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Background: Multiparametric magnetic resonance imaging (mpMRI) has emerged as a

non-invasive modality to diagnose and monitor prostate cancer. Quantitative metrics on

the regions of abnormality have shown to be useful descriptors to discriminate clinically

significant cancers. In this study, we evaluate the reproducibility of quantitative imaging

features using repeated mpMRI on the same patients.

Methods: We retrospectively obtained the deidentified records of patients, who

underwent two mpMRI scans within 2 weeks of the first baseline scan. The patient

records were obtained as deidentified data (including imaging), obtained through the

TCIA (The Cancer Imaging Archive) repository and analyzed in our institution with

an institutional review board–approved Health Insurance Portability and Accountability

Act–compliant retrospective study protocol. Indicated biopsied regions were used as a

marker for our study radiologists to delineate the regions of interest. We extracted 307

quantitative features in each mpMRI modality [T2-weighted MR sequence image (T2w)

and apparent diffusion coefficient (ADC) with b values of 0 and 1,400 mm/s2] across

the two sequential scans. Concordance correlation coefficients (CCCs) were computed

on the features extracted from sequential scans. Redundant features were removed by

computing the coefficient of determination (R2) among them and replaced with a feature

that had the highest dynamic range within intercorrelated groups.

Results: We have assessed the reproducibility of quantitative imaging features among

sequential scans and found that habitat region characterization improves repeatability

in ADC maps. There were 19 T2w features and two ADC features in radiologist drawn

regions (native raw image), compared to 18 T2w and 15 ADC features in habitat regions

(sphere), which were reproducible (CCC ≥0.65) and non-redundant (R2
≥ 0.99). We also

found that z-transformation of the images prior to feature extraction reduced the number

of reproducible features with no detrimental effect.

Conclusion: We have shown that there are quantitative imaging features that are

reproducible across sequential prostate mpMRI acquisition at a preset level of filters.
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We also found that a habitat approach improves feature repeatability in ADC. A validated

set of reproducible image features in mpMRI will allow us to develop clinically useful

disease risk stratification, enabling the possibility of using imaging as a surrogate to

invasive biopsies.

Keywords: radiomics, mpMRI, prostate cancer, test–retest inmpMRI, prostate TRUS-MRI, repeatableMRI features

INTRODUCTION

Prostate cancer detection using multiparametric magnetic
resonance imaging (mpMRI) has been gaining consensus in
the community for disease detection due to superior lesion
sensitivity compared to transrectal ultrasound (TRUS) imaging
(1, 2). Multiparametric MRI modalities have been useful in
estimating size, volume, and relation to the underlying pathology
of prostate cancer (3). Improvements in imaging technologies
coupled with advances in mpMRI have led to its combined use
with TRUS to guide prostate biopsies that improve detection
of clinically aggressive cancers (4). Most clinical diagnoses
follow a consensus reporting standard with the adoption of
Prostate Imaging Reporting and Data Systems (PI-RADS v2)
(5), which provides qualitative guidelines for clinical assessment.
Variability in mpMRI scan interpretations among radiologists
can in part be attributed to the steep learning curve required
to interpret the scans (6). Quantitative imaging metrics or
radiomics has been used to distinguish clinical abnormalities
found in medical imaging (7, 8). For example, radiomics has
been shown to be both reproducible in lung cancer computed
tomography imaging and prognostic of lung cancer patient
survival (9, 10). Recently, quantitative imaging features obtained
from tumor regions on prostate mpMRI scans have been shown
to be both predictive of clinically aggressive disease (11) and
improve PI-RADS performance (12). In a recent survey on the
role of imaging biomarkers in clinical decision making, the
European Organization for Research and Treatment of Cancer
and Cancer Research UK released a consensus statement with
key recommendations to accelerate clinical biomarker translation
(13). The key component of the consensus statement emphasizes
the importance of validating the repeatability and reproducibility
of these biomarkers for.

