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Climate shapes mammal community trophic
structures and humans simplify them
Manuel Mendoza 1,2* & Miguel B. Araújo 1,2,3*

Nature’s complexity is intriguing, but the circumstances determining whether or how order

emerges from such complexity remains a matter of extensive research. Using the geo-

graphical distributions and food preferences of all terrestrial mammal species with masses

>3 kg, we show that large mammals group into feeding guilds (species exploiting similar

resources) and that these guilds form trophic structures that vary across biomes globally. We

identify five trophic structures closely matching climate variability and named them boreal,

temperate, semiarid, seasonal tropical and humid tropical owing to their relative overlap with

the distribution of biomes. We also find that human activities simplify trophic structures,

generally transitioning them to species-poorer states. Detected transitions include boreal and

temperate structures becoming depauperate or seasonal- and humid-tropical becoming

semiarid. Whether the observed generalities among trophic structures of large mammals are

indicative of patterns across whole food webs is matter for further investigation. The results

help refine projections of the effects of environmental change on the trophic structure of

large mammals.
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Before embarking on his expedition to South America,
Alexander von Humboldt wrote1: “I shall endeavour to find
out how nature's forces act upon one another, and in what

manner the geographic environment exerts its influence on ani-
mals and plants.” His observations that changes in vegetation
structure match changes in temperature along elevation gradients
became highly influential2. They were the first of a long series of
observations establishing that the broad outlines of species dis-
tributions are generally limited by climate and change in syn-
chrony with changes in climate3. Theory and underlying
assessments of climate change effects on biodiversity are groun-
ded on such observations4. Experiments have challenged the view
that climate alone determines species distributions. For example,
a microcosm experiment showed that responses of Drosophila
species to climate were modified by the presence of parasitoid
wasps5. Field experiments also revealed that interactions among
plants could switch from being predominantly negative to
becoming predominantly positive along elevation6 and water-
stress gradients7, demonstrating that interactions among species
can both modify the environment and the species responses to it.
The degree to which biotic interactions modify the responses of
species to climate and, therefore, alter range limits at biogeo-
graphic scales is still a matter of ongoing debate8–11, but the
extent to which climate influences the biotic interactions that can
coexist in any particular place is much less explored12,13 and is
the focus of our research.

The prevailing view is that distributional dynamics at broad
scales are best characterized by individualistic responses of species
to climate and that biotic interactions play a minor role in this
process14,15. Reliance on this idea has been supported by the
analysis of multiple species response curves along environmental
gradients, typically showing that species’ critical environmental
limits and optima vary independently of one another3. Analyses
of the fossil record further support the view that species respond
individualistically to their environment by revealing that species
associations, at any particular time, are generally not predicting
species associations at different times following environmental
change16. A contrasting view emerges when functional aspects of
communities are analysed17,18. Trophic structures, in particular,
show striking stability over time even when species composition
is severely changed19,20. The idea of energetic controls on com-
munities dates back to the concept of vegetation biomes proposed
by Humboldt2, further expanded by authors including Slo-
bodkin21, Odum22, Lindeman23, and Whittaker24, proposing that
functional properties of local communities are directly related to
the physical environment, chiefly climate. Whether similar gen-
eralisations can be made for animal communities at biogeo-
graphic scales remains a matter of inquiry8,25,26. Contemporary
studies of local trophic structures, namely food webs in
aquatic systems, have found that they share structural features
across climatically similar areas, but relationships tend to be weak
and multiple variables compete as best predictors27–29. It is
conceivable that, globally, general patterns in the distribution of
trophic structures should emerge while local variation would
be overridden by environmental turnover, but empirical
evidence for such prediction is lacking. If broad-scale functional
properties of communities, such as trophic structures, could be
inferred from characteristics of the physical environment, then
projections of environmental change effects on these functional
properties could be made without detailed knowledge of the
myriad direct and indirect biotic interactions that occur in nature.
Such a simplification—already common in vegetation science30—
would represent a major step towards improving the under-
standing of how communities are distributed on earth and
how they will change under future global environmental change
scenarios.

