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Synthetic biology is a growing interdisciplinary field, with far-reaching

applications, which aims to design biochemical systems that behave in a

desired manner. With the advancement in nucleic-acid-based technology in

general, and strand-displacement DNA computing in particular, a large

class of abstract biochemical networks may be physically realized using

nucleic acids. Methods for systematic design of the abstract systems with pre-

scribed behaviours have been predominantly developed at the (less-detailed)

deterministic level. However, stochastic effects, neglected at the deterministic

level, are increasingly found to play an important role in biochemistry. In such

circumstances, methods for controlling the intrinsic noise in the system are

necessary for a successful network design at the (more-detailed) stochastic

level. To bridge the gap, the noise-control algorithm for designing biochemical

networks is developed in this paper. The algorithm structurally modifies

any given reaction network under mass-action kinetics, in such a way

that (i) controllable state-dependent noise is introduced into the stochastic

dynamics, while (ii) the deterministic dynamics are preserved. The capabilities

of the algorithm are demonstrated on a production–decay reaction system,

and on an exotic system displaying bistability. For the production–decay

system, it is shown that the algorithm may be used to redesign the network

to achieve noise-induced multistability. For the exotic system, the algorithm

is used to redesign the network to control the stochastic switching, and achieve

noise-induced oscillations.
1. Introduction
Synthetic biology is an interdisciplinary field of science and engineering that aims

to construct biochemical systems with prescribed behaviours [1,2]. At the theor-

etical level, the synthetic systems may significantly enhance our understanding

of biology. At the practical level, they may have broad applications, e.g. in medi-

cine [3–7], industry [8,9] and nanotechnology [10,11]. The systems may also be of

interest to space agencies for optimizing extraterrestrial explorations [12]. A proof

of concept for synthetic biology is a synthetic oscillator called the repressilator,

which was implemented in vivo [13]. The experimental advances since the

repressilator range from isolated synthetic biochemical networks, to micro-

organisms containing partially, or even fully, synthetic DNA molecules

(synthetic life) [14–17]. Examples include microorganisms containing a synthetic

bistable switch [18], and a cell-density controlling quorum sensor [19], microor-

ganisms producing antimalarial drugs [6,7], and synthetic systems designed for

tumour detection, diagnosis and adaptive drug-response [4,5].

The construction of biochemical networks in synthetic biology may be broken

down into two steps: firstly, an abstract system is constructed, displaying pre-

scribed properties, and taking the form of a chemical reaction network [20–22].

Secondly, the abstract network is mapped to a suitable physical network,

which may then be integrated into a desired environment (e.g. a test-tube, a
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vesicle or a living cell) [23–26]. Let us note that the first

step generally consists of a number of sub-steps, involving

mathematical analyses and computational verifications,

depending on the nature of the target physical network [23,27]

(see also §2.3 and electronic supplementary material).

In the first step of network construction, the goal is to obtain

an abstract network with desired dynamics. In this paper, we

consider reaction networks under mass-action kinetics: it

is assumed that each reaction fires at the rate proportional to

the product of the concentrations of the underlying reacting

species. In this setting, we consider two dynamical models of

reaction networks [22,28]: the deterministic model and the

stochastic model (see electronic supplementary material

for more details). The deterministic model takes the form of

the reaction-rate equations, which are ordinary differential

equations governing the time-evolution of the species concen-

trations [22,28]. The stochastic model takes the form of a

Markov chain, which may be simulated using the Gillespie sto-

chastic simulation algorithm [29]. The Gillespie algorithm

generates random copy-number time-series, with the copy-

number distribution matching that obtained from the under-

lying chemical master equation [22,28–30]. The stochastic

model is more detailed, taking into an account the discreteness

of the species counts and the stochastic nature of the dynamics,

which may be particularly important in biochemistry, where

reaction networks may contain low-abundance species

[13,18,21,31–35]. On the other hand, the deterministic model

is less detailed, and more appropriate when the species are in

high abundance, and the discreteness and stochasticity are

negligible [36].

In the second step of network construction, the goal is to

engineer a physical network whose dynamics match well the

dynamics of a given abstract network, over a suitable time

interval. Engineering an appropriate physical network may

proceed indirectly, by altering a preexisting physical network,

or directly, by engineering a network, which involves a given

set of physical species, from scratch. The advantage of the

former approach is that a preexisting network may display

(partially) desirable dynamical properties. However, such a

network may involve DNA and RNA molecules, proteins

and metabolites [2], some of which may have complex bio-

physical properties. Consequently, the disadvantage is that

the structure (and, thus, the dynamics) of such a network

cannot generally be modified in an arbitrary manner. In the

latter approach, one may choose the physical species, at the

expense of having to build a network from scratch. This

approach is followed in the subfield of nucleic-acid-based mol-

ecular computing. For example, in DNA computing, physical

networks are engineered with chemical species consisting

exclusively of DNA molecules, interacting via the toehold-

mediated DNA strand-displacement mechanism [23]. DNA

production is systematic and cost-effective, and due to the

fact that DNA biophysics is relatively well understood,

one has more freedom in controlling the structure of corre-

sponding physical networks. More precisely, an abstract

network under mass-action kinetics may be mapped to a

DNA-based physical network provided it consists of up to

second-order reactions, with rate coefficients varying over up

to six orders of magnitude. The resulting physical network

has identical deterministic dynamics as the abstract network

(in the asymptotic limit of some of the kinetic parameters [23]),

up to a scaling of the dependent variables. A proof of concept

for DNA computing is a synthetic oscillator called the
displacillator, which was implemented in vitro [37]. Let us

note that DNA-based networks may also be augmented

with enzymes [26,38]. Another emerging approach within

nucleic-acid-based molecular computing is based on RNA

strand displacement [39]—a mechanism which is hypothesized

to occur naturally within living cells [40].

