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Computer vision is the science that enables computers and machines to see and perceive image content on a semantic level. It
combines concepts, techniques, and ideas from various fields such as digital image processing, pattern matching, artificial
intelligence, and computer graphics. A computer vision system is designed tomodel the human visual system on a functional basis
as closely as possible. Deep learning and Convolutional Neural Networks (CNNs) in particular which are biologically inspired
have significantly contributed to computer vision studies. )is research develops a computer vision system that uses CNNs and
handcrafted filters from Log-Gabor filters to identify medicinal plants based on their leaf textural features in an ensemble manner.
)e systemwas tested on a dataset developed from the Centre of Plant Medicine Research, Ghana (MyDataset) consisting of forty-
nine (49) plant species. Using the concept of transfer learning, ten pretrained networks including Alexnet, GoogLeNet, Den-
seNet201, Inceptionv3, Mobilenetv2, Restnet18, Resnet50, Resnet101, vgg16, and vgg19 were used as feature extractors. )e
DenseNet201 architecture resulted with the best outcome of 87% accuracy and GoogLeNet with 79% preforming the worse
averaged across six supervised learning algorithms. )e proposed model (OTAMNet), created by fusing a Log-Gabor layer into
the transition layers of the DenseNet201 architecture achieved 98% accuracy when tested onMyDataset. OTAMNet was tested on
other benchmark datasets; Flavia, Swedish Leaf, MD2020, and the Folio dataset. )e Flavia dataset achieved 99%, Swedish Leaf
100%, MD2020 99%, and the Folio dataset 97%. A false-positive rate of less than 0.1% was achieved in all cases.

1. Introduction

Computer vision is a broad term that describes the computer
performing the function of an eye by using different
mathematical algorithms on a digital image. )is area is
concerned with the automated processing of images from
the real world, extracting features, and interpreting infor-
mation in real-time based on the user’s requirements [1, 2].
)e fundamental task in computer vision is image recog-
nition [3]. Human vision is unique and superior in that it
detects and discriminates against the objects around it with
ease. It can perceive 3-D structures with perfection and also
categorize them efficiently [4]. Computer vision is modelled
after the human visual system which nonetheless is superior

in detection, identification, and discrimination objects. With
human vision being such a complex mechanism, computer
vision can be thought of as an approximation of it [5].

Plant taxonomy is the science that aims in detecting,
recognizing, describing, characterizing, and naming plants.
Chemotaxonomic, anatomical, and morphological classifi-
cations are some of the techniques adopted for this science
[6]. In comparison to chemotaxonomy, morphological and
anatomical classifications are viewed as more traditional [7].
)e key aspects that play vital roles in plant taxonomy are;
plant identification which deals with the determination of an
unknown plant in relation to a previously collected specimen
and plant classification which places a known plant in a
category based on its shared characteristics with other plants.
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Despite the fact that the tropical vegetation of Ghana is
abundant in medicinal plants, a thorough understanding of
their spread and usage appears to be limited to the aged and
herbalists [8, 9]. )e majority of them learned about the
plants through oral transmission or by employing them in
traditional medicinal preparations. In general, information
obtained on the subject of diversity and value of medicinal
plants in Ghana, and their use, is made available through
ethnobotanical means by a few individual researchers [10].
Herbal medicine is gradually becoming more widely ac-
cepted and used globally. )is realisation is similar in Africa,
where over 60% of its populace relies only on these plants for
their primary healthcare needs, especially in underdeveloped
nations [11, 12]. As a result, plants constitute a significant
contributor to natural products and a vital component of
health care. Traditional medicines are extremely important
to the pharmaceutical business; in fact, traditional medicines
account for a quarter of all prescribed pharmaceuticals
worldwide. In comparison to synthetic medications, me-
dicinal plants are chosen since they have fewer side effects
and are more affordable [13]. Humans benefit from classi-
fying medicinal plants in a variety of ways, thus it is critical
to address this issue [14].

Attributes such as leaves, fruits, flowers, or the entire
plant are mostly used to identify a plant.)e use of the leaves
is one most promising and reliable methods of identifying
medicinal plants out of all the keys of identification. [15].)e
use of plants as medicine has necessitated plant identifica-
tion in order to identify whether or not a given plant has
medicinal characteristics. When the untrained eye examines
two plants closely, it is simple to confuse them. )is makes
plant identification a very important part of natural products
and medicine that should not be overlooked since mis-
identification might have catastrophic effects. [10]. Plants go
through several growth phases in different seasons and may
have different shape characteristics as a result of environ-
mental factors including climate change, topographical
position, and so on. [16]. Furthermore, knowledge of plant
species is vital for biodiversity protection. Using conven-
tional keys to identify plants is complex, time-consuming
and it is laborious for nonbotanists and provides a formi-
dable obstacle for freshmen interested in obtaining specific
expertise because it necessitates the use of scientific no-
menclature. [17]. It is indeed difficult to discern between
plants using their manymorphological traits. High intraclass
variability and small interclass variances are the key ob-
stacles. [18]. Plant categories are tightly related, and some of
their structural parts are closely related, resulting in low
interclass differences. Furthermore, plants vary greatly in
terms of size, colour, shape, and texture, and their ap-
pearance changes throughout the year, resulting in signifi-
cant intraclass variance [19]. )is study seeks to identify a
plant using a proposed deep learning algorithm to perform
the matching process that maps a leaf image to a plant
category.

)e rest of the study is outlined as follows: Section 2 is
made of the literature review of the main concepts related to
the study, Section 3 presents the methodology of the study
which includes the feature extraction methods and the

proposed model as well as the performance metrics, Section
4 analyses and discusses the results and the last section
presents the conclusion and future works.

2. Literature Review

2.1. Deep Learning. Deep learning, a branch of machine
learning, uses varied layers of algorithms (ANNs, or artificial
neural networks) to model high-level abstractions with
complex structures in data [2], and it is also based on data
learning representations [20]. For each layer, a different
interpretation of data that has been fed into them is provided
[21]. Deep learning, inspired by the human brain infor-
mation processing patterns, utilizes huge data in order for a
given input to be mapped to specific labels. Convolutional
neural networks, deep belief networks, deep neural net-
works, and recurrent neural networks are all deep learning
architecture. Deep learning has been applied in various areas
including natural language processing, audio and video
recognition, computer vision, and automatic speech rec-
ognition and have produced tremendous results [22, 23].

Traditional machine learning algorithms consist of
various stages which are preprocessing, feature extraction,
feature selection, and classification. Feature selection stage
plays a great role in these types of algorithms and might lead
to incorrect classifications of classes if it is biased. Deep
learning, however, overcomes this problem by automating
the learning of features that are rich and complex [24]. Deep
learning combines both feature extraction and classification
at a go. With the emergence of big data, the concept of deep
learning has expanded greatly [25].

