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Abstract: Acid rain (AR) is an increasingly serious environmental problem that frequently occurs in
Southern China with sulfuric acid rain (SAR) as the main type. SAR can negatively affect the growth
and physiological properties of trees, but mycorrhizal associations may mitigate such detrimental
effects. However, the mechanisms by which arbuscular mycorrhizal fungi control SAR-induced
impacts on Torreya grandis plants remain unclear. A pot experiment was conducted on T. grandis
seedlings, an economically important tree species in Southern China, in which inoculated and non-
inoculated T. grandis seedlings were subjected to three simulated SAR regimes (pH of 5.6, 4.0, and 2.5,
respectively) to examine the effects on the growth, osmotic regulation, and nutrient absorption of
these seedlings. The results show that, although SAR had no effect on the accumulation of biomass, it
significantly decreased the concentrations of proline and soluble protein, shoot Zn2+, P, K+, and Ca2+

concentrations, and the Fe2+ and Mn2+ concentrations of shoots and roots. Mycorrhizal inoculation,
especially with Rhizophagus irregularis, significantly increased total biomass, proline concentration,
and the Zn2+, P, and K+ concentrations in the shoots of T. grandis under lower pH conditions.
Moreover, our findings suggest that the combination of root colonization, acid tolerance, and the
concentrations of shoot-P, shoot-Zn2+, and root-Fe2+ of T. grandis jointly conferred mycorrhizal
benefits on the plants under SAR conditions. Given the enhancement of the nutritional quality of
T. grandis owing to mycorrhizal associations, inoculation with R. irregularis may be preferable for the
culturing and management of these plants under acidic conditions.

Keywords: acid rain; arbuscular mycorrhizal fungus; acid-tolerance index; nutritional quality;
mycorrhizal growth response

1. Introduction

Acid rain (AR) is mainly derived from the drastic emissions of sulfur dioxide (SO2)
and nitrogen oxides (NOX) and is usually known as a type of rainwater with a pH < 5.6.
Due to this low pH, AR poses serious environmental hazards worldwide [1]. In the past
20 years, the centers of AR have transferred from Europe and North America to East
Asia, especially India and China; presently, approximately one-fifth of Chinese cities suffer
from AR [2]. However, the area over which AR falls in China is continuously increasing
with the acceleration of urbanization and industrialization [3,4]. Sulfuric acid rain (SAR),
the main type of AR, is particularly prevalent in Southern China, where the mean pH
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of rainfall in recent years has often been less than 4.6 and has even fallen to 3.6 in some
extreme cases [5–8].

Previous studies have shown that SAR can induce soil and water acidification, forest
decline, and damage to buildings, resulting in heavy economic losses to local govern-
ments [9,10]. Furthermore, SAR has complex ecological consequences in plants, such
as stunting their height, degrading root system growth, interrupting the accumulation
of low-molecular-weight solutes, and obstructing the transportation of nutrients, which
can adversely influence biomass accumulation, decrease plant resistance to unfavorable
conditions, and induce mortality [11–13]. Therefore, physical, chemical, and/or biological
approaches applied to remediate the detrimental effects of SAR or improve resistance to
SAR have received increased attention [12,14–17].

Arbuscular mycorrhizal fungi (AMF), an important component of soil biota, occur
naturally in acidic soils [18–21]. Through symbiotic association, fungal partners obtain
shelter and fixed carbon from the host plants and in return provide multiple benefits to
these plants, such as improved uptake of mineral nutrients, especially phosphorus and
other relatively immobile micronutrients such as zinc, magnesium, copper, and calcium,
reduced oxidative stress, and maintained water balance, which can positively impact
plant growth and improve resistance to abiotic stresses [22–25]. Although AMF may be
adversely affected by SAR [20,26,27], some studies have reported enhanced growth and
performance of mycorrhizal plants under SAR conditions [28–30]. For example, mycor-
rhizal inoculation positively affects the growth and nutrient uptake of Sorghum bicolor [30],
Calamagrostis villosa [31], Koelreuteria paniculata [32], and Thuja occidentalis [28], whereas
it has little to no effect on the growth of Deschampsia flexuosa [31] under simulated SAR.
Furthermore, the beneficial effects of Acaulospora tuberculata were higher than those of
Glomus fistulosum and G. mosseae [31] under acidic conditions. These responses indicate
that the efficacies of AMF on plants under acidic conditions are controversial and appear
to depend on the fungal and host plant species. To date, most related studies have been
conducted in crops or herbaceous plants, and the mechanisms underlying the protective
effects of AMF on tree species under SAR remain poorly understood.