We apply a range of clustering and machine learning analyses
to data on the distributions and feeding preferences of large
mammals around the world to examine patterns in the distribu-
tion of community trophic structures (characterised as identifiable
clusters of trophic guilds), and their relationships with climate and
human development. Starting with the observation that climate
determines the amount of energy available for consumption by
animals via its effects on vegetation, we predict that different, well-
defined, community trophic structures exist around the world and
that differences among them are related to variation in climate.
We identify five community-trophic structures among large
mammal species broadly matching the distribution of biomes
(boreal, temperate, semiarid, seasonal tropical, and humid tropi-
cal). We also identify a sixth species-poor type (depauperate)
matching a variety of climatic and non-climatic limiting factors.
Having found support for both predictions, we foresee that human
disturbances should reduce the amount of energy available to
animal communities, thereby leading to simplification of the
mammal trophic structures expected given the climate. The pre-
diction is also supported by the data with areas featuring high
human impacts closely matching the distribution of simplified
community trophic structures.

Results
Identification of community trophic structures. We examined
distributions and trophic preferences of all known species of
terrestrial mammals with >3 kg (689 species). Based on extensive
literature review (Supplementary Data File 1), we identified 19
trophic resources consumed by large mammals. We clustered
mammals based on their food preferences, a process leading to
identification of 11 consumer strategies or guilds (Supplementary
Data File 2). The trophic structure of the mammal assemblages
within each terrestrial 1º × 1º grid cell was determined based on
the number of species from each guild that occurred therein. We
explored the existence of distinct configurations in trophic
structures by fuzzy clustering guild assemblages across the ter-
restrial grid cells of the world. To minimize biases arising from
human disturbances, we restricted analysis to cells with lower
human impacts. A machine learning approach was used to
interpolate the six trophic structures across the remaining cells
not used to characterize them (see “Methods”). With this process
we uncovered six well-defined trophic structures of large-
mammal communities globally (Fig. 1; Supplementary Fig. 2d).
They differ in species numbers and proportion of guilds (Sup-
plementary Figs. 3b, 4), having well-defined distributions (Fig. 2a).
Five of them have seemingly clear climatic distributions, moder-
ately matching vegetation biomes (Kappa statistic= 0.24)24

(Fig. 2a; Supplementary Fig. 6). The most widely distributed
trophic structure is found mainly at high latitudes (occupying
2584 lower impact cells; Fig. 2a), hence termed boreal; it has small
numbers of species, relatively greater numbers of omnivores,
followed by large carnivores, and plant feeders (Fig. 1, Supple-
mentary Fig. 4). The next most widely distributed trophic
structure was termed temperate (2151 cells; Fig. 2a), having more
species than the boreal type and relatively greater numbers of
plant feeder species, followed by mixed feeders, omnivores, large
carnivores, and small carnivores (Fig. 1, Supplementary Fig. 4).
The humid tropical (491 cells) and seasonal tropical (437 cells)
trophic structures are found around the equatorial belt (Fig. 2a)
being more species rich than boreal and temperate trophic
structures (Fig. 1, Supplementary Figs. 3b, 4). Humid tropical
structures have greater numbers of frugivores, followed by small
carnivores and invertebrate feeders, whereas small carnivores,
plant feeders, and invertebrate feeders, followed by omnivores
and frugivores, characterize seasonal tropical trophic structures
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(Fig. 1, Supplementary Fig. 4). Semi-arid trophic structures (267
cells; Fig. 2a) have the greatest number of large mammal species
and are dominated by omnivores, grazers, plant feeders followed
by small numbers species from several other guilds (Fig. 1, Sup-
plementary Fig. 4).

Unlike the former five community trophic structures, the sixth
type is not always climatically determined. We labelled it
depauperate (2132 cells; Fig. 2a; Supplementary Fig. 3a) because
it features small numbers of species (Fig. 1, Supplementary
Fig. 4). Depauperate trophic structures are found in a variety of
regions, including areas with extreme climatic conditions, such as
hot and dry deserts, the Arctic, but also in Western Europe and
Eastern North America. All oceanic islands (including Australia
and Madagascar) have depauperate trophic structures.

Relationship between community trophic structures and cli-
mate. After mapping the six trophic structures, we modelled their

relationship with climate. Evolutionary learning of globally
optimal classification trees was used to predict the geographical
distribution of trophic structures in relation to climate. The
predicted structures match vegetation biomes more closely than
the observed ones (Kappa increasing from 0.24 to 0.43; Fig. 2b,
Supplementary Fig. 6).