Information extraction (as part of a technical assay) and
for proper downstream clinical utilization. Repeatability and
reproducibility are necessary, but not sufficient, conditions for
clinical usage of imaging biomarkers, as there is a higher
relevance requirement such as accurate cancer prediction and
prognosis (14, 15). As mpMRI has no biological reference
for derived image intensity values, there are studies that have
proposed standardizing these values (16–18). Recently, there
have been efforts to find repeatable quantitative (radiomic)
features in mpMRI scan of various cancers, such as rectal
(19), cervix (20), lacrimal gland (21), and prostate (22, 23).
Notably in prostate (23) and cervical studies (20), enrolled
patients were scanned in a test–retest setting. Quantification
of regions of interest has been accomplished in various ways,
either through the use of a few open source tools (24) or more
commonly through custom implementation methods. Recently,

there has been an initiative to standardize definitions of these
quantitative metrics, as recommended by the Image Biomarker
Standardization Initiative (IBSI) (25). In our study, we obtained
test–retest deidentified prostate mpMRI studies from patients
enrolled at the Brigham and Women’s Hospital, shared in
a public repository (26). Patients with pathologically verified
lesions were scored by a clinical pathologist (Gleason score).
Independently marked regions of interest were standardized and
quantified using custom radiomic features that followed the
IBSI consensus criteria (25). We investigated the feasibility of
reproducing these features across the cohort for a diverse set of
prostate lesions. We also propose a habitat-based approach that
converges regions of interest, followed by lesion characterization
to improve repeatability of image features. This work will provide
the basis for using repeatable quantitative features in prognostic
evaluation of prostate cancer patients.

MATERIALS AND METHODS

We obtained deidentified mpMRI patient images along
with segmentation masks (Dicom-Seg) through The Cancer
Imaging Archive (TCIA) collection titled “QIN-PROSTATE-
Repeatability” with detailed descriptions summarized about the
cohort (26).

The patients were accrued for a research study at Brigham
and Women’s Hospital, Harvard Medical School. The patients
waived informed consent, and their deidentified records were
analyzed through our institutional review board–approved
Health Insurance Portability and Accountability Act–compliant
retrospective study protocol. The original study collection had
15 treatment-naive men who had mpMRI scans and biopsy-
confirmed pathology and were scanned again within 2 weeks of
their first baseline scan, during which patients did not receive any
interim treatment. The cohort had 11 patients with a standard
template biopsy and four patients who had suspicion of prostate
cancer based on their clinical record. The mpMRI scans had T2w
axial images [repetition time (TR) 3,350–5,109ms, time to echo
(TE) 84–107ms, field of view (FOV) 140–200 nm] and ADCmap
derived from the diffusion-weighted MRI (b = 0, 1,400 s/mm,
TR 2,500–8,250ms, TE 76–80ms, FOV 760–280mm). Figure 1
illustrates sample lesions delineated on the test and retest T2w
axial images.

Our study radiologist (H.L.) read the patient scans and
localized lesions within the regions on patient scans identified
by the prior study and provided consensus region segmentation
in consultation with the second study radiologist (J.Q.). A third
radiologist (K.G.) provided a random overread. Our radiologists
in consensus agreed to use 13 of the 15 patient mpMRIs; scans
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FIGURE 1 | Screen capture of mpMRI prostate scan (A) with

radiologist-marked lesion shown for the baseline and follow-up scans in T2w,

(B) habitat converged with a sphere (15mm), and (C) habitat (≤median) (in

cyan) for a lesion (in red) shown for test and retest (along the rows) in T2w,

ADC (along the column).

from two patients were dropped because of disagreements in
identifying the abnormality and suboptimal quality of the scans.
Among the converged patients, our radiologists in consensus

identified 15 tumor lesions that were anatomically matched,
longitudinally, across the test and retest time images. Of these,
11 identified lesion boundaries were verified to match with
the prior study at the same anatomical location that had
been pathologically verified (Gleason score); in addition, four
additional lesion abnormalities were identified by our study
radiologist(s), matched longitudinally. Table 1 provides patient
clinical details, including subject identifier, lesions anatomical
location, prostate-specific antigen (PSA) value, and pathological
diagnostic (Gleason) score. Newly identified lesions without
corroborating pathological findings were marked as not available
(NA), by our study radiologists.

Segmentation and Feature Extraction
Our study radiologists used MIMTM PACS [MIM Software
Inc. (Cleveland, OH, USA)] to delineate regions of interest
three-dimensionally (3D) on the prostate mpMRI scans, using
T2w images as the reference sequence. Lesion boundaries were
independently marked on the test and retest scans, whose
cancer status was pathological identified by prior study. Four
additional abnormalities that appeared radiologically malignant
were identified and anatomically matched in sequential time
points by our radiologists, but these lesions did not have
pathological assessment. All lesion boundary segmentation was
carried out as consensus reads by the study radiologists.
Independent boundary delineation between lesions in the test
and retest time point scan not only depicts the real clinical
situation, but also introduces boundary variations, which can
increase variability in the computed quantitative features.

