 6). Frequencies of early apoptosis (c-

casp3) were not significantly affected by single or repeated exposure to doxo in BE(2)-C cells

(Table 5). For IMR-32 cells, a single dose did not change the low frequency of c-casp3 positive

cells, but a repeated exposure yielded a significant reduction of this marker (Table 6).

Effects on Ki67-index in vitro. Exposure of BE(2)-C cells to 1μM doxo resulted 48 hours

later in a significant increase in the percentage of Ki67 positive cells (97±1.4 compared to

mock-treatment 36±5.5; p<0.0001). Similar results were obtained after repeated doses, 1+1μM

doxo, given with a 48-hour interval (p<0.0001,Table 5).

In IMR-32 cells, levels of Ki67 positive cells following 1μM doxo was not statistically differ-

ent significant compared to mock-treatment (Table 6). However a significant reduction was

observed following a repeated dosing (1+1μM doxo given with a 48-hour interval) (p<0.05,

Table 6).

Table 2. The effects of doxo on BE(2)-C tumours growing in the PSCT model.

BE(2)-C

mock doxo doxo doxo

Marker 4mg/kg p 4+4mg/kg p 8mg/kg p

Mitotic catastrophe 1,5 ± 0,9 2,9 ± 0,9 NS 15 ± 7,1 ��� 10 ± 1,9 ��

c-casp3 3,5 ± 1,0 NT 18 ± 3,3 ��� 15 ± 6,1 ��

Ki67 43 ± 6,1 NT 64 ± 14 �� 49 ± 6,2 NS

Fraction of cells (%; mean±SD) expressing indicated markers 96 hours following indicated treatments. Data based on 5 PSCTs per group. Mock = diluent (1xPBS).

NT = not tested. Statistical comparisons between the mock- or doxo-treated group: NS = p>0.05

�� = p<0.01

��� = p<0.001.

https://doi.org/10.1371/journal.pone.0190970.t002

Table 3. The effects of doxo on IMR-32 tumours growing in the PSCT model.

IMR32

mock doxo doxo

Marker 4+4mg/kg p 8mg/kg p

Mitotic catastrophe 4,3 ± 0,2 28 ± 15 �� 12 ± 12 NS

c-casp3 9,6 ± 7,5 39 ± 12 �� 14 ± 9,9 NS

Ki67 63 ± 8,3 67 ± 9,0 NS 59 ± 17 NS

Fraction of cells (%; mean±SD) expressing indicated markers 96 hours following indicated treatments. Data based on 5 PSCT per group. Mock = diluent (1xPBS).

Statistical comparisons between the mock- or doxo-treated group: NS = p>0.05

�� = p<0.01.

https://doi.org/10.1371/journal.pone.0190970.t003
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Induction of cell cycle arrest. To further analyse the cell cycle profiles of BE(2)-C and

IMR-32 following doxo exposure we analysed the incorporation of 5-ethynyl-2-deoxyuridine

(EdU), and/or fractions of cells staining positive for PH3 (Tables 5 and 6).

For BE(2)-C cells (Table 5); a single dose of 1μM doxo resulted in a decreased proportion of

EdU positive cells (79±6.1 compared to mock-treatment 99±1.3, p<0.0001), as well as an

increased proportion of PH3 positive cells (28±6.3% compared to mock-treatment 5.1±2.9%;

p<0.01). The fraction of double positive (PH3+/EdU+) cells increased to 19±6.3%, compared

to mock-treatment 5.1±3.0% (p<0.01). The remaining PH3 positive cells were EdU negative,

i.e. growth arrested.

Repeating the dose (ie. 1+1μM doxo) with a 48-hour interval resulted in an almost complete

ablation of EdU positive cells compared to mock-treatment (p<0.0001). The majority of PH3

positive cells were now EdU negative and only a minute fraction of PH3/EdU double positive

cells (0.4±0.4%) was found, a significantly lower percentage compared to mock-treatment (8.9

±4.8%; p<0.01).

For IMR-32 cells (Table 6); a single dose of 1μM doxo resulted in decreased levels of EdU

positive cells (18±4.5% compared to mock-treatment 69±24%, p<0.0001). There was no differ-

ence in the percentages of PH3 positive cells in mock versus treated, which were both low.

