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Social structure, limited dispersal, and spatial heterogeneity in resources are ubiquitous in wild vertebrate populations. As a result,

relatives share environments as well as genes, and environmental and genetic sources of similarity between individuals are poten-

tially confounded. Quantitative genetic studies in the wild therefore typically account for easily captured shared environmental

effects (e.g., parent, nest, or region). Fine-scale spatial effects are likely to be just as important in wild vertebrates, but have been

largely ignored. We used data from wild red deer to build “animal models” to estimate additive genetic variance and heritability

in four female traits (spring and rut home range size, offspring birth weight, and lifetime breeding success). We then, separately,

incorporated spatial autocorrelation and a matrix of home range overlap into these models to estimate the effect of location or

shared habitat on phenotypic variation. These terms explained a substantial amount of variation in all traits and their inclusion

resulted in reductions in heritability estimates, up to an order of magnitude up for home range size. Our results highlight the

potential of multiple covariance matrices to dissect environmental, social, and genetic contributions to phenotypic variation, and

the importance of considering fine-scale spatial processes in quantitative genetic studies.
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Additive genetic variance (VA) and heritability (h2, the ratio of ge-

netic to phenotypic variance) are fundamental parameters in our

understanding of the evolutionary potential and dynamics of traits

in nature (Lande 1982; Houle 1992). Quantitative genetic models

rely on the phenotypic similarities between relatives to estimate

them (Falconer and Mackay 1996; Lynch and Walsh 1998). The

application of “animal models,” a form of mixed-effects model

in which VA is estimated using a genetic relatedness matrix de-

rived from a multi-generational pedigree (Lynch and Walsh 1998),

in wild populations has advanced our understanding of evolu-

tionary genetics in nature (Ellegren and Sheldon 2008; Kruuk

et al. 2008). However, wild populations are characterized by high

levels of environmental heterogeneity and relatives often share

environments. It has been argued that the multi-generational ap-

proach of the “animal model” to estimating heritability reduces

bias from environmental similarities because the model uses both
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phenotypic resemblance between close relatives and more distant

relatives, who are less likely to live under similar environmental

conditions (Postma and Charmantier 2007). Nonetheless, fail-

ing to properly account for such shared environmental effects

is known to bias estimates of parameters derived from “animal

models” (Kruuk and Hadfield 2007), and it has become com-

mon practice to account for certain kinds of shared environmental

effects (e.g., parental identity, nest, group, or region of study

area) by incorporating these into models as fixed or random

effects (e.g., Kruuk et al. 2001; MacColl and Hatchwell 2003;

Charmantier et al. 2004; Wilson et al. 2005; Kruuk and Hadfield

2007).

However, beyond these shared environment effects, social

structure and natal philopatry—both of which are ubiquitous

in wild vertebrates—are likely to result in spatial associations

among relatives throughout individuals’ lives. Where relatives are

associated in space throughout their lives, and the environment

is spatially heterogeneous, it follows that relatives are more

likely to experience similar fine-scale environmental effects than

nonrelatives. Relatives will therefore show greater resemblance

to one another. If related individuals share both genes and space,

the potential exists for a positive correlation between genetic

relatedness and similarity resulting from spatial effects. Although

more challenging to incorporate within “animal models” than

most shared environments currently considered in the wild animal

literature, like all nongenetic causes of phenotypic similarity

between relatives spatial similarities have clear potential to bias

estimates of VA and h2, as well as other components of variance

(Falconer and Mackay 1996). To date, the importance of spatial

similarity in quantitative genetic studies of wild vertebrates has

been largely dismissed. Here, we examine the effects of spatial

autocorrelation (SAC) and home range overlap on phenotypic

variation and their potential to bias estimates of VA and h2 in a

wild red deer population.

SAC is the dependence of a given variable’s value on the val-

ues of the same variable measured at nearby locations (Cliff and

Ord 1981; Fortin and Dale 2005). It has long been recognized as a

source of bias in quantitative genetic analyses of plant agriculture

and forestry studies (Cullis and Gleeson 1989, 1991; Burgueno

et al. 2000; Costa e Silva et al. 2001), as well as more generally in

ecology, both as a source of bias but also in identification of rel-

evant and interesting spatial processes (Legendre 1993; Kissling

and Carl 2008; Fortin and Dale 2009). In quantitative genetic anal-

yses of agricultural and forestry trials, SAC can be accounted for

to some extent by experimental design and appropriate fitting of

block effects. However, particularly in forestry trials, substantial

heterogeneity may exist within sites that can be further modeled

by the inclusion of particular SAC functions (Dutkowski et al.

2002). Simulation studies have shown that variance component

estimates in mixed-effects models were upwardly biased when

positive SAC was not accounted for (Magnussen 1993), although

other forestry studies have found that accounting for SAC can

have differing effects on estimates of additive genetic variation

(Costa e Silva et al. 2001; Dutkowski et al. 2002).

In studies of wild animals, the effect of SAC on estimates

of quantitative genetic parameters has received little attention.

The notable exception is a study of laying date and clutch size in

a wild great tit population, which used parent–offspring regres-

sion to estimate VA and h2 (van der Jeugd and McCleery 2002).