Using the MIM libraries, T2w and ADC sequences were
coregistered to avoid any motion artifacts in acquisition between
the modalities. The registered multimodal image sequences were
exported as 3D image matrices along with segmentation masks.
We developed custom radiomic feature extraction tools, whose
feature definition and formulation followed the IBSI consensus
recommendations (25). We extracted 307 quantitative imaging
features in the converged region of interest, which could be
broadly categorized into three broad groups: C1: size and shape
(45 features), C2: intensity, co-occurrence, run length (107
features), and C3: texture—laws and wavelets (155 features); see
Supplemental Tables S1–S3.

Standardization of Image Regions
To assess the role of standardization procedures on feature
stability in test–retest imaging, we propose to use conventional
z-score standardization. We started by segmenting the prostate
gland in 3D, and the region voxels were standardized by
subtracting the mean and dividing by the deviation obtained
at the gland level. The standardization was carried out
independently for each modality (T2w and ADC) at a patient
level. The lesion region of interest is standardized at the scan level
and tend to have relative intensity with respect to the entire gland
for a patient scan.

Habitat Image Region
We intend to find aggressive tumor-like regions in a marked
lesion boundary of interest, which we call a habitat region.
We define this region as one with restricted diffusion, whose
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TABLE 1 | Summary of patient scans with clinical diagnosis for the biopsies.

# Subject MRI exam PSA, ng/mL Gleason(Bx) Gland PI-RADS v2 (test) PI_RADS v2 (retest) Comment

1 1-b1 Known Pca, staging 5.4 3 + 4 PZ 4 4 Identified

2 1-b2 NA PZ 4 4 Additional

3 2-b1 Known Pca, assess change 7.5 3 + 4 PZ 2 3 Identified

4 2-b2 NA PZ 2 3 Additional

5 3 Known Pca, staging 8.2 3 + 3 PZ 4 4 Identified

6 4 Known Pca, staging 4.3 3 + 3 PZ/TZ 2 2 Identified

7 5-b2 Suspected Pca, staging NA NA TZ 2 2 Additional

8 6-b2 Elevated PSA, staging 5 Benign TZ 1 1 Additional

9 7 Elevated PSA, staging 6.2 4 + 5 PZ 4 4 Identified

10 8 Known Pca, assess change 4.8 4.8 PZ 4 4 Identified

11 9 Elevated PSA, staging 9.4 Benign PZ 4 4 Identified

12 10 Known Pca, assess change 3.15 3 + 3 PZ 4 4 Identified

13 11 Known Pca, assess change 9.7 3 + 3 PZ 4 4 Identified

14 12 Elevated Pca, staging 5.5 Benign PZ 3 4 Identified

15 13 Known Pca, assess change 4.16 3 + 4 PZ 4 3 Identified

16 14 No biopsy performed 7 NA NA 2 2 Ignored

17 15 Benign 9.5 Benign NA 1 2 Ignored

NA, biopsies pathological score not available or cannot be determined; Identified, identified abnormality as stated; Additional, additional abnormality; Ignored, unable to locate abnormality.

characteristics resemble malignancy. We converge on a habitat
region in two different ways: (a) sphere around lesion and (b)
converge region within lesion. To find such a region, we first
consider the entire lesion in 3D and on a colocalized volume
acrossmodalities. In the first case (a), we increase the search space
to a 3D sphere with a fixed diameter of 15mm and converge on a
restricted diffusion region based onADC values using a threshold
defined by the distributional deviation (27, 28) and conforming
regions to within the prostate gland structure. In the second case
(b), we find the most contiguous lower median cutoff that is
spanned in the ADC map within the radiologist-marked lesion
region of interest. Converged habitat region will be mapped back
to each modality of interest (T2w and ADC), and quantitative
features are computed on a newly defined boundary. In the first
case, it is possible to obtain a region larger than that marked by
the radiologists. In the second case, the habitat region will always
be contained within the marked lesion.