Deep learning algorithms provide some level of
abstraction of data and this is achieved with the number of
its layers and their sizes [26]. In the general interpretation of
deep neural networks, universal approximation theorem and
probabilistic inference are used [27]. Deep learning has the
following advantages; universal learning approach [28],
robustness [29], generalization [30], and scalability [31].
Some drawback concept of deep learning include; a large
data is required; data modules are complex; it is very
expensive to train and it requires a classifier for
comprehending mere learning results [32].

In machine learning, overfitting is one common prob-
lem, especially in deep learning, when training a model due
to the large volume of parameters needed to train this kind of
complex model. )is occurs when the trained model does
not generalize or predict well to unknown test data [33]. One
way of dealing with overfitting is regularization which allows
the model to deduce better to unknown data when training
on a finite training set, or with an imperfect optimization
procedure [34]. DropConnect, dropout, data augmentation,
stochastic pooling, batch normalization, weight decay, early
stopping, and ℓ1 and ℓ2 regularization are some of
the common regularization strategies used to prevent
overfitting. [35].

Optimizers are used to minimize a loss function or to
increase the production efficiency. )ey are dependent on
the model’s learnable parameters i.e., biases and weights
[36]. Popular optimizers include Adam (Adaptive Moment
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Estimation), RMSProp (Root Mean Square Propagation),
Stochastic Gradient Descent (SGD), AdaGrad (Adaptive
Gradient Descent), Momentum, and Adadelta [37]. )e
choice of the best optimizer relies, among others, on training
data and a trade-off between speed and performance, the
application, and network architecture [38]. Adaptive
gradient algorithms in particular RMSprop and Adam, in
modern machine learning models training, have
demonstrated greater performance, e.g., deep neural
networks [39].

2.2. Convolution Neural Networks. Convolutional Neural
Network (CNN) is, now, the go-to method for pattern
classification and image processing [40] and it has been
proven to perform better than the traditional methods [41].
Although numerous unsupervised and recurrent variants
have been developed, a CNN is a supervised feedforward
artificial neural network. Literature has also demonstrated
the importance of CNNs and its use in computer vision
systems [2]. )e visual cortex of the eye inspired the ar-
rangement of neurons in CNNs [42]. Convolutional layers,
pooling Layers, and nonlinear and fully connected (FC)
layers are the components of CNN architecture [43].

)e ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) has seen an increase in several CNNs and deep
learning techniques commonly called pretrained networks.
)e AlexNet model developed in 2012 brought about other
advanced architectures such as VGG, Xception, ResNet, and
DenseNet which have been among performing techniques in
recent times [44]. Pretrained networks used in this study are
presented in the next section.

2.2.1. Alexnet. AlexNet, considered largely as the first deep
CNN architecture for classification and recognition tasks,
has five convolution layers and three fully connected layers.
A Local Response Normalization (LRN) was first introduced
in AlexNet architecture with the ReLU activation function.
AlexNet has a deeper architecture than its predecessor
LeNet, which consists of five convolution layers, one pooling
layer (max), a ReLU activation function, and three fully
connected layers. It also used the dropout technique as its
regularization method. [45].

2.2.2. Googlenet. )ree convolution layers, nine inception
modules, with two levels each, and one fully-connected layer
make up GoogleNet’s 22-layer network. An inception block
is used in the first layer of the GoogleNet architecture, which
uses filters of 1× 1, 3× 3, and the 5× 5 sizes. To improve
performance, errors are calculated at numerous interme-
diate stages. A 1× 1 concatenation filter is placed between
them to alter input computations before moving on to the
following layers’ convolution kernels for processing. )e
number of features in the last layer is 1,024. To decrease the
parameters numbers, the fully connected layers were
replaced with a pooling layer. )is reduced the parameters
from 138 million to 4 million [46].

2.2.3. Inceptionv3. An improved version of GoogleNet was
introduced in 2015 which is the Inceptionv3. To improve
performance, n× 1 and 1× n convolutional layer factors are
used instead of n x n factors. Filters with sizes of 5× 5 were
replaced with two of 3× 3 filters in the architecture, which
lead to a significant number of neurons reduction and
parameters to 24 million. In this architecture, the convo-
lutions are factorised into smaller convolutions [47].

2.2.4. Vggnet. In 2014, Oxford University researchers in-
troduced Visual Geometry Group (VGG) which differs
slightly from AlexNet in terms of the kernel size and the
number of feature maps. VGG architecture has thirteen
convolutional layers with a max-pooling layer and three
fully-connected layers following it. Large filters were
replaced with smaller ones because developers believed
running filters with lesser sizes concurrently could perform
the same task.)eVGG-16 and VGG-19 increased the layers
numbers in the network as indicated by the numbers. )e
VGG-16 and VGG-19 architectures are made up of suc-
cessive 3× 3 convolution layers after which a pooling layer
follows. )e increase in the depth of the layer increased
trainable parameters [48].

2.2.5. Resnet. )e theory behind designing the Residual
Neural Network (ResNet) transformed the generation of
CNN in 2015. It introduced the concept that higher layers
learn new features from the previous layers. Connections
added to layers are copied to the next layer’s input without
considering the extraction of features and identity from the
previous layer. Even though it is having 152 layers which is
20 times more than AlexNet and 10 times more than VGG, it
has a lower computational complexity than the other net-
works.)e ResNet indicated a 3.57% error after training and
implementation on the ImageNet dataset, which, as com-
pared to the human error, is less [49].

2.2.6. Mobilenet. One drawback of deep learning is that it is
very expensive to train therefore Google researchers in 2017
introduced MobileNet to solve this resource constraint
problem. In MobileNet which is a small low-consumption
model, a normal convolutional layer was used instead of a
deep convolutional layer. Deep convolutional layers process
individually on each colour channel making it computa-
tionally intensive. MobileNet consists of 28 layers which in
the absence of computing power become more appropriate
for mobile-based vision programs. To improve training
performance, depthwise convolution layers are being
replaced with convolution layers [50].

2.2.7. Densenet. DenseNet is a powerful neural network for
image recognition that was first introduced in 2017. In
DenseNet, features are rather transferred to all subsequent
layers from all previous layers, as opposed to ResNet, which
keeps each layer’s information within the layers without
offering to the next layer. )is leaves subsequent layers with
insufficient data and information to train. However, in a
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DenseNet, each subsequent layer in a dense block receives
maps of the previous feature after which it is obtusely
connected to each preceding layer, potentially reducing
gradient calculations, decreasing the parameters numbers,
and allowing features to be reused [51]. )e core of the
ResNet model is to train deeper CNNs by establishing
shortcuts (skip connections) between the front and back
layers, which helps to backpropagate the gradient during
training. )e DenseNet model is developed based on the
same basic idea as ResNet, but it establishes dense con-
nections between all of the previous and subsequent layers,
which is reflected in its name.)ese features allow DenseNet
to achieve better performance than ResNet with fewer pa-
rameters and less computational cost [52].