The DNA-based reaction networks may involve only

high-abundance species, mixed in a test-tube [23]. In such

circumstances, it may be sufficient to construct the networks

via the (less-detailed) deterministic model. However, recent

experimental advancements, involving compartmentalized

circuits [24–26], localized circuits [41,42] and molecular

robots [43,44], may require reaction network construction

via the (more-detailed) stochastic model. For example,

in [24–26], the chemical mixture from a test-tube is split into

a large number of cell-size vesicles (allowing for an experimen-

tal investigation of biochemistry in cell-like reactors). This

corresponds to replacing a given reaction network, involving

only high-abundance species, with a large number of topologi-

cally equivalent networks which, however, may involve species

in a low abundance, making the (intrinsic) noise an important

part of the dynamics. The intrinsic noise may be controlled in

two ways. It may be decreased (e.g. [32]), in order to reduce

the differences between the stochastic and deterministic

dynamics. On the other hand, it may be increased, in a state-

dependent manner, in order to favourably change the

stochastic dynamics. In the language of molecular computing,

the latter approach corresponds to exploiting the proven com-

putational power of the stochastic reaction networks [45], by

reprogramming the underlying intrinsic noise. Let us note

that exploitations of the noise for enhancing biological func-

tions have been reported in applications [31,35]. In this paper,

we follow the latter approach, and present the noise-control

algorithm (given as algorithm 1) which maps an input reaction

network to output networks whose stochastic dynamics have

an additional controllable state-dependent noise. Importantly,

the input and output networks have an identical deterministic

model in appropriate limits of some of the parameters intro-

duced by the algorithm. The algorithm may play a significant

role in the biochemical network synthesis, allowing for a

deterministic–stochastic hybrid approach. More precisely,

when constructing abstract and physical networks, one may

use the deterministic model to guide the construction [20,21],

and then apply the algorithm to favourably modify the

intrinsic noise in the stochastic model, while preserving

the desired deterministic dynamics. The algorithm may also

be used to adjust the intrinsic noise to favourably interact

with environment-induced effects (e.g. extrinsic noise).

The rest of the paper is organized as follows. In §2, we intro-

duce algorithm 1 by applying it to the test network (2.1), which

at the deterministic level displays a globally attracting equili-

brium point. We show that the algorithm can favourably

modify the stationary probability distribution underlying (2.1)

at arbitrary points of the state-space, without influencing the

deterministic dynamics. For example, it is shown that the algor-

ithm may be used to redesign (2.1) to achieve noise-induced

multimodality (multistability). In §3, we apply algorithm 1 to

the exotic network (3.1), which at the deterministic level dis-

plays a bistability involving an equilibrium point and a limit

cycle. The algorithm is used to redesign (3.1) to increase the sto-

chastic switching between the two attractors, and to achieve

noise-induced oscillations. Finally, in §4, we conclude with a

summary and discussion. The notation used in the paper is



Algorithm 1. The noise-control algorithm.

Input: Let the input reaction network be given by

R̂(s1, . . . , sN ):
XN

i¼1

cij si �!
kj
XN

i¼1

c0ij si , j [ {1, . . . , M}, ð1:1Þ

where s1, . . ., sN are the species, kj the reaction rate coefficients, and cij, cij
0 the stoichiometric coefficients.

(1) Step: Reaction network R̂, given by (1.1), is mapped to a pairwise conservative network R̂1
given by

R̂1
(s1, . . . , sN ,�s1, . . . ,�sN ):

XN

i¼1

�
cij si þ (Dxij�si þ IDxij

i )� 1N(Dxij )
�
�!

kj

XN

i¼1

�
c0ij si � (Dxij�si )� 1N(�Dxij )þ IDxij

i � 1N(Dxij )
�

, j [ {1, . . . , M}: ð1:2Þ

Here, �si ,I
Dxij

i are additional species, Dxij ¼ (cij
0 2 cij), and 1N(�) is the indicator function of the natural numbers.

(2) Step: For each species Ii
Dxij, a drift-corrector network is constructed, R2

Dxij
(�si ) ¼ R2

Dxij
(�si ; IDxij

i , m), given by

R2
Dxij
ð�siÞ : ��!1=m IDxij

i ,

Dxij�si þ IDxij

i �!
1=m

Dxij�si , ð1:3Þ
where 0�m�1.

(3) Step: For each species �si , a union of zero-drift networks may be constructed. Let n, �n [ N0, and (nþ �n) � Ci . Network

R3
n,�n(si ,�si ) ¼ R3

n,�n(si ,�si ; ki
n,�n), with n,�n = 0, is given by

R3
n,�n(si ,�si ): nsi þ �n�si �!

ki
n,�n

(nþ 1)si þ (�n� 1)�si ,

nsi þ �n�si �!
ki

n,�n
(n� 1)si þ (�nþ 1)�si: ð1:4Þ

Network R3
0,�n(si ,�si ) ¼ R3

0,�n(si ,�si ; Bi , ki
0,�n, m0,�n), with �n = 0, is given by

R3
0,�n(si ,�si ): �n�si �!

ki
0,�n

si þ (�n� 1)�si ,

Ci si þ Bi �!
ki

0,�n
(Ci � 1)si þ�si þ Bi ,

�n�si �!
1=m0,�n

�n�si þ Bi ,

Ci si þ Bi �!
1=m0,�n

Ci si , ð1:5Þ
where 0 � m0,�n � 1 and Bi is an additional species. Network R3

n,0 ¼ R3
0,n(�si , si ; �Bi ,ki

n,0, mn,0).