Similar to BE(2)-C cells repeated dose of 1+1μM doxo resulted in a decreased fraction of EdU

positive cells (12±3.1% compared to mock-treatment 81±18%, p<0.001) for IMR-32. There

was no difference in the percentages of PH3 positive cells in the mock-treated versus doxo-

treated groups, where both values were low.

Discussion

Chemotherapy (CT) is crucial for survival in high-risk NB and doxo is one of the most impor-

tant drugs in highly active treatment in this patient group. In the present study, a dose

Fig 2. The effects of doxo on BE(2)-C and IMR-32 tumours in the PSCT model. Fraction of cells (%; mean±SD)

expressing indicated markers following indicated treatments. mock = PBS; 4+4 = Repeated dose 4+4mg/kg doxo with

48h interval; 8 = single dose 8mg/kg doxo. Effects measured 96h after first administration of doxo. Data based on 5

PSCT per group. For statistical analysis, see text.

https://doi.org/10.1371/journal.pone.0190970.g002
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Fig 3. Percentage Ki67 positive cells in BE(2)-C tumour following doxo treatment in the PSCT model. Fraction of

cells (%; mean±SD) expressing Ki67 96 hours after indicated treatments. Mock = diluent (1xPBS). Data based on 5

PSCT per group. For statistical analysis, see text.

https://doi.org/10.1371/journal.pone.0190970.g003
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dependent cytotoxic effect following doxo treatment was observed in the human embryonic

PSCT-model, reiterating known characteristics of sensitive and multi-resistant phenotypes of

two metastatic high-risk NB. Repeated doxo treatment was consistently more effective com-

pared to an equivalent dose administered only once. This observation is in line with longstand-

ing clinical experience of enhanced anti-tumour effects from repeated chemotherapy cycles

[33].

Tumour-selective effects were indicated from the applied doxo regimens. Assessments of

non-malignant highly proliferative tissues (developing embryonic neural epithelium, cartilage

and muscle, located in the proximity of the studied NB-growth) revealed no increase in cyto-

toxic effects after doxo treatment compared to mock treatment. This finding is important for

the analysis of anti-tumour effects in that it decreases, but not eliminates, the risk of confound-

ing doxo-induced toxicity in the local microenvironment.

A somewhat unexpected finding in the PSCT model was that post doxo treatment the BE

(2)-C tumour growth presented an increased Ki67-index (from 43% to 64%; p<0.01). Ki67 is a

protein absent from non-cycling cells, strictly associated with cell proliferation and detectable

in all active phases of the cell cycle [34], and thus the observation indicated a shift towards

cycling cells induced by the exposure to doxo. This was dependent on repeated doxo treat-

ment, possibly reflecting gradual tissue absorption of the drug [35]. Support for the notion that

quiescent (G0) tumour cells entering cell cycle after doxo treatment was obtained also in vitro.

The Ki67-index was investigated following exposure of cultured BE(2)-C cells to a pharmaco-

logically relevant dose of doxo (1μM), allowing a uniform bioavailability of doxo in the culture

medium. This resulted in a massive increase of Ki67 positive cells (97%; p<0.0001), >3-fold

increase of PH3/EdU double positive cells (19%; p<0.001), however no cell death (0.2%

TUNEL). Notably, also a reduction of EdU positive cells was observed (from 99% to 79%;

p<0.0001) along with the appearance of EdU negative cells in G2/M-phase (9.6%; p<0.001),

together indicating induction of cellular arrest, partly in G2/M-phase.

These findings are partly in line with previous reports that MYCN-amplified NB avoids

arrest in G1- and/or S-phase, favouring a G2/M-phase enrichment and reduced cell death [36–

41]. The results are consistent with findings in human hepatocellular carcinoma in which

doxo was shown to accelerate cell cycle transition, at first allowing cell cycle continuation, but

ultimately leading to cell cycle arrest [42]. Here it is also of potential interest that cells lacking a

functional p53/p21 pathway have been shown to arrest in G2/M-phase through down regula-

tion of cdk1 kinase activity by p14ARF [43].