2.2.8. LOG Gabor Filters. David Field proposed the Log-
Gabor function [53]. Log-Gabor filters contain transfer
functions that are consistent with the human visual system,
which exhibits symmetric cell responses on the log fre-
quency scale. Furthermore, observations on mammals’ vi-
sual systems show that we have symmetric responses of cells
on the log frequency scale, similar to the Log-Gabor
function. Because the Log-Gabor transform has an extended
tail with no DC component, it allows for the construction of
infinitely broad bandwidth filters, which are able to encode
natural images more effectively by expressing the higher
frequency components.

When calculated on a logarithmic frequency scale, log-
Gabor functions have Gaussian transfer functions. )e 2D
Log-Gabor filter is generated in the frequency domain be-
cause the log function at the origin has a singularity. )e
radial and angular filters make up the Log-Gabor function in
polar coordinates. )e response frequency of the radial filter
is illustrated by the following equation [54]:

Gr(r) � exp −
log r/f0(  

2

2.σ2r
 . (1)

And, the frequency response of the angular filter de-
scribed by the following equation:

Gθ(θ) � exp −
θ − θ0 

2

2.σ2θ
 . (2)

2.2.9. Related Works. Many researchers have used hand-
crafted features with supervised classifiers and deep learning
models, particularly, CNN for plant identification.

Kan et al. [55] introduced an automatic system that uses
the leaf for the classification of medicinal plants. )e dataset
contained 240 leaves of different plants from the medicinal
plant specimen library of Anhui University of Traditional
Chinese medicine. Five texture and ten shape features were
extracted and using the SVM classifier and a 93.3 percent
recognition rate was achieved. Begue et al. [56] extracted
several leaf features such as a number of vertices, length,
width, perimeter, and area of hull and colour on a dataset of
24 different plant species having 30 images each from the

tropical island of Mauritius. )e highest accuracy achieved
was 90.1% using the random forest classifier.

De Luna et al. [57] experimented with seven algorithms
(logistic regression, naı̈ve bayes, K-Nearest Neighbor
(KNN), linear discriminant analysis, classification and re-
gression trees, SVM, and Neural Networks (NN) in iden-
tifying Philippine herbal medicine plants using leaf features.
Various leaf shape and venation structure features were
extracted and resulted in a 98.6% recognition rate. Vijay-
shree and Gopal [58] introduced a system using neural
networks to classify and identify herbal medicinal plants on a
dataset containing 50 different species having 500 leaves. A
total of 21 features were extracted using texture, colour, and
shape. Experimental results gave 93.3% accuracy using only
texture features and 99.2% using all three features. Dahi-
gaonkar and Kalyane [59] identified ayurvedic medicinal
plants using leaf based on its colour texture and shape
feature using SVM on 32 different plants. Features extracted
include entropy, solidity, eccentricity, contrast, extent,
standard deviation, mean, and equivalent diameter. An
accuracy of 96.66% was achieved.

Britto and Pacifico [60] compared the performance of
the Extreme Learning Machine (ELM) algorithm with
K-Nearest Neighbor, Decision Tree classifier, Support
Vector Machine, Naive Bayes classifier, and a Multilayer
Perceptron trained with Backpropagation algorithm in the
context of plant classification. )e datasets, Fisher’s Iris
Plant, Wheat Seed Kernels, and 100 Plant Leaves were used
in this investigation. A Centroid Contour Curve form sig-
nature, a fine-scale margin feature histogram, and an interior
texture feature histogram were among the characteristics
extracted. ELM achieved the best performances with the Iris
data set (97%) and Seed data set (96%). )e texture was
presented as the best individual discriminatory power.

Dissanayake and Kumara [61] performed a comparison
of the performance of multiple machine learning algorithms
to identify herbal, fruit, and vegetable plants using their
leaves. A total of 3,150 leaf photos from 25 different herbal,
fruit, and vegetable species were used. Color photos were
transformed to grayscale images, and the image noise was
reduced using a Gaussian filter. Shape, texture, and colour
are the three feature categories from which 17 features were
collected. Support Vector Machine, K-Nearest Neighbors,
Multilayer Perceptron, Random Forest, and Decision Tree
algorithms have classification accuracy of 85.82 percent,
75.45 percent, 82.88 percent, 80.85 percent, and 64.39
percent, respectively.

Naeem et al. [62] developed a machine learning (ML)
based medical plant leaf classification utilizing multispectral
and texture datasets. A total of six varieties of medicinal
plant leaves are used. Out of 65, 14 features were selected
using a chi-square feature selection strategy. Five machine
learning classifiers were used (multilayer perceptron, ran-
dom forest, logit-boost, basic logistic, and bagging), with the
multilayer perceptron classifier showing the most promise at
99.01 percent accuracy.

Xue et al. [63] showed that an ANN model developed
using the morpho-colourimetric parameters as inputs per-
formed better (accuracy of 98.3%) than a visible (VIS)/Near
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Infrared (NIR) spectral analysis (92.5% accuracy) when
tested on 20 different Chinese medicinal plants which were
sampled for their leaves. Kaur and Kaur [64] using the
Swedish Leaf dataset applied the Gaussian filtering mech-
anism as a preprocessing technique after which texture and
colour features were extracted. Classification using a Mul-
ticlass-support vector machine achieved an accuracy of
nearly 93.26%. Singh [65] proposed the Local Binary Pat-
terns—Support Vector Machine (LBP-SVM) methodology
on the Swedish Leaf and compared it with the K-NN
classifier and Binarized Neural Network (BNN). )e LBP-
SVM model provided a higher accuracy outcome of 84%
while the existing BNN, and KNN models produced only
77% and 75%, respectively.

Nguyen et al. [66] used a pretrained network GoogLeNet
to extract a 1024-dimensional feature vector of the last
average pooling layer before the dropout layer. Ten classifiers
are applied (Nearest neighbour (NNB), Linear Support
Vector Machine (L_SVM), Nonlinear Support Vector Ma-
chine, Ada Boost (AB), Decision Tree (DT), Näıve Bayes
(NB), Neural network (NN), Random Forest (RF), Qua-
dratic discriminant analysis (QDA), and Softmax (SM), the
default classification method of the GoogLeNet. )e Linear
SVM classifier achieved the best result of 87.34%. Jaiganesh
et al. [67] proposed a Convolution Neural Network, which
consists of four layers, convolution layer, dropout, max
pooling, and average pooling. )e proposed model was
implemented using the Kaggle tool. )e accuracy of the
model was 86% which was accomplished with much less
computational effort and shows the efficiency of the algo-
rithm. Huynh et al. [68] suggested a five-layered Con-
volutional Neural Network (CNN) architecture in which the
red channel of colors replaces the leaf vein shape data. To
enhance the amount of training images, data augmentation
was used to make three duplicates of each image after re-
flection and rotation. On the Flavia leaf data set and the
Swedish leaf data, experimental findings showed that the
suggested CNN model was successful for leaf recognition,
with the greatest accuracy of greater than 98.22%.