Chinese torreya (Torreya grandis Fort. ex Lindl. cv. Merrillii) is an economically
important tree species that has been used in food and traditional medicine for more than
1000 years in Southeastern China [33,34]. Zhejiang Province, the main planting region of
T. grandis, suffers from the most frequent SAR, with pH values varying from 5.6 to 3.8 [7].
T. grandis has been reported to form mycorrhizal associations with several AMF taxa [35].
However, this tree species is moderately sensitive to SAR, and the preferred pH value
is approximately 4.5 [36]. In this study, we hypothesized that AMF colonization could
mediate SAR-induced effects on T. grandis with enhanced nutrient uptake. To test this,
a greenhouse experiment was conducted to explore the effects of AMF on the growth,
osmotic adjustment, and nutrient absorption of T. grandis seedlings under simulated SAR
regimes. The results of this study should improve our understanding of the mechanisms
underlying the alleviation of SAR-induced impacts on plants via mycorrhizal inoculation.

2. Materials and Methods
2.1. Plant Materials and AMF Preparation

The seeds of T. grandis were obtained from the Hualong Nursery Corporation (Hangzhou,
China). On 1 March 2017, the seeds were surface-sterilized with a 5% sodium hypochlorite
solution (Yonghua Chemical Co., Ltd., Changshu, China) for 15 min and then rinsed with
deionized water. The seeds were then sown in trays containing 1 kg of autoclaved substrate
with a mixture of sand and peat (1:1, v/v) in a growth chamber set to 20 ◦C and 15 ◦C
during the day and night, with 16- and 8-h photoperiods, respectively. After emergence,
90 seedlings of identical sizes were selected for use in the following treatments.

Two dominant AMF species in the field, Rhizophagus irregularis (N.C. Schenck and
G.S. Sm.) C. Walker and A. Schüßler (BGC BJ09) and Funneliformis mosseae (T.H. Nicol-
son and Gerd.) C. Walker and A. Schüßler (BGC HUN03B), were selected as the inocula,
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which were supplied by the Bank of Glomeromycota in China at the Institute of Plant
Nutrients and Resources, Beijing Municipal Academy of Agriculture and Forestry Sci-
ence. R. irregularis was initially isolated from the rhizosphere of tomatoes in Langfang
(Hebei Province, China) and F. mosseae was isolated from the rhizosphere of Roegneria kamoji
Ohwi in Chenzhou (Hunan Province, China). These two mycorrhizal inocula were multi-
plied for five months using Sorghum bicolor L. by the trap culture method in a plastic pot
with fine sand as the substrate [37]. In this experiment, the R. irregularis inoculum con-
tained ~200 spores g−1 and abundant mycelia, whereas the F. mosseae inoculum contained
~160 spores g−1, as well as colonized roots and mycelium fragments. Both fungal inocula
were in accordance with the highest possible number test [38].

2.2. Experimental Design

On 14 April 2017, the seedlings were moved into a greenhouse situated at the
Pingshan Research Station of Zhejiang A & F University in Hangzhou city, Zhejiang
Province, China (30◦15′ N, 119◦43′ E). After six days of adaptation to the greenhouse
environment, 72 healthy and similar-sized seedlings were transplanted into plastic pots
(16.5 cm × 18 cm × 12 cm) containing 2 kg of soil substrate. Single seedlings were planted
in each pot. The soil substrate used in this experiment consisted of a mixture of field
soil and peat in the ratio 3:1 (v/v) with γ-irradiation (25 kGy) [39]. The substrate had
the following properties: pH 5.6, organic matter 22.8 mg·g−1, total N 0.85 mg·g−1, and
available P 0.42 mg·g−1.