Output: An output reaction network R is given by

R ¼ R̂1
< R2 < R3, ð1:6Þ

where R2 ¼ <i <Dxij R2
Dxij

(�si ), and R3 ¼ <i <(n,�n) R3
n,�n(si ,�si ).
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introduced as needed and is summarized at the beginning of

the electronic supplementary material.

2. A one-species regular system
Consider the one-species production–decay reaction network

R̂(s), given by (2.1):

R̂ðsÞ: ��!k1 s,

s �!k2
�,

9=
; ð2:1Þ

with the reaction-rate equations

dx̂
dt
¼ k1 � k2x̂,

x̂(0) ¼ x̂0:

9>=
>; ð2:2Þ

Species s from network (2.1) reacts according to the two reac-

tions with rate coefficients k1, k2 [ R�, where R� is the set of
non-negative real numbers, and ; is the zero-species (denot-

ing species which are not of interest). In this paper, we

assume reaction networks are under mass-action kinetics,

with the reactions taking place in unit-volume reactors. Let

us denote the concentration of species s from (2.1) at time

t [ R� by x̂ ¼ x̂(t) [ R�. The initial value problem for the

deterministic model (also called the drift) for network (2.1)

is given by system (2.2), with x̂0 � 0 (see also the electronic

supplementary material). As the deterministic model (2.2)

has a globally attracting equilibrium point, given by k1/k2,

network (2.1) is said to be regular [22].

Let us denote the copy-number of species s from (2.1) at time

t � 0 by X̂(t) [ Z�, where Z� is the set of non-negative integers.

Under the stochastic model, X̂(t) is modelled as a continuous-

time discrete-space Markov chain (see also the electronic

supplementary material), whose realizations can be generated

by using the Gillespie stochastic simulation algorithm [29].

Given X̂(t), there will be a mean interevent time until one of
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the reactions from (2.1) fires. The mean interevent time is given

by 1=â(X̂(t)), and when the event takes place, the probability

that the ith reaction from (2.1) fires is âi(X̂(t))=â(X̂(t)), for i [

f1, 2g. Here, â1(x) ¼ k1, and â2(x) ¼ k2x, are the so-called pro-

pensity functions of the first, and second, reactions from (2.1),

respectively. The function â(x) ¼ k1 þ k2x is the total propensity

function of network (2.1), i.e. the sum of propensity functions of

all the underlying reactions.

We now wish to structurally modify network (2.1) in such a

way that (i) the deterministic model from (2.2) is preserved,

while (ii) a control is gained over the interevent time from the

stochastic model. We accomplish this by, firstly, imposing a con-

servation law on the target species s from network (2.1), thereby

truncating its state-space, X̂(t) � C, where C [ Z. is a conser-

vation constant. The conservation law is imposed in such a

way that the total propensity function of the resulting network,

denoted by âC : [0, C] > Z� ! R�, is given by âC(x) ¼ k1 þ k2x,

i.e. it has the same form as the total propensity function of

the original network (2.1), but is restricted to the bounded

discrete domain [0, C] > Z�. With the restriction imposed, we

furthermore embed appropriate reactions to the conservative

network, so that an arbitrary non-negative function, denoted

by g : [0, C] > Z� ! R�, is added to âC, i.e. the resulting total

propensity function is given by a(x) ¼ âC(x)þ g(x). This

implies that the interevent time is controllably decreased

for any desired state x, i.e. in a state-dependent manner.

Equivalently, the two requirements imply that a controllable

state-dependent noise is introduced into the stochastic

dynamics. We have designed a three-step algorithm, given as

algorithm 1, which achieves such goals for arbitrary reaction

networks under mass-action kinetics. Let us describe properties

of the algorithm by applying it on network (2.1).

Firstly, in order to bound the domain of species s, an

additional species �s is introduced into network (2.1), in

such a way that s and �s satisfy a pairwise stoichiometric con-

servation law, formally written sþ �s ¼ constant. Secondly, to

ensure the obtained enlarged network has the same determi-

nistic model as the initial network (2.1), despite the added

species �s, an auxiliary species I1 is introduced. More precisely,

applying the first two steps of the algorithm leads to network

R̂1
(s,�s) < R2

1(�s) given by

R̂1
(s,�s): �sþI1�!k1 sþ I1,

s�!k2 �s,

R̂2
1(�s): ��!1=m I1,

�sþI1�!1=m �s:

9>>>>>>>>>=
>>>>>>>>>;

ð2:3Þ

Species s,�s, I1 from (2.3) react according to the four reactions

with rate coefficients k1, k2, 1=m [ R�. Reaction network

R̂1 ¼ R̂1
(s,�s), given in (2.3), is obtained from network

R̂ ¼ R̂(s), given by (2.1), in the following way: since the first

reaction in R̂ increases the copy-number of s by one, �s and I1

are added to the reactants of the reaction, and I1 is added to

the products, leading to the first reaction in R̂1
. Since

the second reaction in R̂ decreases the copy-number of s by

one, �s is added to the products, leading to the second reaction

in R̂1
. This ensures that the desired conservation law,

sþ �s ¼ constant, holds. The superscript in I1 indicates that

species I1 is involved as a catalyst in a reaction of R̂1
in

which s is increased by one. The subscript in R2
1 ¼ R2

1(�s) indi-

cates that the network describes production and decay of I1.
The initial value problem for the deterministic model

of (2.3) is given by

dx
dt
¼ k1ðc� xÞy� k2x,

dy
dt
¼ 1

m
ð1� ðc� xÞyÞ,

xð0Þ ¼ x0

and yð0Þ ¼ y0,

9>>>>>>=
>>>>>>;