Banzi and Abayo [69] proposed a CNN-LSTM network
with 20 layers: 12 convolutional layers, one Fully Connected
layer, five pooling layers, one Long Short-Term Memory
(LSTM) layer, and one output layer with the softmax
function for classification. Training of the models was
performed by using an open database of 100 plant species
images, containing 64 different element vectors of plants in a
set of 100 distinct classes of plant species. Experiments
showed that the proposed CNN-LSTM performs better in
classifying plant species than the convectional CNN as it
attains an accuracy of 95.06%. Karahan and Nabiyev [70]
used a pretrained network MobileNetV2 to develop a plant
identification system. A dataset containing 5,345 flowers and
plant images belonging to 76 species was used. Preprocessing
techniques used were centre cropping and normalizing. To
expand the collection of images in the database and boost the
model’s generalization power, data augmentation tech-
niques were also used. )e suggested model attained a
training set accuracy of 0.9971 and a test set accuracy of
0.9897 after 15 epochs. Pravin and Deepa [71] reviewed three

different convolutional neural network algorithms; Matrix-
Based Convolutional Neural Network (M-bCNN), Dual-
path CNN (DP-CNN), and Fine-tuned AlexNet model for
the medicinal leaf identification. DP-CNN produced the
highest accuracy of 95.67%, Fine-tuned AlexNet model had
93.31%, and Dual-path CNN, 91%.

Chung et al. [72] created a dual-path CNN model in
which the two subnetworks are independent and receive
individual input from either an original image or a centrally
cropped image. )e suggested model attained a 77.1 percent
accuracy rate after training and validation on a plant dataset
of 14 species of Taiwan’s most prevalent trees. Adetiba et al.
[73] used the Leafsnap image dataset of 185 plant species and
five pretrained CNN models (AlexNet, GoogLeNet, VGG-
19, ResNet50, and MobileNetV2) to produce an accurate
plant species recognition. MobileNetV2 with ADAM opti-
mizer has the greatest testing accuracy of 92.3% among the
pretrained models.

Bao et al. [74] devised a system for recognizing plants
based on their leaf patterns that use two methods: a His-
togram of Oriented Gradient (HoG) and a deep con-
volutional neural network. HoG was used to classify the
features, while CNN was utilized to identify them. Ghazi
et al. [75] implemented three models of transfer learning to
explain better the identity of the various plants. )ese
three-model used were GoogleNet, VGGNet, and AlexNet
applied on the LIFECLEF 2015 dataset. )e overall accu-
racy was 80% on the validation set and an overall inverse
rank score of 0.752 on the official test set was achieved with
the best-combined model. Krause et al. [76] presented a
What’s )at Plant (WTPlant) system for identifying plants
in natural images using deep learning approaches. Pre-
processing was done using the Watershed Transform and
the GrabCut and the classification engines used are two
AlexNets pretrained models. In preliminary tests, the
WTPlant system detected 99.3 percent of plants in 17,000
natural photos.

Sulc and Matas [77] combined the ResNet152 and In-
ception-ResNetv2 architectures with LBP and achieved an
accuracy of 99% on the Swedish Leaf dataset. Zhang et al.
[78] proposed a seven-layer CNN to classify the Flavia
dataset and reached 94% accuracy. Pawara et al. [79] fine-
tuned the AlexNet and GoogLeNet architectures and
achieved 94% accuracy on Flavia, 98% on Folio and 99% on
the Swedish Leaf dataset. Barre et al. [80] used a 17-layer
CNN architecture and obtained an accuracy of 97.9% val-
idated on the LeafSnap, Flavia, and Foliage datasets. [79]
fine-tuned the AlexNet and GoogLeNet architectures and
achieved 94% accuracy on Flavia, 98% on Folio and 99% on
the Swedish Leaf dataset.

Pearline et al. [81] utilized VGG19 architecture with a
logistic regression classifier on the Folio, Flavia, and Swedish
leaf datasets, achieving an accuracy of 96%, 96%, and 99%,
respectively. Blesslin and Baulkani [82] developed a pro-
posed network AousethNet by replacing the SoftMax clas-
sifier with supervised learning classifiers; support vector
machine (SVM), Decision tree (DT), Naive Bayes (NB)
and K Nearest Neighbor (KNN), Ensemble classifier (EC)
and the Majority vote classifier (MVC). With the Mendeley
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Table 1: Handcrafted features with supervised classifiers.

Reference Features Dataset Algorithm Accuracy (%)

[55] Texture and shape features

Medicinal plant specimen
library of anhui university of

traditional Chinese
medicine

SVM classifier 93.3%

[56]
Perimeter, a number of vertices,
length, width, perimeter and area of

hull, colour

Dataset of 24 different plant
species having 30 images

each from the tropical island
of Mauritius

Random forest classifier 90.1%

[57] Leaf shape and venation structure
features

Philippine herbal medicine
plants using leaf features

Logistic regression, näıve bayes, K-
nearest neighbor (KNN), linear

discriminant analysis, classification and
regression trees, SVM, and neural

networks (NN)

98.6%

[58] Texture, colour, and shape

Herbal medicinal plants on a
dataset containing 50

different species having 500
leaves.

Neural networks 93.3%

[59] Color, texture and shape feature Ayurvedic medicinal plant SVM 96.66%

[60]

Centroid contour curve form
signature, a fine-scale margin

feature histogram and an interior
texture feature histogram

Fisher’s iris plant, wheat
seed kernels, and 100 plant

leaves

Extreme learning machine (ELM)
algorithm with K-nearest neighbor,
decision tree classifier, support vector
machine, naive bayes classifier, and a
multilayer perceptron trained with

backpropagation algorithm

Iris data set
(97%) Seed data

set (96%).

[61] Shape, texture, and colour
A total of 3,150 leaf photos
from 25 different herbal,
fruit, and vegetable species

Support vector machine, K-nearest
neighbors, multilayer perceptron,
random forest, and decision tree

algorithms

85.82

[62]
14 features were selected using a

chi-square feature selection
strategy

Six varieties of medicinal
plant leaves

Multilayer perceptron, random forest,
logit-boost, basic logistic, and bagging 99.01%

[63]
Morpho-colourimetric parameters
Visible (VIS)/Near infrared (NIR)

spectral analysis

20 different Chinese
medicinal plants ANN model 98.3%

[64] Texture and colour features Swedish leaf dataset Multiclass-support vector machine 93.26%.

Table 2: Deep learning models.