This process also enabled the identification of thresholds
beyond which certain combinations of climate variables are
linked with changes in trophic structures (see “Methods”). The
first threshold (annual temperature below or above 17.6 °C)
splits trophic structures from cold and warm environments
(Fig. 3a). The cold group encompasses depauperate, boreal, and
temperate structures (Fig. 3b, c). The warm group encompasses
mainly depauperate, semiarid, seasonal-, and humid-tropical
structures (Fig. 3d, e). Taking depauperate structures aside, the
split between warm and cold trophic structures is largely
associated with variations in species richness (see “Methods”).
Further splits are largely independent of species richness. Trophic
structures of cold environments are discriminated by isotherm-
ality (the ratio between mean diurnal range and temperature
annual range) and maximum temperature of the warmest month.
Cells with >21.3 isothermality and <11.6 °C maximum tempera-
ture of the warmest month are generally classified as depauperate
(group A, Fig. 3) and found near the Arctic. Above these lower
limits, boreal or temperate structures predominate (groups B, C,
D, and E, Fig. 3). However, isothermality >46.8 (group F, Fig. 3)
does not fully explain differences in the distribution of trophic
structures with precipitation of the wettest month and tempera-
ture of the wettest quarter explaining additional variation
(Supplementary Fig. 5). Differences among warm structures are
explained by annual precipitation and temperature seasonality
(the amount of temperature variation over a given period based
on the variation of monthly temperature averages). With
precipitation <144 mm, structures lean towards depauperate state
typically found in deserts (group G, Fig. 3). Between 144 and 588
mm, semiarid structures predominate (group H, Fig. 3) and
between 588 and 1608 mm seasonal tropical structures emerge
even when exposed to lower temperature seasonality (group I,
Fig. 3). With annual precipitation >1608 mm humid tropical
trophic structures emerge but only when the temperature
seasonality is lower than 10.9 (groups J and K, Fig. 3).

Impact of human activities on community trophic structures.
Evolutionary learning of globally optimal classification trees was
also used to determine the effect of human disturbances on
trophic structures. We first predicted the expected climatic dis-
tribution of trophic structures in the absence of human impacts
and then compared observed trophic structures (Fig. 2a) with
predicted ones (Fig. 2b). Observed structures differing from
predicted ones invariably represent depauperate structures or
simplified versions (Fig. 4a). Spatial congruence between observed
and predicted trophic structures occurs when human impacts are
lower. Spatial mismatches occur when impacts are higher (Sup-
plementary Table 1). Predicted depauperate trophic structures are
restricted to limited energy regions, such as the arctic and hot and
dry deserts. By contrast, trophic structures from Western Europe
and Eastern North America are classified depauperate but pre-
dicted temperate (Fig. 2b). Human impacts are also higher in
several areas across South Asia and Sub-Saharan with observed
trophic structures being classified as semi-arid (Fig. 2a) but being
predicted as seasonal tropical (Fig. 2b).

To explore the effects of human impacts on trophic structures,
we compared areas with mismatches between observed and
predicted trophic structures with a range of human development
variables including human population density and land cover
types (Fig. 4b,c). Results indicate that trophic structures of boreal

Fig. 1 Six types of mammal trophic structures around the world: boreal,
temperate, semi-arid, seasonal tropical, humid tropical, and depauperate.
For convenience, trophic structures are represented as bipartite networks
depicting energy flows between trophic guilds and their main resources.
Resources: grass gr, leaves lv, fruits fr, flowers fw, forbes fb, seeds sd,
invertebrates inv, fish fs, small vertebrates sv, mammals (1–10 kg) sm,
10–100 kgmm, (>100 kg) lm. Trophic guilds: selective herbivores SH, plant
material feeders PF, small carnivores SC, frugivores FR, folivores FL, mixed
feeders (being both grazers and browsers), MF, omnivores OM, grazers Gz,
piscivores PS, invertebrate feeders IF, large carnivores LC. The size of the
nodes for the guilds (white) is proportional to the number of species from
the guild in the food web. Arrows represent the fluxes of energy from
resources to guilds. The magnitude of the fluxes is represented by the
thickness of the arrows and increases with the sum of the estimated
percentage of that resource in the diet of all the species in that guild. The
size of the nodes for resources (black) is proportional to their total
contribution to the web. This contribution is equivalent to the sum of the
estimated percentage of that resource in the diet of all species
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and temperate environments collapse into depauperate state when
land-use pressures are high (Fig. 4b). When primary vegetation
covers ≥1% of the cells (~123 km2), boreal and temperate trophic
structures are found in 80% of the cases. With <1% primary
vegetation, predicted trophic structures match observed trophic
structures when urban landscapes cover <5% of cells and
croplands <54% (Fig. 4b). Shifting tropical trophic structures into
semiarid structures are related to human population density, with
most shifts occurring with >3.6 inhabitants per km2 (Fig. 4c).