Here, it was found that failure to account for SAC resulted in

substantial overestimation (more than 60%) of heritability in lay-

ing date, but not in clutch size. Although suggesting that SAC

can in some cases represent an important source of both phe-

notypic variation and bias in quantitative genetic analyses, this

study did not apply particularly powerful or informative statis-

tical techniques. Parent–offspring regression conflates parental

environment and genetic effects; the “animal model” provides a

much more powerful tool for accurately estimating VA and sep-

arating environmental and genetic sources of variance (Lynch

and Walsh 1998; Kruuk 2004). Furthermore, the study examined

SAC effects by simply comparing parent–offspring regressions

among groups of parents and offspring breeding at three differ-

ent distances apart (van der Jeugd and McCleery 2002). In fact,

as the forestry studies discussed above illustrate, autocorrelation

functions can be simultaneously estimated and accounted for di-

rectly within mixed-effects models that also estimate VA and from

which h2 can therefore be calculated. To our knowledge, such an

approach has yet to be applied to test the importance or nature

of SAC underlying phenotypic variation, or its effects on pa-

rameter estimates from “animal models,” in any wild vertebrate

system.

Implementation of SAC functions within mixed models re-

quires individuals to be assigned specific spatial locations (e.g.,

average lifetime locations, locations of nest). However, most ani-

mals are mobile and home range sizes and shapes are likely to vary

markedly between individuals. Methods for specifically assessing

the importance of home range overlap effects on phenotypic vari-

ation and in estimating quantitative genetic parameters are there-

fore also desirable. In an “animal model,” a matrix of pairwise

genetic relatedness coefficients (the “A matrix”) among individ-

uals in a population is fitted within a mixed-effects model to esti-

mate VA as the phenotypic similarity among relatives (Henderson

1953, 1976). In animal breeding, it is relatively common prac-

tice to fit additional matrices to estimate dominance or epistatic

genetic variance (e.g., Smith and Maki-Tanila 1990; Palucci

et al. 2007). Multi-matrix approaches (fitting additional vec-

tors of random effects with their associated covariance matrices)

have recently been advocated to estimate and account for shared

environment effects alongside genetic effects (Danchin et al.

2011), but have yet to be implemented empirically. Coefficients
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measuring the degree of home range overlap among individuals,

or indeed any measure of social or spatial association, can read-

ily be calculated if sufficient spatial or social interaction data are

available. Dyadic home range overlap coefficients, assuming they

scale similarly to the relatedness coefficients in the A matrix,

can be built into a matrix incorporating all pairwise comparisons

among individuals (which we term the “S matrix”) and fitted as

a random effect alongside the A matrix (see methods). Such a

“double matrix” approach would yield estimates of both VA and

the variance attributable to home range overlap among individu-

als and could provide important insight into shared environmental

effects and reduce bias in estimates of heritability.

THE PRESENT STUDY

In this study, we test the importance of shared environmental

effects on four female phenotypic traits—rut home range size

(RHR), spring home range size (SHR), offspring birth weight

(BW), and lifetime breeding success (LBS)—in a wild popula-

tion of red deer. In this species, females are strongly philopatric,

with little dispersal from their natal sites, and the majority of

females associate in loosely matrilineal groups (Clutton-Brock

et al. 1982). As a result, we observe fine-scale genetic structure

within the female population (Nussey et al. 2005c). Habitat and

vegetation types are also highly spatially structured within the

study area (Clutton-Brock et al. 1982; McLoughlin et al. 2006),

so relatives may have similar phenotypes due to shared adult en-

vironment rather than genes. We chose to investigate variation in

home range sizes as focal traits because they are by definition

likely to be spatially autocorrelated due to their dependency on

food availability. Females are expected to trade-off the range size

needed to acquire sufficient food with the energy required to move

across this range (McNab 1963); therefore, home range size will

be dependent upon the availability and quality of forage and so is

expected to vary spatially over the study area. Consequently, we

predicted large shared environment effects and considerable bias

in estimates of heritability in these two home range size measures.

Offspring BW is a heritable but also highly plastic maternal trait

that correlates with female annual reproductive performance in

this population (Coulson et al. 2003; Nussey et al. 2005a; Stopher

et al. 2008), although the importance of shared environmental

effects during adulthood on this trait has yet to be determined.

Finally, lifetime breeding success is a trait of significant evolu-

tionary importance as a measure of individual fitness across many

taxa (Merila and Sheldon 2000; Rodriguez-Munoz et al. 2010).

It has been shown not to be heritable but to be associated with

resource selection by females in this population (Kruuk et al.

2000; McLoughlin et al. 2006). Developing our understanding of

the fine-scale environmental causes of variation in such fitness-

related traits is central to understanding evolutionary dynamics in

natural systems.

Previous quantitative genetic studies of this population have

used “animal models” to estimate VA and calculate h2 in various

traits, while also illustrating the importance of simultaneously

accounting for nongenetic among individual variation (so-called

“permanent environment” effects), maternal and matrilineal ef-

fects (Kruuk et al. 2000; Kruuk and Hadfield 2007). Here, we

extend such models in our four selected traits by fitting spatial

information using two different but not mutually incompatible

techniques: (1) incorporating SAC as a first-order separable au-

toregressive process in two dimensions, such that the SAC be-

tween two values of a trait is modeled as a power function of

the spatial distance between the values, in the x and y directions

(Cullis and Gleeson 1991; Gilmour et al. 1997), and (2) incor-

porating home range overlap effects, by fitting an “S matrix” to

the “animal model.” We examine the extent to which these ef-

fects explain variation and the effects of their inclusion on the key

quantitative genetic parameters, VA and h2, for each trait.