ð2:4Þ

where x ¼ x(t) [ [0, c] > R�, and y ¼ y(t) [ R�, are the con-

centrations of species s, and I1, from (2.3), respectively, with

x0, y0 [ R� and c [ R.. We have used the kinetic conservation

law �x(t) ¼ c� x(t), where �x(t) is the concentration of species �s,

and c is a finite time-independent conservation constant.

Note that the conservation law truncates the state space of x.

Let us now describe relationships between systems (2.2)

and (2.4), starting with the weak statement: for c . k1/k2, and

for any m . 0, solutions of (2.2) and (2.4) are the same in the

long-time limit t!1. More precisely, the x-component of

the equilibrium point of (2.4) is identical to the equilibrium

point of (2.2), and both are stable. In the electronic supplemen-

tary material, we justify the strong statement: for sufficiently

large c, and for 0 , m�1, solutions of (2.2) and (2.4), with the

same initial conditions, are approximately the same at each

time t � 0. For these reasons, we call R2
1 a drift-corrector network.

Let us note that we have assumed the rate coefficients appear-

ing in subnetwork R2
1(�s) from (2.3) are identical for simplicity,

and that this assumption may be relaxed. More precisely, if

the rate coefficients of the first and second reactions in R2
1(�s)

are 1/m1 and 1/m2, respectively, then the same conclusion

from this paragraph holds, provided the rate coefficient k1

from subnetwork R̂1
(s,�s) is replaced by (m1/m2)k1.

2.1. Zero-drift network R3
1,1

Having completed the first two steps, let us focus on the third

(and final) step, in which we introduce arbitrary noise into the

stochastic model of (2.3), without influencing the deterministic

model (2.4). Let us start our consideration by embedding

into (2.3) network R3
1,1 ¼ R3

1,1(s,�s), which is given by

R̂3
1,1(s,�s): sþ �s�!

k1,1
2s,

sþ �s�!
k1,1

2�s:

9>=
>; ð2:5Þ

The subscript in R3
1,1 indicates that the underlying reactions

have one molecule of s, and one of �s, as reactants. The two reac-

tions in (2.5) preserve the conservation law from (2.3).

Furthermore, the first and second reactions produce, and

degrade, exactly one molecule of s, respectively, and they fire

at the same rate. Consequently, embedding R3
1,1 into (2.3)

does not affect the underlying deterministic model (2.4), and

we call R3
1,1 a zero-drift network. Note that the deterministic

dynamics are not preserved if the rate coefficients in (2.5) are

different. However, R3
1,1 does affect the underlying stochastic

model [22,46–48]. To illustrate this, let us consider network

R3
1,1 in isolation: the reactions from (2.5) fire when X(t) [ (0,

C), but not when X(t) [ f0, Cg, so that R3
1,1 in isolation fires

until X(t) takes one of the extreme values f0, Cg. Here,

X(t) [ Z�, and C [ Z., are the copy-number of species s
appearing in (2.3) and (2.5) at time t � 0, and the finite conser-

vation constant, respectively. Note that a possible biologically

relevant realization of network (2.5), aside from, e.g. DNA

strand-displacement mechanism, is a dimer version of the

bifunctional histidine kinase/phosphatase reported in [49].
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applying the Gillespie algorithm on the underlying networks. Also shown in red are the deterministic trajectories, obtained by numerically solving the corresponding
deterministic models. The dimensionless parameters are fixed to: k1 ¼ 2.5, k2 ¼ 0.5, m ¼ 1023, C ¼ 15, and the state-space for species I1 is bounded in (b), (e)
and (h) by 50. In (b) and (e), the two-species stationary chemical master equation (CME) was numerically solved, while in (h) the boundary zero-drift networks are
taken in the asymptotic limits m0,15, m12,0! 0. The blue and red trajectories from panel (i) were generated with (m0,15)21M0,15 ¼ (m12,0)21M12,0 ¼ 107. The
trajectories from (c), ( f ) and (i) were all initiated at the deterministic equilibrium, X(0) ¼ 5.
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In the electronic supplementary material, we derive

equation (S11) which describes the effective behaviour of

the Markov chain X(t) from network R̂1
< R2

1 < R3
1,1 in the

limit m! 0, and it follows that the effective total propensity

function of the network, denoted a(x), satisfies

a(x) � âC(x)þ 2K1,1b1,1(x), asm! 0 ð2:6Þ

where

âC(x) ¼ k1 þ k2x: ð2:7Þ

Function âC : [0, C] > Z� ! R� has the form of the total pro-

pensity of network (2.1), and K1,1b1,1(x) is the propensity

function of reactions in (2.5), with the scaled factors given by

K1,1 ¼
C
2

� �2

k1,1, b1,1(x) ¼ C
2

� ��2

x(C� x): ð2:8Þ

Function b1,1(x) is displayed in figure 1a, where one can

notice its parabolic shape, arising from the underlying conser-

vation law X(t)þ �X(t) ¼ C, which holds for all t � 0, where
�X(t) [ Z� is the copy-number of �s at time t � 0. Compar-

ing (2.6) and (2.7), it follows that, as m! 0, the mean

interevent time for network R̂1
< R2

1 < R3
1,1 is lower than for
network (2.1), in the regions of the common state space

where b1,1(x)=0, i.e. for x [ (0, C). Coefficient K1,1 controls

by how much the interevent time is reduced. Equivalently,

b1,1(x), and K1,1, determine the support, and magnitude,

respectively, of the state-dependent intrinsic noise which

network (2.5) introduces into the dynamics of network (2.3).