Reference Algorithm Dataset Accuracy (%)
[66] GoogLeNet + linear SVM 87.34%.
[67] Convolution neural network 86%

[68] Five-layered convolutional neural network (CNN) Flavia leaf dataset 98.22%.Swedish leaf dataset
[69] CNN-LSTM network with 20 layers 95.06%.
[70] MobileNetV2 98.97
[71] Dual-path CNN (DP-CNN) 95.67%
[72] Dual-path CNN model 14 species of Taiwan’s most prevalent trees 77.1%
[73] AlexNet, GoogLeNet, VGG-19, ResNet50, and MobileNetV2 Leafsnap image dataset 92.3%
[74] 5-Layer CNN architecture Flavia leaf dataset Swedish leaf dataset 95.5 98.2
[75] GoogleNet, VGGNet, and AlexNet LIFECLEF 2015 dataset 80%
[76] Two AlexNets pretrained models 99.3%
[77] ResNet152 and Inception-ResNetv2 architectures with LBP Swedish leaf dataset 99%
[78] Seven-layer CNN Flavia dataset 94%

[79] AlexNet and GoogLeNet
Flavia 94%

98%
99%

Folio
Swedish leaf dataset

[80] 17-Layer CNN architecture 97.9%

[81] VGG19 architecture with a logistic regression classifier
Folio 96%

96%
99%,

Flavia
Swedish leaf datasets

[82] AousethNet Mendeley dataset (MD2020 99%
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Table 3: Description of dataset.

Adenia
cissampeloides (1)

Ageratum
conyzoides (2)

Alchornea
cordifolia (3)

Aframomum
melegueta (4)

Amaranthus
spinosus (5)

Bridelia
ferruginea (6)

Baphia nitida (7) Bidens pilosa (8) Blighia
sapidia (9)

Cassia alata (10) Clausena
anisata (11)

Citrus
aurantifolia (12)

Capparis
erythrocarpus (13)

Cnestis
ferruginea (14)

Cassia
occidentalis (15)

Chromolaena
odorata (16)

Carapa
procera (17)

Cryptolepis
sanguinolente (18)

Desmodium
adscendens (19)

Dialium
guineense (20)

Datura
metel (21)

Ficus
asperifolia (22)

Fleurya
aestuans (23)

Griffonia
simplicifolia (24)

Hoslundia 
Opposita (25)

Kigelia 
africana (26)

Khaya 
senegalensis (27)

Lantana 
Camara (28)

Momordica 
charantia (29)

Mangifera 
indica (30)

Morinda
Lucida (31)

Monodora
myristica (32)

Mondia
whitei (33)

Nauclea
Latifolia (34)

Newbouldia
laevis (35)

Ocimu
gratissimum (36)

Physalis
angulata (37)

Palisota
hirsuta (38)

Parquentina
nigrescens (39)

Phyllantus
nururi (40)

Plumbago
zeylanica (41)

Passiflora
foetida (42)

Ricinus
communis (43)

Rauwolfia
vormitoria (44)

Sida acuta (45) Synedrella
nodiflora (46)

Trema
orientalis (47)

Vernonia
amygdalina (48)

Xylopia
aethiopica (49)
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dataset (MD2020), the proposed model gave an accuracy of
99% and a precision of 98% with the MVC.

A summary of the reviewed papers is presented in Ta-
ble 1 and Table 2.

3. Methodology

3.1. Dataset. A medicinal plant leaf dataset (MyDataset) [83]
has been developed for this study from the Centre for Plant
Medicine Research (CPMR) in Akuapem Akropong, Ghana
and is presented in Table 3. )e digital images are acquired
using the NIKON D3500 camera on the abaxial portions of
the medicinal plant leaves, in the uncompressed JPEG format
in YCbCr colour format with the dimension 6000× 4000× 3,
in a closed environment to maintain constant illumination.
)e benchmark standards followed to create the dataset in-
cludes relevance, representativeness, nonredundancy, ex-
perimentally verified cases, scalability, and reusability [84, 85].
)e working dataset consists of 2450 images, 50 images each
from 49 medicinal plant leaves. )e dataset created
(MyDataset) is compared with four benchmark datasets
which are: Flavia dataset, Swedish Leaf dataset, Mendeley
Dataset (MD2020), and Folio dataset. Flavia dataset contains
1907 samples of 33 species of common native plants in
Yangtze Delta, China [86, 87]. All the leaf images in this
dataset have no petioles. )e Swedish dataset contains 75
samples from each of the 15 Species of Swedish plants or trees
[88, 89]. )e Folio dataset contains 576 images with 18
samples each from 32 species [90] whiles the Mendeley
dataset contains 1835 images from 30 species [91].

3.2. Feature Extraction. Pretrained CNN networks which
includes AlexNet, inceptionv3, DenseNet201, GoogLeNet,
resnet101, resnet18, resnet50, mobilenetv2, vgg16, and
vgg19 are used as feature extractors. )e process of using
features from a pretrained network is known as transfer
learning [92]. Transfer learning aims to increase target
learners’ performance on target domains by transferring
data from a variety of related source domains. )e depen-
dency on a big amount of target domain data for developing
target learners can be decreased using this strategy. )e last
layer before the fully connected layer for classification
commonly called the bottleneck layers are used in this study.
A description of the pretrained network and the layers used
are presented in Table 4.

3.3. Supervised Classifiers. Six (6) well-known supervised
learning algorithms are chosen for this study. )ese clas-
sifiers are chosen based on the following groups: Bayesian,
lazy classifiers, trees, and functions [93]. Bayesian classifiers
assign membership probability to new objects in order to
categorize them, and they are known to be quick and ac-
curate even when dealing with massive amounts of data [94].
From a training set of objects represented by various

qualities, trees derive rules. Because the derived rules may be
represented as a treelike graph, they can be easily under-
stood [95]. Lazy (or instance-based) classifiers save all of
the training samples and wait until a new instance needs to
be classified before building a classifier. During the training
phase, lazy-learning algorithms require less calculation
time, but during the classification phase, they require
greater computation time [96]. Functions or non-
probabilistic classifiers in this category strive to generalize
the training data before accepting queries. )e majority of
the methods in this family can be thought of as simple
applications of optimization theory and statistical esti-
mation [97]. )e classifiers used are Naive Bayes, Support
Vector Machine (SVM), K-nearest Neighbour (kNN),
Decision Tree (DT), Logistic Regression (LR), and Random
Forest (RF).

3.4. Proposed Model. )e proposed CNN model (OTAM-
Net) created is based on the DenseNet architecture since it
has the following advantages: since error signals can be easily
transferred to older levels more directly, there is a significant
gradient flow; an implicit deep supervision is provided
because the final classification layer provide strict supervi-
sion to earlier levels; more diversified features can be
extracted because each layer in DenseNet receives all pre-
ceding layers as input as opposed to standard CNN models
where the classifier uses the most complex features [98]. In
DenseNet, the classifier uses features of all complexity levels,
giving more smooth decision boundaries [98]. )e model
fused handcrafted features i.e., Log-Gabor features into each
dense block of the DenseNet model and propagated features
to each next dense block as shown in Figure 1.)eminimum
and maximum frequencies, the filter bandwidth to employ,
the scaling between center frequencies of subsequent filters,
the number of orientations, the number of scales, and the
angular spread of each filter are the parameters used in
designing a Log-Gabor filter [99]. )e parameters used are
presented in Table 5 [100].