The experiment was performed using 12 factorial combinations of SAR and AMF
regimes. The three intensities of SAR regimes employed were pH 5.6, 4.0, and 2.5. The
AMF regimes comprised four levels: autoclaved non-mycorrhizal inoculum, inoculated
with R. irregularis, inoculated with F. mosseae, and inoculated with the combination of
R. irregularis and F. mosseae. Six replicate pots were set for each treatment combination, for
a total of 72 pots. The amount of inoculum for single-species inoculation was 40 g per pot,
and the amount of each AMF species for non-mycorrhizal and two-species inoculation
was 20 g per pot. The inocula were placed into 15-cm pots just below the roots of the
seedlings after transplanting [40]. Meanwhile, the pots with non-mycorrhizal inoculation
were supplied with a 5 mL aqueous filtrate of the two fungal species (non-sterilized AMF
mixture-distilled water ratio = 1:3) filtered twice through Whatman No. 1 paper to correct
for possible differences in soil microbial populations [41].

On 18 June 2017, simulated SAR treatments were explored. In this study, we selected
pH values of 5.6, 4.0, and 2.5 as the treatment regimes, which were consistent with the
annual changes in pH values for SAR in most areas of Southern China [7]. We first prepared
a stock acid solution by mixing 0.5 mol L−1 of H2SO4 and 0.5 mol L−1 of HNO3 (Shanghai
Lingfeng Chemical Co. Ltd., Shanghai, China) at a 2:1 ratio, which was equivalent to
the ionic ratio of natural precipitation at the local site [7]. Second, the corresponding
SAR regimes were generated by adding distilled water (average pH: ~6.8) to the stock
acid solution. A total of 13.49 L of simulated SAR was applied to each pot with 253 mL
applied every two days, which is approximately equivalent to the annual precipitation in
Hangzhou city, Zhejiang Province, China [42]. Lastly, 5 mL of adjusted Hoagland solution
was received weekly by each pot [43]. These experiments were conducted from 20 April to
25 November 2017. At the end of the experiment, the shoots and roots of seedlings were
harvested separately.

2.3. Measurement of Plant Biomass and AMF Colonization

All plants were divided into roots, stems, and leaves after the experiment ended,
and the biomass of each part was weighed after drying at 60 ◦C for 48 h. Mycorrhizal
colonization was determined by first randomly selecting the root segments of three plants
from each treatment for digestion in 10% KOH (Xilong Chemical Co. Ltd., Guangzhou,
China) at 90 ◦C for 90 min, followed by rinsing with distilled water and then acidification in
2% HCl (Shanghai Lingfeng Chemical Co. Ltd., Shanghai, China) at ambient temperature



J. Fungi 2021, 7, 296 4 of 15

for 5 min. The root segments were then stained with 0.05% trypan blue (Sangon Biotech
Co. Ltd., Shanghai, China) at 90 ◦C for 1 h in a water bath as described by Phillips and
Hayman [44]. Finally, the stained root segments were examined under a microscope
according to the gridline intercept method [45].

2.4. Measurement of Proline and Soluble Protein Contents

After harvesting, the proline and soluble protein contents of the leaves of four
plants randomly selected from each treatment were immediately determined via spec-
trophotometry using commercial kits (Nanjing Jiancheng Institute of Bioengineering,
Nanjing, China) [46].

2.5. Measurement of Plant Nutrient Contents

The dried shoot and root samples of three randomly selected plants from each treat-
ment were ground separately, and their macro- and micronutrient contents were analyzed.
The N and P contents were determined using the Kjeldahl and ammonium molybdate
blue methods, respectively [47], whereas the K+, Na+, Ca2+, Mg2+, Fe2+, Zn2+, and Mn2+

contents were measured following the methods described by Colla et al. [48] using an
atomic absorption spectrophotometer (AA7000; Shimadzu, Japan).