Concordant Features
Quantitative features that are reproducible in repeated
experiments and can describe differential physiology are a
necessary step for consideration as biomarkers. The feature
values that are consistent between the test and retest experiment
were evaluated. For each image feature, the concordance
correlation coefficient (CCC) was computed to quantify
reproducibility between the two scans for a patient across the
cohort and independently computed in each modality (T2w,
ADC). The CCC measures deviation from the diagonal line
averaged over samples in the cohort and is commonly used
to measure fidelity in repeated experiments (25). On this set
of highly reproducible features, the next step was to select the
features with a large interpatient variability, measured using the
dynamic range (DR) metric. The normalized DR for a feature

was defined by the inverse of the ratio of the average difference
between measurements to the observed interpatient variability
or biological range:

DR=

(

1-1�n

n
∑

i=1

∣

∣Test(i)-Retest(i)
∣

∣

Max-Min

)

(1)

where n is the total number of patient case; the DR varies from
0 to 1. Values close to 1 are preferred and imply that the feature
has a large relative biological range, limited by the diversity in
the cohort. As the variation between test–retest features increases,
the DR values will show a reduction. Screening for a large DR will
eliminate features that show greater variability in the repeat scans
compared to the range of coverage. It is critical that a clinically
relevant feature have a large DR to adequately distinguish the
variations with tumor types, but show minimal variability in
describing the same tumor type.

Redundancy Reduction
We propose to eliminate redundancies in features that are found
to be reproducible.We computed the coefficient of determination
(R2) between the features that are considered to be reproducible,
which measures the level of dependency between features. The
R2 has a range of 0 to 1 and is a ratio of the known variance
as measured by linear model to the total variance between two
variables or features, where one is the outcome, and the other is
used to form the predictor. Values close to 1 would mean that the
data points are close to the fitted line (i.e., closer to dependency)
(24, 25). The coefficient of determination of simple regression is
equal to the square of the Pearson correlation coefficient (29, 30).
The features were grouped based on the R2 values between them;
in this subset, one representative was picked that had the highest
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TABLE 2 | Distribution of quantitative imaging features at various levels of

concordance and redundancy limits (Rsq at ≥0.99 and ≥0.95) for regions

identified by (A) radiologist marked and (B) habitats converged (sphere), (C)

habitat converged (≤median, ADC map).

(A). Radiologist marked

Concordance and dynamic range with redundancy reduction (Rsq ≥

0.99) Test–retest mpMRI: number of features (radiologist)

CCC and DR and (Rsq ≥ 0.99) ADC ADCz T2 T2z

≥0.95 0 0 0 0

≥0.90 0 0 3 0

≥0.85 0 0 4 1

≥0.80 0 0 5 3

≥0.75 0 0 9 6

≥0.70 1 3 13 10

≥0.65 2 3 19 12

(B). Habitat converged (Sphere)

Concordance and dynamic range with redundancy reduction (Rsq ≥0.99)

Test–retest mpMRI: number of features (habitats)

CCC and DR and (Rsq ≥0.95) ADC ADCz T2 T2z

≥0.95 0 0 0 1

≥0.90 0 0 1 2

≥0.85 1 0 3 6

≥0.80 4 3 6 11

≥0.75 6 5 8 14

≥0.70 9 8 13 18

≥0.65 15 15 18 23

(C). Habitat (≤median ADC map)

Concordance and dynamic range ≥ 0.65 and Rsq ≥0.99

CCC and DR ADC ADCz T2 T2z

≥0.95 0 0 3 1

≥0.90 0 0 4 1

≥0.85 0 0 4 1

≥0.80 0 0 4 3

≥0.75 0 0 7 3

≥0.70 0 0 10 5

≥0.65 1 1 12 10

DR. The procedure was repeated recursively to cover all the
features. We implemented different cutoff values for R2 that
assess linear dependence with any of the other features in the
list. The purpose of this filter step is to eliminate redundancies,
but not necessarily identify independence. The test–retest values
were averaged before computing the R2. We set different cutoff
limits to reduce redundancy and combine features that are over
the cutoff range. We repeated this process for a range of cutoffs
(0.95–0.99), in our study.

RESULTS

As described in the Materials and Methods, the lesion was
independently delineated in test and retest mpMRI scan,

TABLE 3 | Radiomic features that show concordance and non-redundancy in the

test–retest cohort (CCC and DR ≥ 0.65;Rsq ≥ 0.99) for (A) radiologist-marked

region, (B) habitat region (sphere, 15mm), (C) habitat (≤median, ADC).