Methods
STUDY POPULATION AND DATA COLLECTION

The data in this study are taken from a wild population of red deer,

Cervus elaphus, on the North Block of the Isle of Rum, Scotland,

which has been intensively monitored since 1971. All individuals

in the population can be recognized by artificial markings or

by natural idiosyncrasies (Clutton-Brock et al. 1982). The study

population was released from a culling regime in 1973, and the

population size then rose steadily toward carrying capacity in

the mid-1980s, with the current population fluctuating around

approximately 200 adult females (Coulson et al. 2004). Females

in this population associate in loosely matrilineal groups (Albon

et al. 1992; Clutton-Brock et al. 1982). In contrast to females,

young males disperse from their natal groups at around the age

of two years (Clutton-Brock et al. 1982). Males born to the study

population often return to the study area to rut, but outside of this

essentially all adult males live outside the study area in other parts

of the island for the majority of the year. Relatively little spatial

information is therefore available across the lifetimes of males,

and here we focus our analyses only on females.

The study area is approximately 13 km2, comprising a gently

sloping hill (Mulloch Mor) and the surrounding glens, with the

majority (more than 70%) of the area lying below 120 m (Clutton-

Brock et al. 1982). The north boundary of the study area follows

3.5 km of coastline from Kilmory Bay to another bay, Shamhnan

Insir to the East (Fig. 1; Guinness et al. 1978). Females spend

most of their time feeding along this coastal strip and around

the North end of the Kilmory River, which runs down Kilmory

Glen and drains into the bay (Clutton-Brock et al. 1982; Coulson

et al. 2004; McLoughlin et al. 2006). Five main types of vegetation
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Figure 1. The study area, showing the distribution of Agrostis/ Festuca grassland (adapted from Guinness et al. 1978).

have been classified in the study area: Agrostis/Festuca grass-

land, Juncus-dominated marshland, Molinia-dominated flush,

Calluna-dominated heath and heather moorland, and small

patches of Eriophorum-dominated bog (Clutton-Brock et al.

1982; McLoughlin et al. 2006). There is considerable hetero-

geneity of these vegetation types across the study area and the

use of areas rich in Agrostis/Festuca has been positively associ-

ated with female lifetime reproductive success in this population

(McLoughlin et al. 2006).

Regular censusing of the study population throughout the

year provides detailed spatial information and, coupled with reg-

ular mortality searches of the area, comprehensive records of both

calf and adult mortality. In addition, during the calving season

(May–June), detailed observations are taken of heavily pregnant

females to identify when and where calves are born. This allows

the majority (64% over the whole study period) of individuals born

into the population to be caught shortly after birth, when they are

sexed, weighed, and tissue sampled for genetic paternity analysis

(see below). Capture weight is adjusted for the time since birth

to give an estimated BW for each individual in kilograms (birth

weight = capture weight – [0.01539 × age at capture in hours],

following Clutton-Brock et al. 1982). Note that throughout our

analyses, we treat BW as a trait of the mother, rather than of the

offspring itself (e.g., Nussey et al. 2005b; Moyes et al. 2011). We

also used breeding records to calculate lifetime breeding success

as the number of offspring a female produced over her lifetime.

Locations of individuals during spring were taken from cen-

suses conducted five times a month during the period of January–

May. During a census, a fixed route is walked through the study

area and the identity of all individuals seen is recorded and their

grid reference noted to the nearest 100 m. Although censuses are

undertaken in other months of the year, the data used here were

restricted to that period because at other times individual location

may be temporarily affected by calving or mating behaviors
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Table 1. Abbreviations used in the manuscript.

BA Bhattacharyya’s affinity
BW Birth weight
h2 Heritability
LBS Lifetime breeding success
LMM Linear mixed effects model
RHR Rut home range size
SAC Spatial autocorrelation
SHR Spring home range size
UD Utilization distribution
UDOI Utilization distribution overlap index
VA Additive genetic variance
VI Variance attributable to “I” (any additional random

effect)
VM Maternal variance
VPE Permanent environment variance

(Coulson et al. 1997). During the rut (15 September to 15

November), censuses are undertaken each day, again recording

identity and location of individuals to the nearest 100 m (Stopher

et al. 2011).

We investigated the effects of incorporating SAC and home

range overlap on the estimation of quantitative genetic parameters

in four female traits: spring home range size (SHR), rut home

range size (RHR), offspring BW, and lifetime breeding success

(LBS) (see Table 1 for a full list of abbreviations used in the

manuscript). Note that although multiple measures per female

across different years are available for the first three variables,

LBS is measured only once. Previous studies have suggested that

age, reproductive status, local population density, and region of the

study area may be important determinants of these traits (Coulson

et al. 2003; Moyes 2007; Nussey et al. 2009). Age is known for

females and reproductive status has previously been categorized

into five categories, as follows (see Clutton-Brock et al. 1982):

“milk” (calved, and calf survived to at least 1 May the year after

birth), “winter yeld” (calved, but calf died in the winter after birth,

between 1 October and 1 May), “summer yeld” (calved, and calf

died before 1 October), “true yeld” (the female did not calve

the previous year), and “naı̈ve” (the female had never previously

calved). Females are considered to range mainly within one of five

regions in the study area: Kilmory, Shamhnan Insir, Intermediate

area, Mid glen, or South glen (Moyes 2007). Based on a female’s

mean annual location in spring or the rut, we assigned her to one

of these regions, and then calculated local population size in this

study for each region annually as the number of adult females

whose mean location falls within each region.