All oceanic islands, including Australia, have trophic structures
simplified with regard to their climate potential. It could be that
mammal colonization of islands was uneven among guilds, thus
causing some guilds to be absent31. Alternatively, it could be that
human-driven extinctions were selectively sparing the more
generalist species32,33.

Discussion
Our results suggest that trophic structures converge when com-
munities are exposed to similar environments, a phenomenon

analogous to convergent evolution of similar traits and functions
across lineages exposed to similar conditions. Our analysis
focuses on a subset of regional trophic relationships in large
mammals; whether results are general across feeding groups will
require analyses with more groups of organisms. But climate,
through the combined effects of radiation, temperature, and
water, determines the amount of energy available through pho-
tosynthesis. On Earth, different combinations of climate variables
yield different combinations of resources. The tropics, for
example, are rich in fruits, thus offering great opportunities for
frugivores to increase biomass and diversify. Savannahs, in con-
trast, are rich in herbs, bushes, and low trees, thus offering great
opportunities for grazers and browsers. It follows that if available
energy determines the quantities and types of feeding groups that
are likely to co-occur within communities (Fig. 1), changes in
the amount of energy should lead to predictable changes in the
community trophic structure. Now suppose a species—the
human species—was able to consume meaningful quantities
of available energy so that the net primary productivity of

a

b

Boreal Temperate Depauperate Semi-arid Seasonal tropical Humid tropical

Fig. 2 Geography of large-mammal trophic structures around the world. a Distribution of observed trophic structures. b Distribution of predicted trophic
structures. Predictions were obtained by regressing observed trophic structures in low impacted cells against climate variables and then interpolating them
to the world given climate data (see “Methods”). Colour intensity within each colour class in a is related to the probability of cells belonging to the trophic
structure it has been classified into (see “Methods”)
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ecosystems was significantly reduced. The logical prediction is
that reductions of available energy by human consumption—
perhaps interacting with other human impacts, such as frag-
mentation—should cause trophic structures to switch into sim-
pler forms. This is what we found. Humans globally harvest ca.
25% of the total net primary production34, but the magnitude of
the harvesting is unequally distributed. Consistent with our pre-
diction, we found that areas more exposed to human impacts,
measured through a variety of indicators (see Fig. 4), have
community trophic structures simplified with regard to predicted
structures with climate. Ideally, one would measure flows of
energy percolating through ecosystems. That is, quantify the
energy reaching ecosystems from the sun, made usable by the
presence of water, and then subtract the energy appropriated by
animals and humans35. We cannot yet measure food webs
involving all organisms in communities, let alone quantify the full
energetic balance of ecosystems. That we could identify climatic
and human-impact thresholds, or tipping points, delimiting shifts
between seemingly stable trophic structures involving several
hundreds of organisms is promising. It opens new opportunities
for describing and modelling global environmental change
impacts on the functional characteristics of animal communities,

thus moving beyond familiar approaches focusing on individual
species distributions36.

Methods
Data. Five different sources of data were used: global distributional ranges of
mammal species with >3 kg; species feeding preferences, bioclimatic variables,
land-use variables, and human population density. All geographical data were
plotted in a world terrestrial 1º × 1º grid system.

The global distribution maps of mammal species were derived from IUCN
Global Assessment of native ranges37. The distributions of species were matched to
the taxonomies provided by Wilson38 following Fritz and Purvis39. Occurrences in
grid cells were used to produce a presence/absence matrix with names of the 689
macro-mammal species as columns and the 18418 1º x 1º grid cells as rows. No
records for species occurring in Antarctica were used.