2.6. Data Analysis

To quantify the influence of mycorrhizal colonization, the mycorrhizal growth re-
sponse (MGR) was calculated as described by Johnson et al. [49]:

MGR = loge

(
DWAMF

Avg(DWnon−AMF)

)
(1)

where DWAMF is the total dry weight of mycorrhizal plants and Avg(DW non−AMF) is the
mean dry weight of non-colonized plants subjected to identical pH conditions (n = 6).

The acid−tolerance index (ATI) of each plant was computed following He et al. [29]:

ATI = 1− Bi,max − Bi

Bi,max
(2)

where Bi,max is the largest total biomass of the six plants at pH 5.6, with identical AMF
inoculation, and Bi is the total biomass of each of the six plants at pH levels of 2.5 and
4.0 (both are the stressful pH values in our study). Target species for which 0 < ATI < 0.3,
0.3 < ATI < 0.6, and ATI > 0.6, were considered as acid-sensitive, moderately acid-sensitive,
and acid-tolerant, respectively.

A two−way analysis of variance was used to study the effects of AMF and SAR
on plant growth, physiochemical parameters, MGR, ATI, and nutrient contents. Before
analysis, all data were subjected to Levene’s test for the equality of variance and the Shapiro–
Wilk test for normality. When the interactive effects of SAR and AMF were significant
(p < 0.05), a least significant difference test was used to compare the significance of plant
parameters among different treatments. Pearson’s correlation analysis was also used to
analyze the relationship between paired traits of T. grandis, and linear regression was used
to determine the relationship between MGR and related parameters. Statistical analyses
were conducted using SPSS v. 23.0 (SPSS Inc., Chicago, IL, USA) and R v. 4.0.2 [50], and
graphs were generated using Origin 2018 (Origin Lab Co., Northampton, MA, USA).

3. Results
3.1. Mycorrhizal Colonization

As shown in Figure 1, there was nearly no mycorrhizal colonization (MC) in the roots
of T. grandis seedlings with non-mycorrhizal inoculation (MC < 3.35%). Meanwhile, three
treatments of AMF species successfully colonized the roots of T. grandis at all pH levels,
with root colonization ranging from 19.9 to 60.83%. There were no significant differences
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in MC between different AMF across all pH levels and the highest root colonization was
recorded for plants inoculated with a combination of R. irregularis and F. mosseae at higher
pH levels (5.6 and 4.0), and with R. irregularis at pH 2.5. Significant interactive effects of
SAR and AMF on MC were observed (Table S1).
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3.2. Plant Growth and Physiochemical Parameters

In this study, SAR did not significantly affect the total dry weight (TDW) of T. grandis
seedlings and, at pH 4.0, the TDWs of mycorrhizal plants were higher than those of
non-mycorrhizal plants, especially in bi-inoculated plants. At pH 2.5, the highest TDW
was found in plants inoculated with R. irregularis (Figure 2A). Additionally, significant
interactive effects were detected between SAR and AMF on TDW (Table S1). Moreover,
neither SAR nor AMF had significant impacts on the distribution of biomass (Figure 2B;
Table S1). These responses showed that mycorrhizal inoculation mainly affected the
biomass accumulation, not the biomass allocation, of T. grandis under acidic conditions.

Different changes in proline concentrations were observed between mycorrhizal and
non-mycorrhizal plants in response to SAR; at pH 4.0 and 2.5, the proline concentrations
were higher in mycorrhizal plants, among which plants inoculated with R. irregularis
and the combination of R. irregularis and F. mosseae possessed the highest proline content
records at pH 4.0 and pH 2.5, respectively (Figure 3A). SAR alone had no effect on the
soluble protein (SP) concentrations of T. grandis seedlings (Table S1). At pH 4.0, the highest
SP concentration was recorded in bi-inoculated plants, whereas at pH 2.5, the highest
concentration was recorded in plants inoculated with F. mosseae alone, with concentrations
62.8% higher than those of non-mycorrhizal plants (Figure 3B). A significant interaction
between SAR and AMF was found in the SP concentrations of the plants (Table S1).
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3.3. Concentrations of Shoot and Root Mineral Nutrients