HOME RANGE ANALYSIS

For the purposes of spatial analyses, the locations in which indi-

viduals were recorded were transformed on to a grid, so that the

most south-westerly location recorded (135100, 798500) became

(0, 0) and each step along the grid in either direction represented

a shift in location by 100 m. Positions on the grid were then

represented by a grid reference (column, row). Average lifetime

locations of individuals on this grid are plotted in Fig. 2A (average

location during January–May) and Fig. 2B (average location dur-

ing the rut). Lifetime average locations were then used to account

for SAC in animal models (see below).

Home range sizes were estimated for each female annually,

separately, from home ranges estimated using locations recorded

within spring and the rut. Core home ranges were estimated with

kernel density estimation methods (Worton 1987, 1989; Borger

et al. 2006) using the package “adehabitat” (version 1.8.3, Calenge

2006) in R version 2.8.1 (R Development Core Team 2008).

Where fewer than 10 locations were recorded for an individ-

ual during a particular season, the data were excluded for that

female. Previous work has shown that this number was sufficient

for accurate home range estimation using techniques similar to

those used here (Borger et al. 2006). However, we also tested

whether the number of fixes used to estimate a home range in-

fluenced range size and accounted for the number of fixes as a

fixed effect in models where this was the case. Finally, because

censuses record the grid references of individuals to the nearest

100 m, many fixes have exactly the same grid reference. This

can cause problems in the calculation of home range sizes and

overlap using kernel methods (Tufto et al. 1996). To address this,

we “jittered” locations used for home range estimation by adding

a random number between –20 and 20 to the X and Y coordinates

for each grid reference (following Moyes 2007).

Having generated home ranges and estimated home range

size for all individuals, we went on to estimate the extent of

home range sharing among individuals. To do this, we calculated

home ranges as above, but using all locations recorded over an

individual’s lifetime rather than annual locations. Home range

overlap was then calculated with Bhattacharyya’s affinity (BA;

Bhattacharyya 1943; Fieberg and Kochanny 2005). By using BA,

individuals have an overlap of 1 with themselves; scaling from 0

to 1 in this way makes scaling of the overlap term comparable to

that of relatedness between two individuals. This is essential when

comparing the variance in a trait explained by the relatedness and

spatial matrix because the variance explained by each matrix must

be on the same scale. Full details of how home ranges and home

range overlap were estimated are given in File 1 in supporting

information.

We calculated a home range overlap matrix (S matrix) for all

individuals in the genetic pedigree; where no home range infor-

mation was available for an individual, it was assigned a home

range overlap index of 1 with itself (diagonals set to 1), and was

assumed to have an overlap of zero with all other individuals

(missing off-diagonals assumed to be zero). Compared to 4051
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Figure 2. Spatial distributions of female red deer and traits analyzed across the Kilmory study area. (A and B) show the distribution

of average female lifetime locations from spring censuses (Jan–May) and daily censuses from the rut (Sept–Nov), respectively (colors

and symbols refer to matrilines originating from females alive at the start of the study). (C–F) show spatial distributions of different

traits—rut home range size, spring home range size, offspring birth weight, and lifetime breeding success—using mean values for each

100-m grid square with females allocated to grid squares based on average lifetime locations. Where data are not available for a grid

square, the expected value for that square is interpolated from those around it (using default algorithms implemented in SigmaPlot,

Systat software 2008).
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individuals (1384 females) in the pedigree, home range informa-

tion only existed for 948 females in spring and 766 females in

the rut. However, the pedigree also contains missing information:

691 individuals have no known mother or father. Furthermore, any

lack of information in the S matrix is likely to make our estimates

of the variance in a trait explained by home range overlap conser-

vative, and therefore any reduction in heritability on accounting

for spatial similarity also conservative.

PEDIGREE RECONSTRUCTION

All mothers are known through association with their calves,

whereas genetic paternity analysis was used to assign fathers. As

discussed above, the majority of individuals are caught at birth

and samples taken for paternity analysis. Genetic sampling for

individuals not caught at birth occurs from cast antlers, chemical

immobilization, or postmortem. Prior to 1991, individuals were

genotyped at up to eight highly variable microsatellites; since

then individuals have been genotyped at up to 15 microsatellites.

Detailed methods of pedigree construction are given in Walling

et al. (2010). Two programs were used for paternity assignment:

MasterBayes (Hadfield et al. 2006) and COLONY2 (Wang and

Santure 2009). All assignments were made at greater than 80%

individual confidence. Preference was given to paternity assign-

ments made by MasterBayes, with COLONY2 assignments ac-

cepted where MasterBayes could not assign a father with greater

than 80% confidence (following Walling et al. 2010).

INCORPORATING SPATIAL INFORMATION INTO

LINEAR MIXED MODELS

Linear mixed-effects models (LMMs) were conducted in AS-

Reml3 (VSN International, Hemel Hempsted, UK; Gilmore

et al. 2009). We used two techniques to incorporate spatial in-

formation into the models. First, we fitted average lifetime spatial

coordinates as ordered row and column effects, fitted as addi-

tional random effects, with a covariance structure that assumed

a first-order separable autoregressive process to account for spa-

tial dependence (AR1 × AR1, Gilmour et al. 1997). Second, we

incorporated information on home range overlap between indi-

viduals into the animal model by fitting a vector of shared home

range effects as an additional random effect, with the correspond-

ing covariance matrix Sσ2
s , where S is the home range overlap

matrix (the “S matrix”). For full details of how we incorporated

spatial information into linear mixed models, please see File 2 in

supporting information.