Nineteen trophic resources consumed by mammals were identified based on an
extensive literature review (Supplementary Data File 1). The estimated percentage
of each type of resource in the diet of the 689 large mammal species was established
according to information available in the Animal Diversity Web40, the Ultimate
Ungulate Page and with the help of the references included in Supplementary Data
File 1. The resulting trophic-preferences matrix, with the 19 trophic resources as
columns and the names of the species as rows, is also provided as Supplementary
Data File 2.

Bioclimatic data for the terrestrial surface of the earth were obtained from
WorldClim-Global Climate Data41. We used the full set of 19 bioclimatic variables
available in WorldClim for exploration of bioclimatic correlates of trophic
structures. These variables represent annual trends (e.g., mean annual temperature,
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annual precipitation), seasonality (e.g., annual range in temperature and
precipitation), and extreme or limiting climatic factors (e.g., temperature of the
coldest and warmest month, and precipitation of the wet and dry quarters)
commonly used to model aspects of biodiversity in relation to climate.

Global land-use data were obtained from the Harmonization of Land-Use
Scenarios42. The data included the percentage of surface of each cell covered by
cropland, pasture, primary vegetation, secondary vegetation, and urban land.

Human Population data were obtained from the Gridded Population of the
World (GPWv3) for the year 2000. GPWv3 consists of estimates of human
population by 2.5 arc-min grid cells43. Human population within each 1º × 1º grid
cell was obtained through a zonal operation returning the mean values from 1 km2

cells (the first dataset) that fall within each 1º x 1º square/zone of the study area.

Low human impact cells. Human actions directly or indirectly impact on eco-
system dynamics, hence being expected to affect trophic structures44,45. To
minimize potential biases arising from human disturbances, we restricted the
analysis leading to the identification of trophic structures to 8062 cells with
lower human impact (out of the total 18418 grid cells), defined as those with ≥25%

of the cell covered with primary vegetation, <0.003% covered with urban surface
(lower than the world mean), and with human population <26 hab/km2 (third
quartile).

Objective 1: identifying trophic guilds. Trophic guilds are typically defined by the
diet species have46. When species depend on a single type of resource, the classi-
fication is straightforward: a species only eating fish is unequivocally a Piscivore.
But when species depend on several resources, with varying degrees of dependence
on them, the classification of species into guilds becomes fuzzier. Trophic guilds are
commonly based on arbitrary thresholds regarding the percentage of each type of
resource in the diet of the species46. Here, trophic guilds were identified with c-
means clustering47–49 on the basis of the Euclidean distance between the 689 spe-
cies in the 19-dimensional space defined by the estimated percentage of each type
of resource in their diet (a vector of dimension 19). Clustering analyses were
performed using R statistical software with the package e107150. Eleven trophic
guilds were defined and named consistently with diet categories commonly used in
the literature (Supplementary Fig. 1).
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Objective 2: detecting similar trophic structures. The trophic structure of
mammal communities in every grid cell was characterized based on the number of
species from each trophic guild that occurred therein. As a starting point, we
assigned each species to its correspondent guild and then counted the number of
species of each guild within each cell. The result is a matrix with the 11 trophic
guilds as columns, 18,418 1º × 1º grid cells as rows, and values in the table
representing the numbers of species. The trophic structure in each cell is thus a
point in an 11-dimensional ‘trophic space’ defined by the number of species from
each trophic guild (a vector of dimension 11). Should there be alternative con-
figurations in trophic structures51–57, one would expect cells not to be homo-
geneously distributed in the 11-dimensional trophic space and rather display well-
defined clusters bringing together cells with a similar pattern in their trophic
structure.