Features from each dense block are fused with the log
Gabor features before being sent to the next block allowing
for rich complex features at each stage.

3.5. ClassificationMetrics. )e confusion matrix is the most
often used assessment measure in predictive analysis, owing
to its simplicity and ability to compute other important
metrics including accuracy, recall, and precision. It is an
NxN matrix that depicts a model’s overall performance
when applied to a dataset, where N represents the number of
class labels in the classification task. )ese metrics are as
follows [101]:

True Positive (TP) refers to a situation in which the
actual value was positive and the predicted value was
positive as well

8 Computational Intelligence and Neuroscience



False Positive (FP) refers to a situation in which the
actual value is negative but the predicted value is
positive
True Negative (TN) refers to a situation in which the
actual value was negative and the predicted value was
negative as well
False Negative (FN) refers to a situation in which the
actual value is positive but the predicted value is
negative
Accuracy (ACC) is the fraction of appropriately clas-
sified connections (true positives and true negatives)
over the total number of connections in the dataset

ACC �
TP + TN

N
, (3)

where N � number of instances. )e fraction of
true positives to actual positive cases is known as
Recall, also known as sensitivity or True Positive Rate
(TPR). Simply said, recall is the number of true
positives discovered (recalled) out of all true positive
cases.

TPR �
TP

TP + FN
. (4)

Precision, also known as Positive Predictive Value
(PPV), is the ratio of true positives to false positives.
Simply put, precision refers to how many of the cases
discovered were true positives.

PPV �
TP

TP + FP
. (5)

False Positive Rate (FPR) or “Fall-Out”: this is the
percentage of negative cases in the data that are mis-
takenly recognized as positive (i.e., the probability that
false alerts will be raised).

FPR �
FP

FP + TN
. (6)

)e harmonic mean of recall and precision is the F1
score, often known as the F score or F-measure. Its
value varies from 0 to 1, with 0 being the worst and 1

being the greatest. It can be calculated in the following
way.

F1 �
2∗ (PPV∗TPR)

PPV + TPR
. (7)

4. Analysis

Ten pretrained networks were used to extract complex
features from the leaf images. )e number of features
extracted is directly connected to the layer at which the
feature was extracted. )e layers used in each pretrained
network are the last layer before the fully connected layer for
classification. )e number of features extracted ranges from
512 to 4096. )e AlexNet, vgg16, and vgg19 extracted the
highest number of features of 4096 whiles the resnet18
extracted the lowest number of features of 512. )e time
taken for each pretrained network is not directly propor-
tional to the number of features but the complexity of the
pretrained network. From Figure 2, it can be seen that the
vgg19 performed worse in terms of time taken and AlexNet
performed the best taking a time of about 54 seconds to
complete as compared to 1498 seconds for vgg19. )e
DenseNet201 model also used about 956 seconds to com-
plete which was the third worse performance in terms of
time. To ascertain why the DenseNet201 model was chosen
as the base model for OTAMNet, the features derived from
the pretrained network were used for the classification
process using the six supervised learning algorithms men-
tioned earlier. )e average result from the six classifiers was
used as a benchmark to check the performance across the
various metrics. )e results are presented in Figures 3–7.

As shown in Figure 3 to Figure 7, the DenseNet201
performed the best in terms of accuracy, F1 score, False
Positive Rate, True Positive Rate, and Positive Predictive
Value. In terms of accuracy, DenseNet201 scored 87% with
resnet50 following with 85% and GoogLeNet performing the
worse with 79%. With the F1 score, DenseNet201 also
performed the best with 87%, resnet18 followed with 86%
and GoogLeNet scored the lowest with 79%. DenseNet201
also had the lowest False Positive Rate with 0.26%, resnet18
following with 0.28% and the highest being 0.42% by
GoogLeNet. DenseNet201 outperformed all other networks

Table 4: Description of pretrained networks.

No Network Image input size Depth No of features Layer
1 Alexnet 227-By-227 8 4096 fc7
2 DenseNet201 224-By-224 201 1920 avg_pool
3 Googlenet 224-By-224 22 1024 pool5-7x7_s1
4 inceptionv3 299-By-299 48 2048 avg_pool
5 mobilenetv2 224-By-224 53 1280 global_average_pooling2d_1
6 resnet18 224-By-224 18 512 pool5
7 resnet50 224-By-224 50 2048 avg_pool
8 resnet101 224-By-224 101 2048 pool5
9 vgg16 224-By-224 16 4096 fc7
10 vgg19 224-By-224 19 4096 fc7
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also in terms of the True Positive Rate and Positive Pre-
dictive Value scoring 88% and 87% respectively. )e
resnet50, resnet18, and resnet101 follow with 86%, 85%, and
83%, respectively for the True Positive rate and 86%, 86%,
and 85% in terms of the Positive Predictive Value.

)e time taken for the classifier to complete its oper-
ations was also taken into consideration as presented in
Figure 8 vgg19, vgg16, and AlexNet had the highest run-
ning time of 23, 22, and 21 seconds as compared to
resnet18, GoogLeNet, and mobilenetv2 having the lowest
time of 3, 4, and 5 seconds, respectively. DenseNet201
performed fairly well with 10 seconds as shown in Figure 8.
Overall, the denset201 model proved to be the best pre-
trained model to be used as the base model for developing
OTAMNet.

OTAMNet was implemented in the python environment
and tested on the dataset “MyDataset” created by the re-
searcher and four benchmark datasets. )e metrics used
during the training of the model are accuracy and loss. A 70 :
30 ratio was used for splitting the dataset into training and
testing sets. )e model was also validated using a 33%
validation split on the training data. )e Adam optimizer
was used during the training of the model. For training the
model, the Google colab server was used to boost the
running time of the model. To check for overfitting, an
EarlyStopping callback was used to check the minimum
validation loss with a waiting time of 5 epochs to stooped the
model if the validation loss starts to increase after the waiting
period. Early stopping is a method of training that allows a
set of an arbitrary large number of training epochs and then
terminate when the improvement of the model’s perfor-
mance on the validation dataset stops. A ModelCheckpoint
was also used to only save and use the best weights which are
derived from the model. To reduce the running time and

improve performance, a batch size of 8 was used for both
training and testing of the model.

)e results obtained after running the OTAMNet model
on MyDataset is presented in Figure 9 and 10.