MODEL FITTING AND SIGNIFICANCE TESTING

Significance of random effects was assessed using likelihood ra-

tio tests and fixed effects were assessed using Wald statistics.

We built models of four traits (RHR, SHR, BW, and LBS) in

three stages: (1) testing of fixed effects deemed likely to be of

importance based on previous research and retaining those terms

that were significant; (2) incorporating random effects to measure

additive genetic, permanent environment, maternal effects, and

annual variance, and then (3) incorporating additional random ef-

fects to model SAC or home range overlap. We then examined the

magnitude and significance of these spatial effects and the effects

of including them on the magnitude of other random effects, par-

ticularly the additive genetic variance component, in our models.

It was necessary to log-transform RHR, SHR, and LBS prior to

analysis in order that the distribution of the residuals had a closer

approximation to normality.

Fixed effects for female age (linear and quadratic terms) and

reproductive status were tested for all traits, and sex of offspring

was tested for BW. The number of fixes used to calculate an

annual home range was included in models of RHR and SHR.

Fixed effects related to spatial processes were also tested, namely

region of the study area and local population size. These poten-

tially account for some of the spatial heterogeneity in these traits.

However, it has been argued that although fitting such trends is

unlikely to change estimates of quantitative genetic parameters,

their inclusion can aid our understanding of the nature of the

spatial variation present, and improve the likelihood of achieving

stationarity in models incorporating SAC (Dutkowski et al. 2002).

An illustration of the broad-scale spatial distribution of the four

traits is presented in Fig. 2C–F. The following fixed effects were

found to be significant in models of each trait, and were included

in subsequent LMMs: RHR: age, region, local population size,

count of fixes used to calculate home range size; SHR: age, age2,

local population size, region, reproductive status (note: count of

fixes was not significant); BW: age, age2, reproductive status,

region, and offspring sex; LBS: region.

We added random effects sequentially. First, we included a

random effect for individual identity to estimate among individ-

ual variation. Second, a term modeling the variance attributable to

phenotypic similarity among relatives was included using relat-

edness information from the pedigree in an “animal model.” This

model separates among-individual variation into additive genetic

(VA) and so-called “permanent environment” (VPE) components.

We subsequently included a random effect of year of measurement

and the identity of the individual’s mother, to estimate variation

attributable to variation in annual environment (VYear) and mater-

nal effect (VM) both of which have been shown to be important in

previous studies of this population (Kruuk et al. 2000; Kruuk and

Hadfield 2007). Note that, because LBS was only measured once

per individual, only VA, VM, and VYear were included for this trait

and year of birth had to be used rather than year of measurement.

We then incorporated either SAC or S matrix into these base

LMMs as described above. Note that if the data structure allows,

the two could be incorporated simultaneously into one model.

When including SAC, we estimated both the correlation parameter
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and the variance in the trait explained by the spatial term on fitting

(1) a column process, (2) row processes, and (3) column and row

processes.

It is important to note that, while adding SAC to animal mod-

els revealed interesting environmental sources of variance (see

Results), some models did not produce credible results. In partic-

ular, some estimates of the variance explained by spatial processes

were extremely large (see Table 2, e.g., SHR models with row pro-

cesses included). Model credibility was checked by summing the

variance components estimated by each model. Although some

minor changes in the variance explained are not necessarily a

particular concern, changes in the order of magnitude of the total

variance are rather alarming and suggest the model has produced

a poor estimate of the variance components. This occurred par-

ticularly when the estimates of the SAC were bounded at 1 (i.e.,

could not be estimated). As shown in Table 2, this did not seem to

be an issue in models including both row and column processes

except for SHR, for which only models incorporating column pro-

cesses produced reasonable variance estimates. When discussing

SAC models below, we therefore focus on models incorporating

row and column process for RHR, BW, and LBS but only column

processes for SHR. Such difficulties were not evident when fitting

the S matrix.

Results
Fixed effects coefficients for each trait are given in File 3 in sup-

porting information. In models without spatial processes, RHR

was moderately heritable with a negligible permanent environ-

ment effect and small but significant maternal and year effects (Ta-

ble 2; Fig. 3A). Model fit was significantly improved when SAC

was added (inclusion of column and row processes: χ2
(df=3) =

369.9, P < 0.001), and the SAC coefficients reveal strong positive

autocorrelation along both column (west-east) and row (south-

north) axes (Table 2). SAC explained 72% of the variance. Inclu-

sion of SAC resulted in a substantial reduction of the estimated VA

and VM and also in the proportion of the total variance explained

by these effects (heritability from 31% to 3%, maternal effect

from 8% to 2%), as well as reductions in the year and residual

terms (Table 2; Fig. 3A). Inclusion of the “S matrix” also signifi-

cantly improved model fit (χ2
(1) = 785.8, P < 0.001) compared

to fitting no spatial information, and this term explained substan-

tial variance in RHR (68%; Fig. 3A). Its inclusion resulted in

reductions of even greater magnitude in VA and VM than seen in

the SAC model, with heritability becoming negligible (Table 2;

Fig. 3A).