To identify these groups of cells with a common pattern in their trophic
structure, we used fuzzy clustering. In ‘hard’ clustering, data are divided into
distinct clusters whereby each element belongs to one cluster. In fuzzy or ‘soft’
clustering, elements show degrees of membership to each cluster (a value between 0
and 1), which is linked to their squared Euclidean distance to the geometric centre
of the cluster. When a clustering analysis is done with a number of clusters equal to
the number of groups that actually exist in the data, the expectation is for clusters
to be more separated (different) and compact (well defined). Indeed, most
measurements of cluster validity quantify the degree of separation and the
compactness of the clusters (e.g., Davies-Bouldin or Dunn Indices). In fuzzy
clustering, clusters with elements showing a high degree of membership are
considered well-defined clusters, whereas clusters with many elements with unclear
membership are considered diffuse or fuzzy. Hence, we calculated an index of
average membership degree (AMDindex) of the samples making up the clusters:

AMDindex ¼
1
n

Xj¼n

j¼1

MDj �
1
c
; ð1Þ

where MDj is the membership degree of sample j to the nearest cluster, n is the
number of samples, and c is the number of clusters.

Well-defined groups in our 11-dimensional trophic space (determined by the
number of species from each trophic guild) are interpreted as indicating the
existence of distinct configurations in trophic structures. Both the existence of well-
defined clusters and their numbers can be detected by tracking changes in the
AMDi through a series of clustering analysis runs with increasing numbers of user-
defined clusters (hereafter referred to as ‘AMDi approach’). Before applying the
AMDi approach to our 11-dimensional ‘trophic space’, we tested it with computer-
generated samples. The degree of membership of randomly distributed samples is
equal to the inverse of the number of clusters (1/c). AMDi is, therefore, always zero
when the artificial samples are randomly distributed (Supplementary Fig. 2a).
Supplementary Fig. 2b shows the curve resulting from the application of the AMDi

approach to 8000 artificial samples (~8062 cells) in a space of 11 dimensions,
grouped into six clusters with standard deviation 1. AMDi reaches the highest value
when the number of user-defined clusters is equal to the number of artificial
clusters (six). This shows that the AMDi approach allows determining the number
of clusters that actually exist in a multidimensional space. The curve depicted in
Supplementary Fig. 2c was obtained the same way as in Fig. 2b, but using artificial
clusters generated with a standard deviation 1.7 instead of 1 (less well-defined). As
expected, AMDi also reaches the highest value when the number of user-defined
clusters is 6, but the highest value of AMDi decreases from 0.6 to 0.39. Therefore,
the AMDi approach not only allows determining the number of clusters that
actually exist, but also estimates their degree of definition. Supplementary Fig. 2d
shows the curve resulting from applying the AMDi approach to the 11-dimensional
trophic space defined by the selected 8062 cells with low human impact. The peak
identifies six clusters, reaching AMDi of almost 0.4, equivalent to that obtained in
Supplementary Fig. 2c with artificial samples and standard deviation 1.7. The
pattern with real samples (Supplementary Fig. 2d) is not exactly like the one
obtained with artificial samples (Supplementary Fig. 2c). There is a secondary peak
with 2 clusters, which might arise because the 6 groups are not independent like the
artificial ones, but part of two larger groups. Because of the many samples and
dimensions in our data, there are many possible clustering solutions, so we
obtained 200 replicates for each user-defined number of clusters and the solution
with highest AMDi was selected.

Once the existence and number of distinct configurations of trophic structures
was demonstrated and counted using the AMDi approach, the same 8062 cells with
low human impact were classified into one of the six basic structures using the
same clustering method. Supplementary Fig. 3a shows their world distribution.
Colour intensity is related to the degrees of membership of the cells with regard to
its cluster. Fuzzy clustering was performed using R statistical software, with the
package “e1071”50.

Each of the 10,356 cells not used to identify the trophic structures, owing to
their higher human impact, was subsequently assigned one of the six trophic
structures identified using Random forests (RFs). RFs58 are powerful tools to
classify large amounts of data. They are able to deal with unbalanced data, do not
expect linear features or even features that interact linearly, and can handle high-
dimensional spaces. RFs have few parameters to tune and the default ones were
used. Once the 18,418 cells of the world were assigned to one of the six food web
architectures, they were mapped (Fig. 2a).

Relationship between trophic structures and species richness. In order to
examine the contribution of species richness to differences among community
trophic structures, we fitted a principal components analysis (PCA). We extracted
its axes representing the variation in trophic structures and related the axes with
species richness. Specifically, the PCA was performed on a matrix with numbers of
11 guilds (as variables) by the 8062 geographical cells used to identify the six
trophic structures (Supplementary Fig. 3c).