An accuracy metric is used to calculate the algorithm’s
processing ability in an interpretable way. It is a metric that
measures how closely your model’s predictions match the
actual facts. A loss function is used to fine-tune a machine-
learning algorithm. Training and validation are used to
estimate the loss, and the model’s performance in these two
sets determines the significance of the loss. )e sum of all
errors made during each training or validation set is cal-
culated for each example. After each optimization cycle, the
loss value shows how well or poorly a model performs. )e
training accuracy reached 100% and the training loss also
decreased from 2 to 0.2 after the 9th epoch. )e validation
accuracy increased from the 1st to the 5th epoch, then the 7th,
8th,15th, 35th, and 51st epoch. )e EarlyStopping model
kicked in at the 53rd epoch and the training stopped because
the model performance stopped improving on the validation
dataset. )e validation accuracy for the model was 98% with
a loss of 0.08.

)e model was saved and used to predict a new set of
data and the results are presented in Table 6.

75% of the Plant leaf tested had 100% accuracy and 25%
had a 99% accuracy. OTAMNet also performed well in terms
of the False Positive Rate with 87% of the dataset scoring 0%
with the highest FPR being 0.04%. 87% of the dataset had a
TPR of 1 showing a high rate of predicting positive classes.

)e model was trained on two other optimizers, Sto-
chastic Gradient Descent (SGD) and the Root Mean Square
Propagation (RMSProp) to determine its performance
which is presented in Figures 11–14.

It could be seen that the Adam and RMSProp opti-
mizer both had a sharp curve after the 10th epoch as
compared to the SGD. Overfitting occurred earlier in the
RMSProp optimizer i.e., at the 34th epoch as compared to
the Adam optimizer which occurred at the 53rd epoch
whiles the SGD run on the maximum epoch allocated
which was 100. When the model was tested on the test
data, the Adam optimizer produced the highest accuracy
of 98% and the lowest loss of 0.08 as compared to the SGD
and RMSProp. )is is presented in Table 7 and a summary
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Figure 1: Proposed CNN model.

Table 5: Log-gabor parameters.

Parameter Value
Number of filter scales 8
Number of filter orientations 10
Minimum frequency 3
Scaling between centre frequencies 2
Filter bandwidth 0.65
Angular spread of each filter 1.5
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Figure 9: Model accuracy for MyDataset.
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Figure 2: Feature Extraction Time for Pretrained networks.
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Figure 3: Accuracy metric for Pretrained networks.
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Figure 5: FPR score metric for Pretrained networks.
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Figure 4: F1 score metric for Pretrained networks.
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of the analysis is presented in Table 8 using the Adam
optimizer.

OTAMNet was also tested on the Flavia dataset having
32 plant species. Early Stopping kicked in at the 47th epoch to
prevent overfitting of the data. )e model achieved 99%
accuracy on the validation data set and a loss of 0.01 as
shown in Figures 15 and 16.

)emodel, when used on the test data had an accuracy of
99.4%, F1 score of 99.4%, TPR of 99.4%, PPV of 99.5% and
an FPR of 0.00017, and the full metrics are presented in
Table 9.

)e Swedish data produce a 100% accuracy with a loss of
0.00 both on the training and validation test data. )e model
also predicted correctly all test data samples and this is
presented in Figures 17 and 18 and Table 10.

When tested on the Mendeley dataset having 30 plant
species, OTAMNet achieved 99% accuracy on the vali-
dation data set and a loss of 0.06. Early Stopping kicked in
at the 35th epoch to prevent overfitting the data as shown
in Figures 19 and 20. )e model when the run of the test
data had an accuracy of 98.6%, F1 score of 98.4%, TPR of
98.3%, PPV of 98.6%, and an FPR of 0.00048. )e per-
formance metric for each leaf in the dataset is presented in
Table 11.

OTAMNet achieved 97% accuracy on the validation data
set and a loss of 0.08 when tested on the Folio dataset having
32 plant species as shown in Figures 21 and 22. )e model
when run on the test data had an accuracy of 96.8%, F1 score
of 96.3%, TPR of 96.5%, PPV of 97.7%, and an FPR of
0.00104. )e performance metric for each leaf in the Folio
dataset is presented in Table 12.

OTAMNet performed extremely well on all datasets used
achieving an accuracy of 98%, 99%, 100%, 99%, and 98% on
MyDataset, Flavia, Swedish Leaf Dataset, MD2020, and Folio
dataset, respectively. )e False Positive rate achieved was
also insignificant with the highest being 0.000104 on the

Folio dataset. A comparative summary of the results on all
the datasets is presented in Figure 23–28.

)e proposed system was compared with existing sys-
tems which have been reviewed in this study and the
summary is presented in Table 13.

Table 6: Metrics for mydataset.

Plant leaf ACC F1 TPR FPR PPV
1 1 1 1 0 1
2 0.99592 0.90909 1 0.00417 0.83333
3 0.99796 0.94118 1 0.00207 0.88889
4 1 1 1 0 1
5 0.99796 0.96552 1 0.0021 0.93333
6 1 1 1 0 1
7 1 1 1 0 1
8 1 1 1 0 1
9 1 1 1 0 1
10 1 1 1 0 1
11 1 1 1 0 1
12 1 1 1 0 1
13 0.99388 0.89655 0.8125 0 1
14 0.99796 0.90909 0.83333 0 1
15 1 1 1 0 1
16 1 1 1 0 1
17 1 1 1 0 1
18 1 1 1 0 1
19 1 1 1 0 1
20 0.99592 0.875 1 0.00414 0.77778
21 1 1 1 0 1
22 0.99796 0.92308 0.85714 0 1
23 1 1 1 0 1
24 1 1 1 0 1
25 1 1 1 0 1
26 1 1 1 0 1
27 1 1 1 0 1
28 1 1 1 0 1
29 1 1 1 0 1
30 1 1 1 0 1
31 1 1 1 0 1
32 0.99796 0.94118 1 0.00207 0.88889
33 0.99796 0.95652 0.91667 0 1
34 1 1 1 0 1
35 1 1 1 0 1
36 0.99592 0.9 1 0.00416 0.81818
37 1 1 1 0 1
38 0.99796 0.97143 0.94444 0 1
39 1 1 1 0 1
40 1 1 1 0 1
41 1 1 1 0 1
42 1 1 1 0 1
43 1 1 1 0 1
44 1 1 1 0 1
45 0.99592 0.88889 0.8 0 1
46 1 1 1 0 1
47 1 1 1 0 1
48 1 1 1 0 1
49 1 1 1 0 1
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Figure 10: Model loss for MyDataset.
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Figure 14: Validation loss on optimizers.

Table 7: Metrics based on optimizer.

Optimizer Accuracy (%) Loss
Adam 98 0.08
RMSProp 97 0.11
SGD 97 0.14

Table 8: Overall statistics.