SHR was highly heritable and, like RHR, showed negligi-

ble VPE along with small VM and VYear components (Table 2;

Fig. 3B). SAC effects were highly significant (inclusion of col-

umn processes: χ2
(df=2) = 179.7, P < 0.001) and explained 36%

of the variance (Fig. 3B). As for RHR, there was evidently strong

positive SAC and incorporating this into the model resulted in

large reductions in estimated VA and heritability (from 44% to

21%; Table 2; Fig. 3B). Inclusion of the “S matrix” also sig-

nificantly improved model fit compared to fitting no spatial in-

formation (χ2
(df=1) = 1313.2, P < 0.001). Home range overlap

explained 69% of the variance and resulted in dramatic declines in

all other variance components, with heritability dropping to <1%

(Table 2; Fig. 3B).

BW was moderately heritable, with only small amounts of

variance attributable to VPE, VM, and VYear (Table 2; Fig. 3C).

Although region was a significant fixed effect in BW models,

its inclusion resulted in singularities when we attempted to in-

clude SAC processes in models, presumably because the two

are heavily confounded. Exclusion of region had little effect on

the estimation of other variance components and we therefore

present BW models without region as a fixed effect for compari-

son in Table 2 and Fig. 3C. Generally, BW models including SAC

were quite unstable (e.g., see the large standard errors of spa-

tial variance components and the frequency with which spatial

processes were bounded at 1); they should be interpreted with

caution. However, inclusion of SAC did significantly improve

model fit (inclusion of column and row processes: χ2
(3) = 20.5, P

< 0.001), and column and row processes explained around 20% of

the variance in BW (Table 2; Fig. 3C). Positive SAC coefficients

suggested that females living in close proximity have similar off-

spring birth weights, although the column process estimate was

bound at one (Table 2). In models including SAC effects, esti-

mates of VA were reduced and heritability declined from 36% to

21% (Fig. 3C). Addition of the S matrix term to a model of birth

weight including region as a fixed effect improved model fit com-

pared to fitting no spatial information (χ2
(1) = 5.3, P < 0.05) but

it explained only 6% of the variation. The estimated heritability

of BW in a model including region was 28.2% (± 5.66 SE) and

inclusion of the S matrix term resulted in only a small reduction

in heritability (to 25.6 ± 5.54%).

LBS was weakly heritable, with a small maternal effect and

substantial cohort variation (Table 2; Fig. 3D). Addition of SAC

resulted in a marginally nonsignificant improvement in model fit

(inclusion of column and row processes: χ2
(3) = 7.58, P = 0.056)

and explained less than 3% of the variance, and this came mostly

from the residual variance with very little change in heritability

(Table 2; Fig. 3D). Interestingly, although the spatial variance

was small, the estimated SAC parameters trended toward pos-

itive SAC of LBS in the south-north direction (row) but nega-

tive autocorrelation in the west-east direction (column; Table 2).

Finally, there was a highly significant home range overlap effect

on LBS (χ2
(1) = 185.6, P < 0.001), compared to fitting no spatial

effects, with home range overlap explaining 28% of the variance
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ACCOUNTING FOR SHARED SPATIAL EFFECTS

Figure 3. The proportion of variance in four different traits explained by different random effects in models including no spatial effects,

spatial autocorrelation terms (“with SAC,” column and row processes, except for birth weight where only column processes were included

as parameter estimates appeared poorly estimated when row processes were included, see Table 2), or a home range overlap (or “S”)

matrix (with S matrix).

in LBS (Fig. 3D). Inclusion of the S matrix in the model resulted

in a decrease in all other variance components, with estimated

heritability becoming negligible and the cohort effect declining

from 39% to 25% (Table 2; Fig. 3D).

For RHR, SHR, and LBS, comparison of AICs showed

that models including the S matrix outperformed models with

SAC processes fitted (comparing model with S matrix to model

with row and column processes: RHR: –1958.10 vs. −1126.32,

SHR: −4875.16 vs. −3407.07, LBS: −1875.57 vs. −1519.54).

However, for BW, the AICs of the two models were similar, with

the model including SAC processes having slightly lower AIC:

4263.16 versus 4274.96.

Discussion
Our analyses show that evolutionary biologists and ecologists

working in natural systems should consider modeling fine-scale

spatial processes if they want to fully understand the environ-

mental drivers of phenotypic variation and accurately estimate

quantitative genetic parameters. Accounting for shared environ-

mental effects associated with either SAC or home range overlap,

over and above effects of maternal identity, cohort and region of

the study area, resulted in decreases in h2 of up to an order of mag-

nitude (e.g., RHR, Table 2). Furthermore, both SAC and S matrix

approaches provided new insight into the way spatial heterogene-

ity in resources influences key behavioral, life-history, and fitness

traits. Interestingly, both the variance explained by SAC or the S

matrix and their effects on h2 estimates varied markedly depend-

ing on the trait in question (Table 2; Fig. 3). Furthermore, the

variance explained by SAC was greater than that explained by the

S matrix in some traits (e.g., RHR, BW) but the opposite was true

for others (e.g., SHR, LBS).