SAR alone significantly decreased the concentrations of micronutrients (Zn2+, Fe2+,
and Mn2+) in T. grandis seedlings. At lower pH levels (4.0 and 2.5), the shoot Zn2+ concen-
trations of mycorrhizal plants were higher than those of non-mycorrhizal plants, especially
in plants inoculated with R. irregularis; however, the root Zn2+ concentrations of these
plants were lower than those of non-mycorrhizal plants (Figure 4A). At all pH levels, AMF
inoculation significantly decreased the shoot and root Fe2+ concentrations compared with
their respective controls (Figure 4B). Similarly, at a pH of 5.6, the shoot and root Mn2+

concentrations in mycorrhizal plants were lower than those of non-mycorrhizal plants,
whereas at lower pH levels, there were no differences between them with either one of
the AMF inocula (Figure 4C). SAR, AMF inoculation, and their interactions significantly
impacted the Zn2+, Fe2+, and Mn2+ concentrations in the shoots and roots of T. grandis
seedlings (Table S1).
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The concentrations of N, P, K+, Na+, Ca2+, and Mg2+ in the shoots and roots of T. grandis
seedlings were significantly affected by SAR, AMF, and their interactions (Table S2). SAR
alone did not have a significant effect on N concentrations in the shoots and roots of
non-mycorrhizal or mycorrhizal plants and, with the exception of the bi-inoculated plants,
the N concentrations in the shoots and roots of mycorrhizal plants were lower than those
of non-mycorrhizal plants (Figure 5A). SAR significantly decreased P concentrations in the
shoots of non-mycorrhizal plants, but not in mycorrhizal plants. At the lowest pH (=2.5),
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AMF significantly increased the P concentrations in shoots, especially with inoculation
by R. irregularis (Figure 5B). The P concentrations in shoots were dominantly affected by
SAR and AMF, whereas those in the roots were less affected. SAR alone negatively affected
the K+ concentrations in the shoots of non-mycorrhizal plants, but not in the roots of any
plants (Figure 5C). At a pH of 5.6, the K+ concentrations in the shoots of mycorrhizal plants
were lower than those of non-mycorrhizal plants at pH 4.0 but higher than those of their
counterparts; at all pH values, the K+ concentrations in the roots of mycorrhizal plants
were lower than those of non-mycorrhizal plants (Figure 5C).
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The effects of SAR and AMF on Na+ and Mg2+ concentrations in the shoots and roots
varied (Figure 5D,E). The Mg2+ and Ca2+ concentrations in the shoots were consistently
higher than those in the roots (Figure 5E,F). SAR significantly increased the Ca2+ concen-
trations in the shoots of non-mycorrhizal plants but not in mycorrhizal plants, whereas
those in the roots initially increased and then frequently declined (Figure 5F). At the lowest
pH level (2.5), the Ca2+ concentrations in the shoots and roots of mycorrhizal plants were
lower than those of non-mycorrhizal plants.

3.4. Mycorrhizal Benefits and the Relationships between Plant Traits

At lower pH values (4.0 and 2.5), the ATI values suggested that non-mycorrhizal plants,
and those inoculated with R. irregularis alone or with the combination of R. irregularis and
F. mosseae, were tolerant to SAR (ATI > 0.6), whereas plants inoculated only with F. mosseae
were moderately acid-sensitive (0.3 < ATI < 0.6). At a pH of 2.5, the highest ATI value was
detected in plants inoculated with R. irregularis, which was 20.2, 157.6, and 67.3% higher
than that in non-mycorrhizal plants, plants inoculated with F. mosseae alone, and plants
inoculated with the combination of the two AMF species, respectively (Figure 6A). With
decreases in pH, the MGR of plants inoculated with R. irregularis increased, whereas those
inoculated with F. mosseae or with both AMF species decreased significantly, suggesting
that R. irregularis more positively impacted plant growth, especially at pH 2.5 (Figure 6A).
Furthermore, MGR was positively and linearly correlated with MC, ATI, shoot-P, shoot-
Zn2+, and root-Fe2+ concentrations, which may be the mechanism underlying mycorrhizal
efficacy (Figure S2, Figure 7).
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4. Discussion