In the electronic supplementary material, we rigorously

formulate the following two approximate results (given as

equations (S13) and (S17), respectively):

lim
K1,1!0

pðxÞ �
1

x!

k1

k2

� �x

exp � k1

k2

� �
, if x [ ½0, C	,

0 otherwise

8<
: ð2:9Þ

and

lim
K1,1!1

pðxÞ �

1� 1

C
k1

k2
, if x ¼ 0,

1

C
k1

k2
, if x ¼ C,

0, otherwise,

8>>>><
>>>>:

ð2:10Þ

where p(x) is the stationary probability mass function

(PMF) corresponding to network R̂1
< R2

1 < R3
1,1 in the
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limit m! 0, i.e. the probability that there are x molecules of

species s as m! 0 in the long-time limit t!1. Let us inter-

pret analytical results (2.9) and (2.10), and compare them

with the numerically obtained counterparts. In figure 1b,

we display numerically obtained stationary x-marginal

PMFs for different values of K1,1, with the rest of the (dimen-

sionless) parameters fixed to k1 ¼ 2.5, k2 ¼ 0.5, m ¼ 1023 and

C ¼ 15. It can be seen that, for K1,1 ¼ 0, i.e. when the zero-

drift network R3
1,1 does not fire, the PMF matches that of

network (2.1), i.e. it is a Poissonian, as predicted by (2.9). Let

us note that the matching of the PMFs of networks (2.1) and

R̂1
< R2

1 < R3
1,1 relies on choosing sufficiently large rate coeffi-

cients 1/m in the drift-corrector networkR2
1. When K1,1¼ 5, the

PMF appears closer to a uniform distribution than does the

PMF when K1,1¼ 0. Finally, for the larger value K1,1 ¼ 105,

i.e. when zero-drift network R3
1,1 fires much faster than

network R̂1
, the PMF redistributes across the domain, accumu-

lating at the boundary, and becoming bimodal. This is in

qualitative agreement with (2.6), and in quantitative agreement

with (2.10), which predicts p(0) � 0.7 and p(15) � 0.3. In figure

1c, a representative sample path is shown, obtained by apply-

ing the Gillespie algorithm on network R̂1
< R2

1 < R3
1,1, when

K1,1¼ 105. Also shown is a trajectory obtained by numerically

solving the deterministic model (2.4). Consistent with figure 1b,

the sample path switches between the boundary of the state

space, with a bias towards the left boundary point x ¼ 0. This

is in contrast to the deterministic trajectories, which are

globally attracted to the equilibrium point x ¼ 5.

2.2. General zero-drift networks R3
n,�n

The zero-drift network R3
1,1(s,�s), given by (2.5), involves a

single molecule of s and �s as reactants, and adds the noise

at x [ [1, C 2 1], i.e. in the interior of the state space. Similar

networks may be used to add the noise at any point in the

state space, without influencing the deterministic dynamics.

In particular, in (1.4) and (1.5), we present general zero-

drift networks R3
n,�n(s,�s), which involve n molecules of s,

and �n of �s, as reactants, and add the noise at x [ [n, C� �n],

where n, �n [ N0, and (nþ �n) � C. Embedding a union of

such networks, <(n,�n)R3
n,�n(s,�s), into (2.3), we arrive at

the result similar to (2.6), with K1,1b1,1(x) replaced by the

linear combination
P

(n,�n) Kn,�nbn,�n(x). The scaled rate coeffi-

cient Kn,�n and function bn,�n(x) are given in the electronic

supplementary material as equations (S18) and (S19), respect-

ively, where we also justify that an arbitrary non-negative

function, defined on a bounded discrete domain, may be

represented by a suitable sum
P

(n,�n) Kn,�nbn,�n(x).

To illustrate general zero-drift networks, let us start with

embedding into network (2.3), with the conservation constant

C ¼ 15, the zero-drift network R3
5,10(s,�s), satisfying (1.4) with

n ¼ 5 and �n ¼ 10. In figure 1d, we show propensity function

b5,10(x), which is non-zero only at x ¼ 5. In figure 1e, we show

the numerically approximated stationary x-marginal PMFs

underlying network R̂1
< R2

1 < R3
5,10 for different values of

K5,10, with the rest of the parameters as in figure 1b. One

can notice that, under the action of network R3
5,10, the

PMF is gradually decreased to nearly zero at x ¼ 5 (the deter-

ministic equilibrium), and becomes bimodal, with the two

noise-induced maxima at x ¼ 4 and x ¼ 6. In figure 1f, we

show a corresponding representative sample path.