To our knowledge, only one study previous to ours has ad-

dressed the effects of SAC between trait values in related indi-

viduals in a wild animal population (van der Jeugd and McCleery

2002). That study suggested SAC resulted in overestimation of

heritability of lay date in the great tit (although not clutch size),

suggesting our findings are not specific to this study system. The

extent of the effect of SAC on other traits and species remains

however to be seen. In any system where there is incomplete or
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nonrandom dispersal of relatives and the habitat is heterogeneous,

relatives are more likely to experience the same environment than

would be expected by chance and this shared environmental ex-

perience will result in phenotypic resemblance that does not have

a genetic basis (unless there is a genetic component to habitat

choice itself, see below). However, the extent to which this bi-

ases estimates of heritability will vary with the amount to which

related and nonrelated individuals are distributed within an en-

vironment, the extent to which the environment varies over the

studied area, and the extent to which environmental and genetic

factors determine trait values. Below, we discuss possible reasons

for the differences we have found between female red deer traits

in the effect of SAC on heritability estimates. We also consider the

relative merits of the SAC and S matrix approaches, and highlight

the potential for developing and implementing fitting additional

covariance matrices within evolutionary ecology.

DIFFERENCES IN SPATIAL EFFECTS AMONG TRAITS

To our knowledge, this is the first study to estimate the heri-

tability of home range size in a wild mammal. Quantitative ge-

netic studies of traits associated with dispersal, ranging, and for-

aging behavior remain rare in wild mammals (e.g., Waser and

Jones 1989), although they are the focus of increasing interest in

birds (e.g., Doligez et al. 2009; Charmantier et al. 2011; Teplitsky

et al. 2011). Although initial models suggested high VA and h2 in

both RHR and SHR in red deer, and a moderate maternal effect

in RHR, these effects all but disappear once either SAC or home

range overlap have been accounted for (Fig. 1A, B). This starkly

illustrates the potential pitfalls of failing to account for space or

habitat sharing in an “animal model.” In both home range traits,

substantial proportions of total variance were attributable to posi-

tive spatial autocorrelation or home range sharing, indicating that

individuals with average lifetime locations in close proximity, or

those that shared large proportions of their lifetime home range,

had similar home range sizes. This is not surprising: home range

size is likely to be closely associated with food availability, with

individuals having to range further to meet energetic demands if

they live in poor quality habitats (McNab 1963). Forage availabil-

ity and quality varies markedly across our study area, and our re-

sults are likely to reflect increased home range sizes and reduced

home range overlap among females living in regions of poorer

vegetation in the south and east of the North Block (McLoughlin

et al. 2006; Moyes 2007).

The importance of spatial effects on both BW and LBS were

smaller than for home range sizes and estimates of h2 were ac-

cordingly less biased by their exclusion. Quantitative genetic es-

timates from the models accord well with previous studies: our

BW estimates of VA and VPE are similar to those for maternal

genetic and environmental variance from a study that treated this

as an offspring trait (Kruuk and Hadfield 2007), although esti-

mates for LBS were slightly higher than previous work that found

zero heritability (Kruuk et al. 2000). The latter difference could

be attributable to our larger present dataset, an improved pedi-

gree, or the inclusion of a cohort random effect in our models.

For both BW and LBS, we found that a substantial proportion

of variance (around 20% and 30%, respectively) was attributable

to either SAC or home range overlap. This suggests fine-scale

spatial effects are important for life-history and fitness-correlated

traits as well as those associated with ranging behavior. Previ-

ous work has identified significant spatial heterogeneity in fitness

linked to the relationships between use of Agrostis/Festuca grass-

land, local population density, and lifetime reproductive success,

and suggested this heterogeneity could be maintained by social

constraints to dispersal preventing females from moving to more

productive areas (McLoughlin et al. 2006, 2008). Although the

mechanisms linking spatial location or home range overlap with

BW and LBS variation remain to be determined, our results il-

lustrate how estimation of SAC or S matrix effects could be used

to provide insight into their relative importance for demographic

variation and population dynamics in wild animals.

The contrasting relative importance of SAC versus home

range overlap effects in some traits suggests differences in the

processes linking resource heterogeneity and phenotype. For ex-

ample, although both SAC and S matrix accounted for compara-

bly large proportions of variation in RHR, the S matrix explained

considerably more variation in SHR (Fig. 3A, B). SAC models of

SHR were notably unstable (Table 2), so the difference here could

be due an inability of the model to estimate the variance explained

by SAC. However, there are biological reasons to expect differ-

ences: resource availability increases over the spring period but

declines over the autumn, and female home ranges shrink substan-

tially during the rut and may fall under some degree of influence

of male rutting behavior (Clutton-Brock et al. 1982, although see

Stopher et al. 2011). Interestingly, SAC but not home range over-

lap explained variation in BW but the reverse was true for LBS.

Why spatial location per se rather than home range overlap should

explain variance in BW is unclear; it could reflect the importance

of the specific area a female tends to use during the gestation and

lactation periods. This is supported by the fact that models includ-

ing region as a fixed effect would not converge, and suggests a

wider scale of resource variation may be important. The relative

importance of home range sharing, rather than spatial location, for

LBS variation may reflect fine-scale constraints associated with

local competition in high-density and resource quality regions in

the north of the study area, where home ranges are likely to overlap

extensively (McLoughlin et al. 2006, 2008). There is tentative sup-

port for this in the SAC models that show nonsignificant negative

autocorrelation in the column (east-west direction), but positive

SAC in the row (south-north) direction (Table 2). In ecologi-

cal studies, negative SAC is indicative of competition, such that
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individuals with high trait values depress the trait values of neigh-

bors (Dutkowski et al. Dukowtski 2002, Haining 2004). The distri-

bution of females in the study area means that the majority of col-

umn process information comes from the North, moving east from

Kilmory to Shamhnan Insir (Figs. 1, 2), where high local densities

would be expected to drive greater competition for resources.