The first axis of the PCA explains 50% of the total variance in trophic
structures. Its scores are inversely related to the total number of species in each cell:
low scores coincide with species-rich cells, and high scores coincide with species-
poor cells. Species richness explains 98% of the variance in the first axis of PCA
(r2= 0.98). Two major groups emerge from the first PCA axis: the first group
includes three species-poor trophic structures (depauperate, boreal, temperate); the
second includes three species-rich trophic structures (semi-arid, seasonal tropical,
humid tropical) (Fig. 2a, Supplementary Fig. 3b, 3c, 4). While the differentiation
between species-rich and species-poor structures is strongly related to the first axis
of PCA, differences in trophic structures within the two groups are only slightly
related to species richness (Supplementary Fig. 3c). It is the second axis of the PCA
that accounts for such differentiation. PCA axis 2 explains 16% of the total
variance. Being orthogonal do PCA 1, it is independent of it and thus independent
of species richness. The third component explains 9% but is not related to further
differentiation among trophic structures.

Representing results as energetic networks in Fig. 1. Trophic structures, once
identified, were represented as bipartite energetic networks59 to visually represent
differences in the relative contributions of guilds and resources (Fig. 1). These
bipartite energetic networks were obtained using Gephi 0.8.2 beta60.

Objective 3: climatic modelling of trophic structures. The relationship between
the six trophic structures and climate was modelled using evolutionary learning of
globally optimal classification trees61. Models were calibrated using the 6730
mainland cells out of the 8062 cells with relatively low human impact (see above).
Islands grid cells were excluded because mapping of the six trophic structures
(Fig. 2a) revealed that they do not follow any climatic pattern on islands, being
generally depauperate.

In classification trees, the decision threshold is determined by testing all
possible thresholds and choosing the one that maximize the chosen measure of
homogeneity. In recursive classification trees, these splits are chosen without
consideration of the nodes further down the tree, hence yielding only locally
optimal trees. Globally optimal classification trees search the full parameter space
of trees using evolutionary algorithms62, which is a method inspired by the process
of natural selection. Analyses were performed using R statistical software with the
package “evtree”63. The evtree package allows constraining the complexity of the
resulting tree by limiting the minimum number of samples in a terminal leave or
the maximum depth of the tree. The goal was to find a tree model that, involving
the minimum number of variables and terminal groups, allows for bioclimatic
characterization of the six trophic structures. Such a parsimonious approach
enhances interpretation of inferred relationships while avoiding overfitting. The
resulting tree model was applied to the rest of the terrestrial cells of the world in
order to obtain the expected trophic structure according to their climate.

Objective 4: determining human impacts on trophic structures. Comparison of
the observed and predicted distribution of trophic structures (Fig. 2a, b) shows
consistent disagreements. Our starting hypothesis was that the disagreements were
related to human impacts. Fig. 4a shows (I) depauperate structures whose climatic
prediction is boreal or temperate, (II) semi-arid structures whose climatic pre-
diction is either seasonal or humid tropical, and (III) islands being classified as
depauperate independently of their climatic conditions. To test if disagreements I
and II are related to human activities, their relationship with six human impact
indicators was analysed. These included the percentage of five land cover types
present in each grid cell42 (i.e., cropland, pasture, primary vegetation, secondary
vegetation, and urban land) and human population density43. First, we used a
Student's t test to compare the mean value of individual human impact indicator in
changed and unchanged cells. Differences are significant (<10−2) for all the indi-
cators and for both type I and II disagreements (Supplementary Table 1). In all
cases but two, differences are important and significant (<10−15). The percentage
of surface covered by primary vegetation is more than double in unchanged cells
(i.e., where observed structures match predicted ones) in both types of disagree-
ment. The percentage of surface covered by pasture is also higher in unchanged
cells for both types of disagreement. Secondary vegetation is higher in changed cells
for disagreement of type I and unchanged cells for disagreement type II. The
percentage of area covered by agricultural and urban land, as well as the human
population, is more than double in the changed cells. Human impact indicators are
correlated, so classification trees globally optimized with evolutionary algorithms
were also used to search for an explanatory model relating the human impact
indicators with disagreements I and II (Fig. 4).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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