In this study, we aimed to explore the effects of AMF on the growth, physicochemical
parameters, and nutrient uptake of T. grandis under simulated sulfuric acid rain. We found
that SAR alone negatively affected certain physicochemical parameters and nutrient acqui-
sition, and AMF colonization greatly increased total dry biomass, proline concentration,
and P, Zn2+, and K+ concentrations in the shoots of T. grandis, especially with inoculation
by R. irregularis under the lower pH levels when compared to the non-mycorrhizal controls.
These results support our hypothesis that AMF can, to some degree, mediate the unfavor-
able effects of SAR on T. grandis seedlings. Furthermore, our results show that mycorrhizal
efficiency was mainly enhanced at lower pH levels, implying the specific control of SAR.

Biomass can be a useful indicator of plant growth and performance under SAR
stress [16]. In this study, SAR alone had no effect on the total biomass of T. grandis, which
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is consistent with a study on maize grown under pH values ranging from 2.0 to 7.0 [51].
The response of biomass to SAR suggested that SAR did not overstress the growth of
T. grandis, which could be ascribed to the relatively high acid-tolerance of most T. grandis
plants, with the exception of those inoculated with F. mosseae (Figure 6A). However, AMF
inoculation significantly increased the biomass accumulation of T. grandis under lower pH
conditions (i.e., 4.0 and 2.5), which is consistent with the observations of C. villosa under
acidic conditions [31]. Previous studies have also shown similar mycorrhizal efficiencies
for 24 tropical forage legumes grown in a pH of 4.36 [52], cassava grown in soil with pH 3.9,
and sorghum in pH 4.5 [53]. However, enhancements to biomass were not found in the
mycorrhizal plants of D. flexuosa grown under SAR conditions [31]. Thus, mycorrhizal
benefits depend on both the host plant species and pH levels. Moreover, AMF inoculation
in this study mainly affected the accumulation of biomass rather than its allocation, which
agrees with the response of Chrysanthemum morifolium to mycorrhizal inoculation under
salinity stress [37].

AMF inoculation not only enhanced the growth of T. grandis, but also the acquisition
of elements in this study. In our study, mycorrhizal efficiency was found to be directly
correlated to P and Zn2+ concentrations in shoots and Fe2+ concentration in roots. P is
an important macronutrient in plant cells, including the sugar-phosphates that facilitate
respiration and photosynthesis, the phospholipids that make up plant membranes, and the
nucleotides used in metabolism and in DNA and RNA. Meanwhile, a deficiency in P stunts
plant growth, resulting in dark green coloration, necrotic spots on the leaves, slender stems,
and delayed maturation [54]. P is the most commonly reported mineral nutrient to be
enhanced with mycorrhizal inoculation under stressful conditions [23,26,55], which was
corroborated in our study but was not noted in previous studies on mycorrhizal sorghum
grown in acid soils [30]. Zinc is an essential micronutrient for chlorophyll biosynthesis in
some plants, and Zn deficiencies are characterized by reductions in intermodal growth
and by small and distorted leaves with white necrotic spots. Additionally, Zn in food
can increase human appetites and promote neurological development, thereby benefiting
human health [54]. In the present study, the mycorrhizal efficiency of Zn2+ in plant
shoots is in agreement with maize grown on acid soils [26] and sorghum grown in soil at
pH 4.1 [53]. Fe2+ is another nutritional element and is normally less available at higher
pH values [53], whereas AMF inoculation did not offer benefits, which was in line with
the results on Stylosanthes guianensis [56] but was contrary to results on sorghum grown
in acidic soils [30]. Notably, in this study, R. irregularis was more efficient at increasing
P and Zn2+ acquisition in T. grandis shoots than other mycorrhizal fungi, which could
therefore enhance the yield and nutritional quality of T. grandis nuts in SAR-impacted areas.
Numerous studies have confirmed the positive effects of AMF on nutrient uptake and
plant quality, which can be considered as an assurance against their deterioration caused
by unfavorable factors [23,57,58].