Metric Score
ACC 0.98163
F1 0.98117
FPR 0.00038
PPV 0.98246
TPR 0.98294
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Figure 15: Model accuracy for flavia dataset.
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Figure 16: Model loss for flavia dataset.

Computational Intelligence and Neuroscience 13



Table 10: Metrics for swedish leaf dataset.

Plant leaf ACC F1 TPR FPR PPV
1 1 1 1 0 1
2 1 1 1 0 1
3 1 1 1 0 1
4 1 1 1 0 1
5 1 1 1 0 1
6 1 1 1 0 1
7 1 1 1 0 1
8 1 1 1 0 1
9 1 1 1 0 1
10 1 1 1 0 1
11 1 1 1 0 1
12 1 1 1 0 1
13 1 1 1 0 1
14 1 1 1 0 1
15 1 1 1 0 1

Table 9: Metrics for flavia dataset.

Plant leaf ACC F1 TPR FPR PPV
1 1 1 1 0 1
2 1 1 1 0 1
3 1 1 1 0 1
4 1 1 1 0 1
5 1 1 1 0 1
6 0.99738 0.9697 1 0.00273 0.94118
7 1 1 1 0 1
8 1 1 1 0 1
9 1 1 1 0 1
10 1 1 1 0 1
11 1 1 1 0 1
12 1 1 1 0 1
13 1 1 1 0 1
14 0.99738 0.93333 0.875 0 1
15 1 1 1 0 1
16 1 1 1 0 1
17 1 1 1 0 1
18 1 1 1 0 1
19 1 1 1 0 1
20 1 1 1 0 1
21 1 1 1 0 1
22 1 1 1 0 1
23 1 1 1 0 1
24 1 1 1 0 1
25 1 1 1 0 1
26 1 1 1 0 1
27 0.99738 0.95652 1 0.0027 0.91667
28 1 1 1 0 1
29 1 1 1 0 1
30 1 1 1 0 1
31 0.99738 0.96774 0.9375 0 1
32 1 1 1 0 1
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Figure 17: Model accuracy for Swedish leaf dataset.
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Figure 18: Model loss for Swedish leaf dataset.
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Figure 19: Model accuracy for mendeley dataset.
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Figure 20: Model loss for mendeley dataset.

Table 11: Metrics for mendeley dataset.

Plant leaf ACC F1 TPR FPR PPV
1 1 1 1 0 1
2 1 1 1 0 1
3 1 1 1 0 1
4 1 1 1 0 1
5 0.99455 0.96154 1 0.00585 0.92593
6 1 1 1 0 1
7 1 1 1 0 1
8 1 1 1 0 1
9 0.99455 0.9 0.81818 0 1
10 1 1 1 0 1
11 1 1 1 0 1
12 1 1 1 0 1
13 1 1 1 0 1
14 1 1 1 0 1
15 0.99183 0.91429 0.88889 0.00287 0.94118
16 1 1 1 0 1
17 0.99728 0.96296 1 0.00282 0.92857
18 1 1 1 0 1
19 1 1 1 0 1
20 1 1 1 0 1
21 1 1 1 0 1
22 1 1 1 0 1
23 1 1 1 0 1
24 1 1 1 0 1
25 1 1 1 0 1
26 1 1 1 0 1
27 1 1 1 0 1
28 1 1 1 0 1
29 1 1 1 0 1
30 0.99455 0.8 0.8 0.00276 0.8
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Figure 21: Model accuracy for folio dataset.
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Table 12: Metrics for folio dataset.

Plant leaf ACC F1 TPR FPR PPV
1 1 1 1 0 1
2 1 1 1 0 1
3 0.98438 0.83333 1 0.01626 0.71429
4 1 1 1 0 1
5 1 1 1 0 1
6 1 1 1 0 1
7 0.99219 0.85714 0.75 0 1
8 1 1 1 0 1
9 1 1 1 0 1
10 1 1 1 0 1
11 1 1 1 0 1
12 1 1 1 0 1
13 1 1 1 0 1
14 1 1 1 0 1
15 1 1 1 0 1
16 0.98438 0.75 1 0.016 0.6
17 1 1 1 0 1
18 1 1 1 0 1
19 1 1 1 0 1
20 1 1 1 0 1
21 1 1 1 0 1
22 0.99219 0.92308 0.85714 0 1
23 1 1 1 0 1
24 1 1 1 0 1
25 1 1 1 0 1
26 0.98438 0.5 0.33333 0 1
27 1 1 1 0 1
28 1 1 1 0 1
29 1 1 1 0 1
30 1 1 1 0 1
31 1 1 1 0 1
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Figure 23: Model accuracy for all dataset.
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Table 13: Comparison with existing systems.

Source Method Dataset Accuracy (%)

OTAMNet Log-gabor filter and DenseNet201

MyDataset 98
99
100
97
99

Flavia
Swedish
Folio

MD2020
[82] Modified AlexNet MD2020 99
[73] AlexNet, GoogLeNet, VGG-19, ResNet50, and MobileNetV2 Leafsnap 92
[65] Binarized Neural Network (BNN) Swedish leaf 77

[68] CNN Flavia
Swedish leaf 98

[74] Histogram of oriented gradient (HoG) and deep convolutional neural network Flavia
Swedish leaf dataset 96

[81] VGG19 with LR
Folio
Flavia

Swedish leaf dataset

96
96
99

[102] AlexNet and VGG16 with LDA Swedish leaf dataset 99

[80] 17-Layer CNN architecture
LeafSnap

97Flavia
Foliage datasets

[79] AlexNet and GoogLeNet Flavia
Swedish leaf dataset

94
99

[75] GoogLeNet, VGGNet, and AlexNet LifeClef 2015 dataset 80
[103] 26-Layer CNN architecture BJFU100 dataset 91
[78] 7-Layer CNN architecture Flavia dataset 94
[77] ResNet152 and Inception-ResNetv2 with LBP Swedish leaf dataset 99
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5. Conclusion

)is study was carried out to identify plants based on their
textural features using Log-Gabor filters and deep learning
techniques. OTAMNet which was created by fusing a log
Gabor layer into the transition layer of the DenseNet201
architecture achieved an accuracy of 98%. OTAMNet was
tested on other benchmark datasets: the Flavia, Swedish Leaf,
MD2020, and the Folio dataset. )e Flavia dataset achieved
99%, Swedish Leaf 100%, MD2020 99%, and the Folio
dataset 97%. A false-positive rate of less than 0.1% was
achieved in all cases. For future works, the medicinal plant
database can be enhanced to have more species across the
nation and their variations depending upon climatic con-
ditions so also their applications. )e study can also be
extended to classifyingmedicinal plants based on anatomical
(studying of the internal structure of plants, which usually
takes place at the microscopic/cellular level) and chemo-
taxonomical (in classifying plants using their chemical
constituents) properties.
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)e data used to support the findings of this study are in-
cluded within the article.
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