In general, noise-induced multimodality may be achieved

by a suitable combination of zero-drift networks. For

example, let us synthetize noise such that the stationary
PMF is trimodal, and nearly zero everywhere, except at x [

f1, 7, 11g. Such a task may always be achieved by a suitable

combination of the basis zero-drift networks, i.e. those zero-

networks that induce noise only at a single point in the

state space (e.g. subnetwork R3
5,10 with propensity function

shown in figure 1d; see also the electronic supplementary

material). In the present case, one could construct the 13

basis zero-drift networks which add large enough noise at

x [ [0, 15]\f1, 7, 11g. Here, for simplicity, we achieve the

task with only four zero-drift networks. In figure 1g– i, we

consider network R̂1
< R2

1 < (R3
0,15 < R3

2,9 < R3
8,5 < R3

12,0).

We denote b(x);b0,15(x) þ b2,9(x) þ b8,5(x) þ b12,0(x), and,

for simplicity, take K;K0,15 ¼ K2,9 ¼ K8,5 ¼ K12,0. The resul-

tant propensity function b(x) is shown in figure 1g, while in

figure 1h it can be seen that the PMF becomes trimodal for

sufficiently large K, with the maxima at x ¼ f1, 7, 11g. This

is consistent with the corresponding representative sample

path shown in blue in figure 1i, which display tristability.

Let us note that, while the stochastic dynamics display multi-

stability in figure 1c,f,i, the corresponding deterministic

dynamics, also shown in the plots, remain monostable.

2.3. Compilation into DNA-based networks
Chemical reaction networks, whose stochastic dynamics are

controlled by algorithm 1, may be mapped to the nucleic-

acid-based ones. The mapping takes a different form depending

on which molecular compiler is used and, in this section, we

briefly outline two approaches. Firstly, the molecular compiler

put forward in [23], based on 4-domain signal strands, requires

that the input reaction network consists of up to second-order

reactions. On the other hand, let us note that it allows reactions

with identical reactants (as is the case in zero-drift networks).

Thus, one is generally required to apply a single pre-compiling

step, where the higher-order reactions (i.e. reactions involving

three or more reactants) are approximated by systems of up to

second-order ones [50,51], before using the 4-domain DNA

compiler. However, the 4-domain compiler has only been

shown to preserve the deterministic dynamics when mapping

an abstract network into a DNA-based one [23]. In the electronic

supplementary material, we show that the stochastic dynamics

are also preserved, making the compiler compatible with the

noise-control algorithm. Furthermore, we apply the compiler

to a network of the form (2.3) and (2.5), and briefly discuss

the pre-compilation step, leaving the details for a future publi-

cation [51]. On the other hand, the 2-domain molecular

compiler put forward in [27], and experimentally implemented

in [52], can be used directly, without any pre-compilation, since

it automatically handles higher-order reactions.
3. A two-species exotic system
Consider the two-species network ~R(s1, s2) given by

~R(s1, s2): ��!k1 s1, ��!k7 s2,

s1�!
k2

2s1, s2�!
k8

�,

2s1�!
k3

3s1, s1 þ s2�!
k9 s1 þ 2s2,

s1 þ s2�!
k4 s2, 2s2�!

k10
3s2,

2s1 þ s2�!
k5 s1 þ s2, 3s2�!

k11
2s2,

s1 þ 2s2�!
k6

2s1 þ 2s2,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð3:1Þ
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Figure 2. Panel (a) displays the joint stationary PMF of network (3.1), while (d ) and (g) display the stationary PMFs of network (S35) from electronic supplemen-
tary material, for (K0,C2

2 10, K30,0) ¼ (1018, 2 � 108) and (K0,C2
2 10, K30,0) ¼ (1018, 1018), respectively, with the rest of the parameters being the same. Panels

(b), (e) and (h) display the x1-marginal PMFs corresponding to (a), (b) and (c), respectively. Panels (c), ( f ) and (i) display in blue the sample paths, corresponding to
the PMFs shown in (b), (e) and (h), respectively, and were obtained by applying the Gillespie algorithm on the underlying networks. Also shown in red are two
deterministic trajectories, one initiated near the equilibrium point, while the other near the limit cycle, obtained by numerically solving equation (S34) from elec-
tronic supplementary material. The dimensionless parameters are fixed to: k1 ¼ 4, k2 ¼ 1.408, k3 ¼ 0.0518, k4 ¼ 0.164, k5 ¼ 3.1 � 1023, k6 ¼ 4.8 � 1023,
k7 ¼ 4, k8 ¼ 8, k9 ¼ 0.16, k10 ¼ 0.104, k11 ¼ 2.1 � 1023. In (a) – (b), (d ) – (e) and (g) – (h), the stationary chemical master equation (CME) is numerically
solved, with the state-space truncated to (x1, x2) [ [0, C1] � [0, C2], where C1 ¼ 300, C2 ¼ 180 and m, m0,C2

2 10, m30,0! 0. The blue sample paths from
panels ( f ) and (i) were generated with (m21, (m0,C2

2 10)21M0,C2
2 10, (m30,0)21M30,0) ¼ (103, 1020, 2 � 1010) and (m21, (m0,C2

2 10)21M0,C2
2 10,

(m30,0)21M30,0) ¼ (103, 1020, 1020), respectively. The blue trajectories from (c), ( f ) and (i) were all initiated near the deterministic limit cycle.
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where species s1 and s2 react according to the 11 reactions

with rate coefficients k1, k2, . . ., k11�0. We denote the copy-

numbers of species s1, and s2, at time t by X1(t), and X2(t),
respectively. It was established in [20] that, for particular

choices of the rate coefficients, the deterministic model of

reaction network (3.1), given as equation (S34) in the elec-

tronic supplementary material, exhibits exotic dynamics: it

undergoes a homoclinic bifurcation, and displays a bistability

involving a limit cycle and an equilibrium point. On the other

hand, it is demonstrated in [21] that the stochastic model

of (3.1) is not necessarily sensitive to the deterministic bifur-

cation, and may effectively behave in a monostable manner.