Improved P and Zn2+ uptake by AMF under acidic conditions in this study might
have been due to increased absorption by the extensive hyphal network for exploring
larger soil volumes and increasing root growth, decreasing the distance that the elements
had to diffuse to reach plant roots, or by the release of organic acids and phosphatase to
chemically modify organic compounds by hyphae [53,59]. Moreover, the results of this
study reveal that the percentage of root colonization in mycorrhizal plants is not affected
by SAR with pH values ranging from 2.5 to 5.6. This is a finding that is consistent with the
root colonization of spring oats (Avena sativa L.) and potatoes (Solanum tuberosum L.) at soil
pH values between 4.5 and 7.5. Nevertheless, the highest colonization of any of the three
fungal types in this experiment occurred at pH 4.0. Reportedly, the optimal pH values
for the maximal root colonization of cassava (Manihot esculenta Crantz) with G. manihotis,
Acaulospora mellea, and Entrophospora colombiana are 4.4, 4.5, and 4.8, respectively [26].
Evidently, AMF differ in their pH preferences; however, in this study, mycorrhizal efficiency
was linearly correlated with root colonization, which is contrary to the finding that the
benefits of AMF on the growth of fenugreek (Trigonella foenum-graecum) were independent
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of root colonization under salinity stress [60]. Furthermore, AMF performed differently in
terms of mediating the effects of SAR, and the plants benefited more from inoculation with
R. irregularis under lower pH regimes. These functional differences among AMF species
may reflect stress-specific adaptive mechanisms [61,62].

It remains unclear how exactly AMF promote plant performance under unfavorable
conditions. Previous studies have suggested that the improvement in nutrient uptake
(especially P), increased osmotic protective agents, such as proline, soluble sugars, or
amino acids, and/or the enhancement of physiological processes, such as photosynthesis
or water absorption capacity, are responsible for the mycorrhizal benefits [23,63,64]. In our
study, a combination of root colonization, acid tolerance, and the concentrations of shoot-
P, shoot-Zn2+, and root-Fe2+ in T. grandis likely worked together to confer mycorrhizal
benefits under SAR.

5. Conclusions

In this study, AMF inoculation, especially with R. irregularis, significantly increased
total biomass, proline content, and the Zn2+, P, and K+ concentrations in the shoots of
T. grandis under high SAR intensities, providing evidence that AMF can mediate SAR-
induced negative effects on T. grandis plants to a certain extent. Furthermore, our study
revealed that the combination of root colonization, acid tolerance, and the concentrations
of shoot-P, shoot-Zn2+, and root-Fe2+ in T. grandis may be responsible for mycorrhizal
efficiency under SAR. In fact, with improvements in living standards, consumer interest in
the quality of edible products, such as the nuts of T. grandis, has increased. Considering
the specific mycorrhizal efficacy of AMF on shoot P and Zn2+ contents in response to SAR
observed here, inoculation with R. irregularis may be a preferable means of enhancing the
nutritional quality of T. grandis grown in regions suffering from frequent SAR. However,
our experiment was conducted under greenhouse conditions, and mycorrhizal efficacy can
be affected by several environmental factors. Therefore, field trials are now required to
verify our conclusions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7040296/s1, Table S1: Effects of sulfuric acid rain (SAR), arbuscular mycorrhizal fungi
(AMF), and their interactions on growth, physiological, and biochemical indexes, and micronutrient
concentrations of Torreya grandis seedlings; Table S2: Effects of sulfuric acid rain (SAR), arbuscular
mycorrhizal fungi (AMF), and their interactions on macronutrient concentrations of Torreya grandis
seedlings; Figure S1: Colonization of arbuscular mycorrhizal fungi in the roots of Torreya grandis
plants under sulfuric acid rain; Figure S2: Correlation coefficients of the variables of Torreya grandis
across the twelve treatment combinations. Blue and red colors indicate positive and negative
significant correlations, respectively. In the upper triangle, the darker the circle color is, the stronger
the correlation is. Significance levels: * p < 0.05; ** p < 0.01; *** p < 0.001.
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