(A). Radiologist regions

Radiologist marked region (T2): CCC and DR >=0.65; Rsq ≥ 0.99.

T2 (raw): 19 features T2 (z-normalized): 12 features

F138:GLSZM_Large-zone-low-gray-

level-emphasis-

F149:NGTDM_Contrast-

F10:Stat-Max-gray-level

F150:NGTDM_Busyness-

F107:avgCooc_3D_Inv-diff-mom-norm

F284:3D-Wave-P1-L2-C4-

F115:avgCooc_3D_Second-measure-

of-information-correlation-

F113:avgCooc_3D_Cluster-

prominence-F93:avgCooc_3D_Joint-

var

F99:avgCooc_3D_Sum-var-

F151:NGTDM_Complexity

F302:3D-Wave-P1-L2-C13

F300:3D-Wave-P1-L2-C12

F27:Int-hist-90th-percentile

F294:3D-Wave-P1-L2-C9

F304:3D-Wave-P1-L2-C14

F152:NGTDM_Strength

F19:Stat-Root-Mn-Sq-

F149:NGTDM_Contrast-

F10:Stat-Max-gray-level-

F12:Stat-range-

F107:avgCooc_3D_Inv-diff-mom-norm-

F171:3D-LawsF-L5-R5-R5-

F284:3D-Wave-P1-L2-C4-

F3:Stat-SD-

F152:NGTDM_Strength-

F8:Stat-10th-percentile-

Shape and Size Shape and size

F47:Vol-at-Int-fraction-diff

F43:Vol-at-Int-Fraction-10-

F47:Vol-at-Int-fraction-diff-

F43:Vol-at-Int-Fraction-10-

Radiologist marked region (ADC): CCC and DR ≥ 0.65; Rsq ≥ 0.99

ADC (raw): two features ADC (z-normalized): three features

F9:Stat-90th percentile

F8:Stat-10th percentile

F96:avgCooc_3D_Difference-var

F120:avg_3D_SRLGE-(Short-run-low-

gray-level-emphasis)

Shape and size

F88:Center-of-mass-shift-(mm)

(B). Habitat regions

Habitat using sphere (ADC): CCC and DR ≥ 0.65; Rsq ≥ 0.99

ADC (raw): 15 features ADC (z-score): 15 features

F228:3D-LawsF-R5-L5-L5-ADC-Auto

F126:avg_3D_RLN-(Run-length-non-

uniformity)-ADC

F157:3D-LawsF-L5-L5-W5-ADC

F231:3D-LawsF-R5-L5-R5-ADC

F246:3D-LawsF-R5-R5-R5-ADC

F170:3D-LawsF-L5-R5-S5-ADC

F154:3D-LawsF-L5-L5-E5-ADC

F155:3D-LawsF-L5-L5-S5-ADC

F169:3D-LawsF-L5-R5-E5-ADC

F171:3D-LawsF-L5-R5-R5-ADC

F140:GLSZM_Gray-level-non-

uniformity

F124:avg_3D_GLN-(Gray-level-non-

uniformity)

F148:NGTDM_Coarseness

F302:3D-Wave-P1-L2-C13-ADC

F294:3D-Wave-P1-L2-C9-ADC

F218:3D-LawsF-S5-R5-L5-ADC

F296:3D-Wave-P1-L2-C10-ADC

F304:3D-Wave-P1-L2-C14-ADC

F228:3D-LawsF-R5-L5-L5-ADC

F243:3D-LawsF-R5-R5-L5-ADC

F198:3D-LawsF-E5-W5-L5-ADC

F151:NGTDM_Complexity-ADC

F140:GLSZM_Gray-level-non-

uniformity-ADC

F7:Stat-Min-gray-level-ADC

F115:avgCooc_3D_Second-measure-

of-information-correlation-ADC

F148:NGTDM_Coarseness-ADC

(Continued)
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TABLE 3 | Continued

Shape and size: Shape and size:

F90:Border-length-(mm)