DEVELOPING THE MULTIMATRIX APPROACH IN

EVOLUTIONARY ECOLOGY

Our results suggest that exploring SAC and home range over-

lap effects side-by-side could be biologically informative, and

other studies may also wish to explore the wider range of statisti-

cal methods developed for accounting for SAC (see for example

Dutkowski et al. 2002). However, we would argue that fitting

the matrix of home range overlap is the more appropriate way to

deal with causes of environmental similarity between relatives.

This is because patterns of space use, as indicated by home range

overlap, are more likely to accurately describe the similarity of

the environment two individuals experience, in terms of available

food and shelter, and the energy they have to expend to acquire

these. Because we used a home range overlap index that included

information on the utilization distribution of home ranges (i.e.,

the amount individuals actually use different parts of the home

range), our S matrix gives a very accurate measure of extent to

which individuals experience similar environmental conditions.

In contrast, using an average location is a cruder measure of the

environment an individual experiences, not least because the error

on the estimate of average location is likely to vary between in-

dividuals, depending upon the differences in the extent to which

animals range around that average location. A comparison of

model AICs shows that models including home range overlap

performed better than models including SAC processes for three

of four traits. Further, we found that models including SAC were

not necessarily stable in the parameters they estimated, or in their

likelihood of converging. In contrast, models using the double-

matrix approach were straightforward to fit and converged. These

considerations imply that, faced with a choice, ecologists and evo-

lutionary biologists should favor the use of home range overlap

or resource-sharing matrices rather than SAC functions.

It is striking that we found such strong effects of home range

overlap on the traits considered despite the existence of certain

limitations in our S matrix approach. For example, the matrix

uses lifetime home ranges, and includes no information about

when individuals existed: it therefore assumes individuals with

identical home ranges separated by as much as 30 years experience

the same environmental conditions. Ideally therefore, temporal

information on overlap of individuals in time as well as space

would be incorporated, or the matrix could be constructed on an

annual basis. However, producing home range overlap matrices

for large populations is not trivial and incorporating temporal

variation in these matrices into animal models is not going to be

straightforward.

Further, it is important to exercise caution when interpreting

the results of this, or any similar study, to not assume that estimated

heritabilities are free from bias even if shared environment effects

are accounted for. For example, if there exists a genetic component

to habitat choice, such that individuals choose habitats according

to their genotypes, variance apparently explained by shared en-

vironmental effects may have an underlying genetic component.

Accounting for shared environment effects may therefore result

in underestimation of genetic variance. In this study, this may not

be a problem, as females do not disperse and therefore have little

opportunity to “choose” an environment, but were there a genetic

component to the location of home range such a bias could exist,

and future studies using such techniques should be aware of the

issue. In general, as we begin to think about ways to more fully

account for environmental similarity between relatives, it will be

important to question whether additive genetic variance is to some

extent absorbed by the environmental term and therefore down-

wardly biased. In this study, the pedigree, although imperfect,

is more complete than the fitted S matrix, implying that this is

unlikely. However, it may be a problem for other systems, partic-

ularly where the pedigree is shallow. In light of these limitations,

future studies (including simulation studies) that examine how

home range overlap matrices and other environmental similarity

matrices could be best computed, the factors that affect the ability

to separate genetic and environmental variance using such mod-

els, and what additional biological insight they could bring, would

certainly be worthwhile in light of our results.

In general, this “double matrix” technique—fitting both ge-

netic relatedness and environmental similarity—offers exciting

possibilities for separating the causes of similarity between indi-

viduals. Fitting additional covariance matrices is a common prac-

tice in animal breeding to dissect different genetic contributions

to phenotypic variation (e.g., additive, dominance, and epistatic

effects: e.g., Smith and Maki-Tanila 1990; Palucci et al. 2007).

A recent review has strongly advocated the separation of trans-

missible nongenetic effects using additional matrices capturing

shared resources or social interactions (Danchin et al. 2011). To

our knowledge, ours is the first study to empirically implement

such an approach and it clearly highlights both the potential for

confounding effects of fine-scale shared environmental effects on

VA and h2, as well as the ecological importance of such effects on

phenotypic variation.

Beyond spatial analysis, additional covariance matrices could

be fitted to animal models to assess the variance explained in traits

by association between individuals. The use of social network

analysis has recently become very popular in behavioral ecology

to identify and quantify the interactions between individuals and

the extent to which individuals associate (Wey et al. 2008). The
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approach has been used to describe social structure and predict

patterns of cooperation in guppies (Croft et al. 2004, 2006), and

spatial-association networks in bats are thought to be important in

not just in social life but also in epidemiology (Rhodes et al. 2006;

Wey et al. 2008). Furthermore, the fitness correlates of social re-

lationships are not well known (but see Silk et al. 2003, 2010).

Methods to incorporate social association information into quan-

titative genetic analysis are currently an area of much endeavor

(see Walsh and Lynch 2009). However, a recent study stated that

matrices of genetic relatedness and social interactions could not

be fitted simultaneously within an “animal model” (Frere et al.

2010), yet our study shows that this should be perfectly possi-

ble, given a data structure that allows the separation of genetic

and social variance, by fitting a matrix of interactions between

individuals, that is, an association matrix (Whitehead 2008), to

an “animal model” of a fitness trait. Should sufficient data be

available, with sufficient independence between the matrices to

allow their separation, this could potentially even be extended to

a model in which similarity between individuals in wild popu-

lations was separated into relatedness, shared environment, and

social associations.
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