The latter point is demonstrated in figure 2c, where we

show in red numerically approximated x1-solutions of

equation (S34) from the electronic supplementary material,

one initiated in the region of attraction of the equilibrium

point, while the other of the limit cycle. For a comparison, we

also show in blue a representative sample path generated by

applying the Gillespie algorithm on (3.1). It can be seen that
the stochastic solution spends significantly more time near

the deterministic equilibrium point. To gain a clearer picture,

we display in figure 2a,b the joint, and the x1-marginal, station-

ary PMFs, respectively, underlying network (3.1), which have

been obtained numerically for the same parameter values as

in figure 2c. In figure 2b, one can notice that the PMF is bimo-

dal, but the left peak, corresponding to the limit cycle, is

significantly smaller than the right peak, which corresponds

to the stable equilibrium point.

We now apply algorithm 1 on network (3.1) to achieve

two goals. Firstly, we balance the sizes of the two peaks of

the stationary PMF from figure 2b, thereby forcing the sto-

chastic system to spend comparable amounts of time at the

two deterministic attractors. Secondly, we reverse the situ-

ation shown in figure 2b, by making the left PMF peak

significantly larger than the right one, thereby forcing the

stochastic system to spend most of the time near the limit

cycle. We could achieve the goals by introducing species

�s1,�s2 into (3.1), and using suitable basis zero-drift networks.
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We take a simpler approach, by mapping (3.1) to
~R1

(s1, s2,�s2) < R2
1(�s2) < (R3

0, C2�10(s2,�s2) < R3
30,0(s2,�s2)), which

is given as equation (S35) in the electronic supplementary

material. For our purposes, only one of �s1, �s2 is sufficient, as

the stochastic dynamics of s1 and s2 are coupled. We have

chosen �s2 for convenience, since x2-state-space may be trun-

cated at a lower value, C2 ¼ 180, than x1-state-space (see also

figure 2a). The x2-component of the deterministic limit cycle

satisfies x2 [ (10, 30). Correspondingly, we introduce two

zero-drift networks: R3
0, C2�10(s2,�s2), and R3

30,0(s2,�s2), which

redistribute the PMF from x2 [ [0, 10], and from x2 [ [30, C2],

respectively, to the limit cycle region, x2 [ (10, 30). We fix the

scaled rate coefficient K2
0,C2

2 10 to a large value (so that the

PMF is nearly zero for x2 [ [0, 10]), and vary the coefficient

K2
30,0, which redistributes the PMF from the deterministic equi-

librium point to the limit cycle. Network R2
1(�s2) is necessary for

the preservation of the deterministic dynamics of (3.1) under

the application of algorithm 1.

In figure 2d,e, we show the joint, and x1-marginal, station-

ary PMFs for an intermediate value of K2
30,0, when the PMF is

partially redistributed from x2 [ [30, C2] to x2 [ (10, 30), so

that the two peaks in figure 2e are of comparable sizes. In

figure 2f, we show a representative sample path, obtained by

applying the Gillespie algorithm on network (S35), together

with the deterministic trajectories obtained by solving (S34).

One can notice that the stochastic system now spends signifi-

cantly more time near the limit cycle, when compared

to figure 2c. Let us note that stochastic switching between a

coexisting equilibrium point and a limit cycle in a DNA-

based reaction network has been observed experimentally [26].

In figure 2f,g, we show analogous plots, but for a sufficiently

large value of K2
30,0, when the PMF is almost completely redis-

tributed from x2 [ [30, C2] to x2 [ (10, 30). Now, in contrast to

figure 2a–c, the PMF becomes unimodal, and concentrated

around the limit cycle. Let us note that the red trajectories

from figure 2f,i were generated by numerically solving the

deterministic model (S34) from the electronic supplementary

material. For our purposes, it is not necessary to solve the cor-

responding (stiff ) deterministic model of network (S35) from

the electronic supplementary material. The reason is that algor-

ithm 1 does not influence the deterministic equilibrium points

of a given reaction network, regardless of the choice of the kin-

etic algorithm parameters. Thus, while the deterministic limit

cycle is not necessarily preserved for the algorithm parameters

chosen in figure 2i, the enclosed deterministic unstable focus is

necessarily preserved. Consequently, the blue sample path

shown corresponds to noise-induced oscillations either near a

deterministic limit cycle, or near a deterministic unstable focus.
4. Discussion
In this paper, we have presented the noise-control algorithm,

which is given as algorithm 1. The algorithm maps an input

chemical reaction network to output networks, all under

mass-action kinetics, by introducing appropriate additional

species and reactions, such that the output networks satisfy

the following two properties. Firstly, the output networks

have the same deterministic model as the input network, in

appropriate limits of some of the parameters (rate coefficients)

introduced by the algorithm. Secondly, controllable state-

dependent noise is introduced into the stochastic model of the

output networks. Thus, algorithm 1 may be used to control
the intrinsic noise of a given reaction network under mass-

action kinetics, while preserving the deterministic dynamics.

Let us note that the asymptotic conditions for the algorithm par-

ameters are necessary for preservation of the time-dependent

deterministic solutions. However, the time-independent

deterministic solutions (the deterministic equilibrium

points), which capture important features of the deterministic

dynamics, are preserved under the algorithm even if the

asymptotic conditions are not satisfied.