F54:Surface-area-(mm∧2)-ADC

F52:Vol-(mm∧3)-ADC

F54:Surface-area-(mm∧2)-ADC

Habitats using sphere (T2): CCC and DR >=0.65; Rsq ≥0.99

T2 (raw): 18 features T2 (z-normalized): 23 features

F117:avg_3D_LRE-(Long-runs-

emphasis)-ADC

F126:avg_3D_RLN-(Run-length-non-

uniformity)-ADC

F144:GLSZM_Zone-percentage-ADC

F27:Int-hist-90th-percentile-ADC

F100:avgCooc_3D_Sum-entropy-ADC

F161:3D-LawsF-L5-E5-R5-ADC

F141:GLSZM_Gray-level-non-

uniformity-normalized-ADC-

F124:avg_3D_GLN-(Gray-level-non-

uniformity)-ADC

F150:NGTDM_Busyness-ADC

F243:3D-LawsF-R5-R5-L5-ADC

F149:NGTDM_Contrast-ADC

F231:3D-LawsF-R5-L5-R5-ADC

F300:3D-Wave-P1-L2-C12-ADC

F140:GLSZM_Gray-level-non-

uniformity-ADC

F115:avgCooc_3D_Second-measure-

of-information-correlation-ADC

F114:avgCooc_3D_First-measure-of-

information-correlation-ADC

F148:NGTDM_Coarseness-ADC

F115:avgCooc_3D_Second-measure-

of-information-correlation-ADC

F149:NGTDM_Contrast-ADC

F29:Int-hist-mode-ADC

F19:Stat-Root-Mn-Sq-ADC

F159:3D-LawsF-L5-E5-E5-ADC

F122:avg_3D_LRLGE-(Long-run-low-

gray-level-emphasis)-ADC

F298:3D-Wave-P1-L2-C11-ADC

F306:3D-Wave-P1-L2-C15-ADC

F40:Max-hist-Gradient-gray-level-ADC

F42:Min-hist-Gradient-gray-level-ADC

F8:Stat-10th-percentile-ADC

F136:GLSZM_Small-zone-low-gray-

level-emphasis-ADC

F152:NGTDM_Strength-ADC

F139:GLSZM_Large-zone-high-gray-

level-emphasis-ADC

F97:avgCooc_3D_Difference-entropy-

ADC-

F41:Min-hist-Gradient-ADC-

F140:GLSZM_Gray-level-non-

uniformity-ADC

F231:3D-LawsF-R5-L5-R5-ADC

F54:Surface-area-(mm∧2)-ADC

F114:avgCooc_3D_First-measure-of-

information-correlation-ADC

F148:NGTDM_Coarseness-ADC

Shape and Size: Shape and Size:

F54:Surface-area-(mm∧2)- F88:Center-of-mass-shift-(mm)-ADC

F87:Weighted-CoM_z-(mm)-ADC

(C). Habitat within lesion

Habitat within lesion (≤ Median): ADC: CCC and DR ≥ 0.65; Rsq ≥ 0.99

ADC (raw): 1 feature ADC (z-normalized): 1 feature

F10:Stat-Max-gray-level-ADC F143:GLSZM_Zone-size-non-

uniformity-normalized-ADCz-Auto

Habitat within lesion (≤ Median): T2: CCC and DR ≥ 0.65; Rsq ≥0.99

T2 (raw): 12 features T2 (z-normalized): 10 features

F93:avgCooc_3D_Joint-var-ADC-T2

F151:NGTDM_Complexity-ADC-T2

F152:NGTDM_Strength-ADC-T2

F27:Int-hist-90th-percentile-ADC-T2

F131:avg_3D_RE-(Run-entropy)-ADC-

T2

F113:avgCooc_3D_Cluster-

prominence-ADC-T2

F282:3D-Wave-P1-L2-C3-ADC-T2

F290:3D-Wave-P1-L2-C7-ADC-T2

F149:NGTDM_Contrast-ADC-T2

F18:Stat-ENERGY-ADC-T2

F40:Max-hist-Gradient-gray

-level-ADC-T2

F99:avgCooc_3D_Sum-var-ADC-T2

F3:Stat-SD-T2z

F9:Stat-90th-percentile-T2z

F149:NGTDM_Contrast-T2z

F93:avgCooc_3D_Joint-var-T2z

F27:Int-hist-90th-percentile-T2z

F113:avgCooc_3D_Cluster-

prominence-T2z

F151:NGTDM_Complexity-T2z

F152:NGTDM_Strength-T2z

F19:Stat-Root-Mn-Sq-T2z

F30:Int-hist-interquartile-range-T2z

with each delineation done in consensus between the study
radiologists. Using the lesion boundary as reference, the habitat
region was converged automatically. We define habitat as a
contiguous region colocalized to a low diffusion region defined
by the ADC map. We then standardize the image voxels
using z-score prior to any computations; in addition, we
contrasted our findings with a non-standardized (raw) image
region. In total, four image regions were investigated (raw-
radiologist, z-score radiologist, raw-habitat, z-score habitat)
by computing 307 quantitative image features in each of
the regions, independently in test and retest images. We
computed CCC to find repeatable image features, followed by
application of a DR filter. Additionally, redundant features
were removed based on coefficient of determination between
the feature sets, repeated at different cutoffs. Distribution of
features with different level settings in concordance correlation
(CCC) and DR across the patient cohort is shown in
Table 2. The imaging features that were extracted for respective
modalities are listed in Table 3, obtained with R2 ≥ 0.99
(CCC and DR ≥0.65) and Supplemental Tables 4,5, obtained
with R2 ≥ 0.95 (CCC and DR ≥0.65). Figure 2 shows the
distribution of CCC and DR for features extracted using
different boundary regions; radiologist delineated (R), habitat
converged (H), and habitat within the manually delineated
region (H50).

In our analysis, we find there are similar distributions of
features between T2w- raw (native intensity values), radiologist-
marked regions (19 features, CCC ≥0.65), and T2w-habitat with
sphere regions (18 features, CCC ≥0.65), with standardized T2w
z-score habitat (23 features, CCC ≥0.65) regions showing more
stable features compared to T2w z-score raw regions. There were
12 stable features in T2w and 10 in T2w z-normalized regions,
both evaluated at CCC ≥0.65 and with redundancy R2 ≥ 0.99
(Tables 2B,C, 3B,C). Of the 19 features that are stable in T2w
radiologist-marked regions, there are two volume features that
measure within a certain intensity range and 17 others that are
texture features.

In ADC map images, there were two features found within
radiologist-marked regions compared to three features in ADC
z-score regions, both evaluated at CCC ≥0.65 and with
redundancy R2 ≥ 0.99. Using ADC-sphere–based habitats, we
find the number of stable features increased to 15 in the ADC-
habitat, seen in both radiologist-marked and z-scored normalized
regions. While using habitat region within lesion approach, the
new region was restricted to be within the lesion. We find there
was one stable feature in ADC and ADC z-normalized region; in
these regions, five and one feature were concordant, respectively
(see Supplemental Tables). It seems z-score standardization
moderately helps to improve the number of repeatable features
in ADC maps.

Figures 3, 4 show the distribution of concordance coefficient
and DR metric values, computed on features, respectively.
They are grouped into the following broad categories: size and
shape (C1), intensity and co-occurrence (C2), and laws and
wavelets (C3). Texture features in the C2 intensity and co-
occurrence category show higher concordance compared to other
categories of features in T2w. The features computed in ADC
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FIGURE 2 | Repeatability of quantitative features across different lesion boundaries. (A) Concordance coefficient, (B) dynamic range.

map do not show any consistent trend. It is also interesting
to note that features in size and shape categories show lower
concordance values.

While the ADC map shows intensity statistics to be
reproducible, the z-score region shows reproducible co-
occurrence matrix. The habitat region using sphere approach
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FIGURE 3 | Concordance of quantitative features across feature subgroup.

(A) T2w, (B) T2w z-normalized, (C) ADC, (D) ADC z-normalized.

shows more than eight features related to fine texture (Laws)
and two features related to shape category. While the T2-habitat
(sphere) shows more features from co-occurrence, neighborhood

FIGURE 4 | Dynamic range of quantitative features across feature subgroup.

(A) T2w, (B) T2w z-normalized, (C) ADC, (D) ADC z-normalized.

gray tone difference categories. In region converged by habitat
within lesions, ADC map shows one feature related to gray level
that is stable and non-redundant. The T2-habitat (within lesion)
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shows 12 features that are related to texture–neighborhood
gray tone, co-occurrence, and wavelet based. The z-score
standardization in T2-habitat (within lesion) region shows
features related to gray-level intensities, co-occurrence, and
neighborhood gray tone features that are reproducible and stable.