Further investigations may elucidate whether the doxo-induced G2/M-arrested state in BE

(2)-C is permanent or reversible. There might be a putative gain for the multi-resistant BE(2)-

Table 4. The effects of doxo in neural epithelium in the PSCT model.

Neural epithelium

mock doxo doxo

Marker 4+4mg/kg p 8mg/kg p

Mitotic catastrophe 0.6 ± 0.7 0.4 ± 0.3 NS 0.1 ± 0.3 NS

c-casp3 0.7 ± 1.1 3.3 ± 1.7 �� 3.0 ± 3.0 �

Ki67 36 ± 8.0 40 ± 15 NS 37 ± 12 NS

Fraction of cells (%; mean±SE) expressing indicated markers 96 hours following indicated treatments. Mock = diluent (1xPBS). Data based on 5 PSCTs per group.

Statistical comparisons between the mock- or doxo-treated group: NS = p>0.05

� = p<0.05

��; = p<0.01.

https://doi.org/10.1371/journal.pone.0190970.t004
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C cells to accumulate in G2/M-phase arrest. It has been shown that stable tetraploid clones are

more resistant to chemotherapy-induced apoptosis than diploid counterparts, due to increased

DNA repair and anti-apoptotic factors [44, 45].

Fig 4. The effects of doxo on PSCT non-malignant embryonic tissues. Immunohistochemistry staining of formalin-

fixed paraffin-embedded PSCT histological slides, following intra peritoneal injection of the host mouse with 8mg/kg

doxo (A-D), or 4+4mg/kg doxo (E-H). High frequencies of positive staining for Ki67 in tissues compatible with neural

epithelium, muscle and cartilage can be seen, indicative of extensive proliferation (A,C,E,G). Low frequencies of

positive staining for cleaved caspase 3 can be seen in NE, muscle and cartilage, indicative of low frequencies of

apoptosis (B,D,F,H). Size bars: 50μm.

https://doi.org/10.1371/journal.pone.0190970.g004
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A small number of studies have suggested enhanced tumour re-growth following chemo-

therapy [46]. Tumour growth/re-growth has been suggested to be stimulated through apopto-

sis-induced proliferation, and diverse model systems have shown that apoptotic cells can

secrete mitogens to directly stimulate cell proliferation. For example, in vitro studies have

shown IGFII-like factor secretion from BE(2)-C cells into the culture medium, resulting in an

autocrine/paracrine stimulation of DNA replication and cell growth [47]. In another type of

study, long-term drug selection of BE(2)-C MYCN amplified NB cells with doxorubicin was

shown to enrich for a cancer-stem-cell-like subpopulation [48]. Calcagno and colleagues

reported a similar conclusion from in vitro studies of breast cancer [49]. Kurtova and col-

leagues showed that chemotherapy induces prostaglandin PGE2 in neighbouring cells, trigger-

ing cell division of putative cancer stem cell populations in bladder cancer [50].

Table 5. Data set for BE(2)-C in vitro.

BE(2)-C 48h BE(2)-C 96h

mock doxo mock doxo

Marker 1 μM p 1+1 μM p

TUNEL 0.1 ± 0.1 ’ 0.2 ± 0.1 NS 0.0 ± 0.0 ’ 0.6 ± 0.8 NS

c-casp3 3.7 ± 1.7 ’ 3.6 ± 0.5 NS 5.3 ± 0.1 ’ 8.0 ± 2.6 NS

Ki67 36 ± 5.5 < 97 ± 1.4 ���� 51 ± 2.7 < 91 ± 3.7 ����

EdU 99 ± 1.3 > 79 ± 6.1 ���� 99 ± 2.0 > 1.5 ± 1.0 ����

PH3 5.1 ± 2.9 < 28 ± 6.3 �� 8.9 ± 4.8 < 55 ± 22 ����

PH3 / EdU 5.1 ± 3.0 < 19 ± 6.3 �� 8.9 ± 4.8 > 0.4 ± 0.4 ��

PH3 / EdU-neg 0.0 ± 0.0 < 9.6 ± 0.5 ��� 0.0 ± 0.0 < 55 ± 22 ����

Fraction of cells (%; mean±SE) expressing indicated markers following treatment at the indicated time points (48 or 96 hours). Data based on three independent

experiments. Statistical comparisons between the mock- or doxo-treated group: NS = p>0.05

�� = p<0.01

��� = p<0.001

���� = p< 0.0001.

https://doi.org/10.1371/journal.pone.0190970.t005

Table 6. Data set for IMR-32 in vitro.