The algorithm has been applied to a test problem, taking

the form of the one-species production–decay system given

by (2.1). Using analytical and numerical methods, we have

shown that the additional intrinsic noise, introduced by the

algorithm, may be used to favourably modify the stationary

PMF at arbitrary points in the state space, as demonstrated

in figure 1. For example, in figure 1b, the noise is added to

the whole interior of the state space, while in (e) only at a

single point, in both cases resulting in noise-induced bimod-

ality. On the other hand, in figure 1h, by adding the noise to

specific points in the state space, the network is redesigned to

display noise-induced trimodality. As shown in figure 1c,f,i,
the blue stochastic trajectories display multistability, while

the red deterministic ones remain monostable.

The algorithm has also been applied to a more challenging

problem, taking the form of the two-species system given

by (3.1), which, for the parameters taken in this paper, at the

deterministic level displays a bistability involving an equili-

brium point and a limit cycle [20,21]. At the stochastic level,

the system is significantly more likely to be found near the

equilibrium point, as demonstrated in figure 2a–c. We have

used the algorithm to redesign network (3.1), so that the sto-

chastic system spends comparable amounts of time near the

two attractors, as demonstrated in figure 2d– f. The network

was also redesigned to display noise-induced oscillations,

which is shown in figure 2g– i. Put another way, one may

view the dynamics shown in figure 2a–c as being contami-

nated by the noise, which disrupts the oscillatory chemical

computation. Algorithm 1 has been applied to address the dis-

ruption by appropriately reprogramming the noise. Such

control is of practical relevance, since stochastic switching

between an equilibrium and a limit cycle has already been

observed experimentally in a DNA-based network [26].

The controllable state-dependent noise is generated by

algorithm 1 using the zero-drift networks (1.4) and (1.5).

Any non-negative function, defined on a bounded discrete

domain, may be represented by a linear combination of propen-

sity functions induced by an appropriate union of the zero-drift

networks. Thus, choosing suitable zero-drift networks, the

algorithm may control the intrinsic noise at arbitrary points in

the state space of the stochastic dynamics of reaction networks.

The cost of such a precision in noise control is a larger number

of reactants in the underlying zero-drift networks. However,

while the high-molecular reactions introduced by the algorithm

are more expensive to synthetize, they do not limit applicability

of algorithm 1 to DNA computing. The reason for this is

that such reactions may always be broken down into sets of

up to bimolecular reactions, with asymptotically equivalent

dynamics [50,51], as outlined in §2.3 and exemplified in the

supplementary material. Let us stress that the lower the molecu-

lar copy-numbers of a given reaction network are, the more

important it becomes to control their stochastic behaviour,

and, fortunately, the less costly algorithm 1 becomes (since the

zero-drift networks involve fewer reactants).
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Algorithm 1 constitutes a qualitatively novel scientific dis-

covery which will facilitate the progress of nucleic-acid-based

computing, such as DNA computing [23–26]. In particular,

we put forward a hybrid approach for constructing DNA-

based reaction networks: the deterministic model may be

used to guide the construction of reaction networks, and then

algorithm 1 may be applied to favourably reprogram the

intrinsic noise in the stochastic model, while preserving the

mean-field behaviour. Put another way, the deterministic–sto-

chastic hybrid approach allows one to reshape the probability

distributions of target chemical species, while inheriting the

fixed mean-field behaviour. This provides a control over, not

only the probability distributions of the chemical species, but

also over their sample paths, as e.g. demonstrated in §3 with

a noisy limit cycle. Furthermore, the algorithm does not

depend on the initial conditions of the underlying species,

beyond the conservation laws. This is in contrast to the

methods presented in [53,54], which do not attempt to control

the sample-path behaviour, and whose performance depends

strongly on the initial conditions of the underlying species,

which may impose significant experimental challenges. The

noise-control algorithm may be of critical importance when

the synthetic networks involve species at low copy-numbers,

since then the stochastic effects may play a significant role

[13,18,21,24–26,31–35]. On the one hand, the algorithm may

enhance our understanding of biology, via theoretical and

experimental investigations of the role of intrinsic noise in

both prebiotic and biotic chemical processes [24–26]. On the

other hand, the algorithm may facilitate in vivo implemen-

tations of synthetic DNA networks, where the reactions may

take place at a cellular level. In such circumstances, without a

control, the noise may contaminate the performance of the syn-

thetic networks. Algorithm 1 provides a way to control the
stochastic effects, enriching the DNA-based synthetic systems

with novel, noise-induced functionalities. For example, one

may envisage using the algorithm to design nucleic-acid-

based circuits interacting favourably with gene-regulatory

networks, where noise-induced multimodality is known to

play a critical role [55,56]. On the one hand, the algorithm

could be used to induce multimodality in the probability distri-

bution of an appropriate intracellular protein, resulting in cell

phenotype diversity. On the other hand, the algorithm could

also be used to make the protein distribution narrower around

the single peak, thus inducing a cell phenotype robustness.
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22. Érdi P, Tóth J. 1989 Mathematical models of
chemical reactions. Theory and applications of
deterministic and stochastic models. Princeton, NJ:
Princeton University Press.

23. Soloveichik D, Seeling G, Winfree E. 2010 DNA as a
universal substrate for chemical kinetics. Proc. Natl
Acad. Sci. USA 107, 5393 – 5398. (doi:10.1073/pnas.
0909380107)

24. Hasatani K, Leocmach M, Genot AJ, Estévez-Torres
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