DISCUSSION

Clinically relevant imaging biomarkers are expected to be
repeatable in a test–retest patient cohort, reproducible across
centers, and relevant to describing the tumor physiology across
different conditions. It is essential for imaging features to be used
as a biomarker to be repeatable, at an acceptable level, which
is dependent on the current imaging technology. In our study,
we obtained prostate patient mpMRI scans within 2 weeks of
the baseline time point and believe that the cohort is a unique
public data set in prostate cancer. While we understand that
the cohort size may be small for obtaining elaborate inferences,
the methods applied by our study nonetheless allow us to assess
feature stability and generate potential biomarkers in prostate
mpMRI. We analyzed the repeatability in four different regions:
(a) raw, radiologist-drawn; (b) Z score, radiologist drawn; (c)
raw, habitats; (d) z-score, habitat regions. The study allowed us
to contrast the reproducible features under these constraints.

The sphere-based habitat tends to increase the capture region
that may provide a larger lesion boundary. This certainly helps to
find stable and reproducible features in the ADC map and T2w
image region. In comparison to habitat region formed within the
lesion, it seems to restrict ADC intensity gray level that helps to
find stable features in T2w, with more than 21 features with high
concordance (CCC ≥0.75), of which 18 features are stable and
reproducible (CCC ≥0.85, R2 > 0.099).

We believe that the habitat approach reduces variability in
T2w and rather highly variable ADCmap images, which typically
have lower resolution. There are a number of automated and
semiautomated segmentation procedures that could be used
in mpMRI, but we restricted our approach to manual, expert
radiologist–drawn boundaries to initially delineate the lesions.
We used the manual segmented region as an initial seed point
for habitat region delineation, which is automatically converged
using multimodal sequences (T2w, ADC).

In a prior study (23), they used an interclass correlation
with a cutoff of 0.85 and reported features related to entropy,
inverse difference moments to be highly repeatable. In our
study, we find that co-occurrence and neighborhood gray tone
difference matrices (NGTDMs) are two feature categories that
are repeatable in T2w and T2w z. In ADC maps, the statistics
of intensity-type features seem to show up as stable even in raw
intensities (without any standardization), whereas average co-
occurrence, short run length gray level emphasis-type features are
stable in z-normalized ADC maps. We also find habitat (sphere)
approach seems to improve the number of repeatable features in
ADC maps and in T2w (Figure 2).

In the previously mentioned study, the authors claimed
neither standardization nor prefiltering improved repeatability
of image features. In our study, we used CCC with additional

criteria such as DR and redundancy reduction to filter the
features. We also find that most size and shape–based features
show lower concordance in T2w/T2w z, but a larger spread on
ADCmap in comparison to two categories of features (Figure 3).
This is probably due to the use of different regional convergence
methods coupled with independently defined, delineated lesion
boundaries in the test and retest scans. In comparison, the prior
study (23) claimed high concordance for features in the size and
shape–based category.

Because of scan quality limitations, some of the prior
marked regions could not be ascertained by our radiologist,
and additional regions of abnormality were located in consensus
by the study radiologists. Additionally, prior studies (22, 23)
restricted lesions to the peripheral zone, while our study
radiologists identified lesions without any zonal restrictions.
These differences have certainly increased the feature variability,
which could be one cause for a lower number of repeatable
features. Nevertheless, our cohort of patients provides a diverse
set of lesions that are spread across the gland. The habitat
approach proposed in the study shows promise in increasing the
number of repeatable imaging features.

Study Limitations
This study provides a unique patient cohort with test–retest
scans obtained within 2 weeks between scans; the cohort
size is certainly a limited factor for a broader inference. The
methodology used in the study with endorectal coils introduced
artifacts that could have altered the voxel intensities and
influenced the image feature reproducibility. We have taken
effort to remove patient scans that show large artifacts and
regions that could not be converged in a consensus read. Despite
our efforts, there could be a certain level of variation in features
value due to voxel level changes.

CONCLUSIONS

In the current study, we demonstrate that there are quantitative
imaging features that can be obtained repeatedly in prostate
mpMRI. We show that sublocalized regions or habitats can
improve repeatability of imaging features, possibly by restricting
the range of variations in the voxel intensity levels in these
MRI scan modalities. We also find that z-score normalization
of the image intensities had minimal effect on the feature
reproducibility. Current findings allow us to obtain reproducible
and non-redundant sets of image features that could be used for
predictive and prognostic purpose.
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