IMR-32 48h IMR-32 96h

mock doxo mock doxo

Marker 1 μM p 1+1 μM p

TUNEL 21 ± 8.1 < 68 ± 5.2 ���� 17 ± 11 < 88 ± 2.2 ����

c-casp3 2.3 ± 1.7 ’ 1.6 ± 0.9 NS 6.2 ± 1.5 > 0.4 ± 0.3 ���

Ki67 20 ± 13 ’ 8.3 ± 10 NS 26 ± 19 > 4.6 ± 3.6 �

EdU 69 ± 24 > 18 ± 4.5 ���� 81 ± 18 > 12 ± 3.1 ����

PH3 1.5 ± 0.4 ’ 2.4 ± 1.4 NS 0.8 ± 0.4 < 3.0 ± 1.5 �

PH3 / EdU 0.8 ± 0.8 ’ 0.5 ± 0.5 NS 0.4 ± 0.3 ’ 0.3 ± 0.3 NS

PH3 / EdU-neg 0.7 ± 0.9 ’ 1.8 ± 1.8 NS 0.4 ± 0.5 < 2.7 ± 1.3 �

Fraction of cells (%; mean±SE) expressing indicated markers following treatment at the indicated time points (48 or 96 hours). Data based on three independent

experiments. Statistical comparisons between the mock- or doxo-treated group: NS = p>0.05

� = p<0.05

��� = p<0.001

���� = p< 0.0001.

https://doi.org/10.1371/journal.pone.0190970.t006
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However, a proliferative boost was not observed of IMR-32 tumours after doxo-therapy,

neither in vivo nor in vitro. Exposure in vitro to 1μM doxo revealed instead extensive cell death

(68% TUNEL positive). The combined in vivo/in vitro analysis thus indicated presence of a

functionally active p53 pathway. Evidently, numerous factors, genetic and epigenetic, may

relate to this difference but IMR-32 cells have been previously shown to express low levels of

the p53 downstream target p21 and cells with low levels of p21 are more likely to enter apopto-

sis [37].

A repeated doxo exposure in vitro (1+1μM) further enhanced the differences between BE

(2)-C and IMR-32 with regard to survival, possibly reflecting their difference in p53 status.

The vast majority of BE(2)-C cells survived a second exposure (TUNEL 0.6%) and maintained

positive staining for Ki67 (91%). However, most cells went into growth arrest (98% EdU nega-

tive), mainly in late G2/M-phase (55% PH3 positive). IMR-32 on the other hand exhibited

high levels of growth arrest (88% EdU negative) but here leading to late apoptosis/cell death

(TUNEL 88%). Only a small fraction of IMR-32 was arrested in late G2/M-phase following the

repeated doxo-exposure (2.7% PH3 positive).

Doxorubicin-induced death has been reported to be independent of caspase in N-type NB

cells (e.g. IMR-32) [51]. In our study a single doxo in vivo or in vitro exposure of IMR-32 did

not alter the frequencies of c-casp3 positive cells. However, assessments of double exposures (4

+4mg/kg in vivo and 1+1μM in vitro) resulted in a significant increase of cleaved caspase-3

(p<0.01 in both cases). The reason for this discrepancy needs to be further explored.

Conclusions

In summary, we have demonstrated the use of the human embryonic microenvironment in

the PSCT model for in vivo evaluation of chemotherapy response in high-risk NB. The results

are encouraging for the further development of clinically relevant studies of intra tumour het-

erogeneity and asynchronous tumour response to therapy in NB and other tumours originat-

ing early in life. Notably, a phenomenon of compensatory re-growth of resistant cells/clones

following CT was detected for the multi-resistant p53 mutated NB tumour line BE(2)-C, but

not for the drug-sensitive p53 wild type NB line IMR-32. Further investigations are needed to

study the molecular regulation of arrest after recurrent treatment. Chemotherapy is long

known as a double-edged sword and the new findings next need to be evaluated for generality

and potential clinical relevance.
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