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Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation of immunoglobulin (Ig) gene variable
regions and class switch recombination (CSR) of Ig heavy chain constant regions. Two decades of intensive re-
search has greatly expanded our knowledge of how AID functions in peripheral B cells to optimize antibody
responses against infections, while maintaining tight regulation of AID to restrain its activity to protect B cell
genomic integrity. The many exciting recent advances in the field include: 1) the first description of AID’s molecular
structure, 2) remarkable advances in high throughput approaches that precisely track AID targeting genome-wide,
and 3) the discovery that the cohesion-mediate loop extrusion mechanism [initially discovered in V(D)J re-
combination studies] also governs AID-medicated CSR. These advances have significantly advanced our under-
standing of AID’s biochemical properties in vitro and AID’s function and regulation in vivo. This mini review will
discuss these recent discoveries and outline the challenges and questions that remain to be addressed.
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Introduction
Activation-induced cytidine deaminase (AID) initiates somatic hy-
permutation (SHM) of the immunoglobulin (Ig) gene variable (V)
regions and class switch recombination (CSR) of the heavy (H)
chain constant regions [1–5]. AID was discovered in a subtractive
cDNA screening for de novo factors induced upon cytokine stimu-
lation of a mouse B cell line (CH12F3) to undergo CSR [6]. Dis-
ruption of AID gene in mouse results in a complete loss of CSR and
SHM [1] while transgenic expression of AID confers ectopic SHM
and CSR activity [7,8]. AID mutations resulting in defective CSR
cause type II hyper-IgM syndrome (HIGM2) in human patients [2].
AID belongs to a family of polynucleotide cytosine deaminases

that has diverse functions in RNA editing (Apobec1), Ig gene di-
versification (AID) and host innate immunity against retroviruses
(Apobec3 family members) [4,9]. Named after its limited homology
to Apobec1, AID was initially thought to function in SHM and CSR
by editing mRNA [10]. However, preponderant genetic and bio-
chemical evidence soonmade it clear that AID deaminates cytosines
on DNA (converting cytosine to uracil) rather than on RNA [11–19].
Uracil in DNA triggers a cascade of DNA repair events that ulti-
mately leads to mutations at Ig V regions during SHM and DNA
double strand breaks (DSBs) at IgH switch (S) regions during CSR

[3–5,20]. This short review focuses on some recent advances on
AID structure, biochemical property, and AID-associated DNA re-
pair events. Readers are encouraged to read excellent reviews that
are more comprehensive on other aspects of AID function and
regulations [3–5,21,22].

Error-prone Repair of AID-Generated Uracil
AID-generated uracil can be recognized as a base damage and
processed by the uracil base excision repair (BER) pathway, or re-
cognized as a U:G mismatch and processed by the mismatch repair
(MMR) pathway. Neither pathway is B cell-specific and both
pathways normally result in error-free repair. However, in antigen-
stimulated B cells, repair of AID-generated uracil leads to error-
prone outcomes at Ig V regions (mutations) and S regions (DSBs).
MMR in germinal center B cells deviates from its canonical form by
using error-prone DNA polymerases, primarily polymerase eta,
during the gap filling step [23,24]. Ubiquitylation of PCNA plays an
important role of recruiting polymerase eta during this process [25].
BER is also altered in activated B cells because of the induced ex-
pression of FAM72a, an uracil DNA glycosylase (UDG or UNG)
antagonist. FAM72a interacts with nuclear uracil N-glycosylase
(UNG2) and triggers its proteasome-mediated degradation. At-
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tenuating UNG2-mediated BER thwarts high fidelity uracil repair
and promotes error-prone outcomes [26,27].
SHM and CSR are quite distinct processes (point mutations at V

regions versus DSBs at S regions), but the underlying mechanisms
are fundamentally similar. While SHM at Ig V regions are mostly
point mutations, a small percentage of alleles contains insertion or
deletion that is characteristic of a DSB-mediated process [28,29].
Conversely, although DSBs are the prominent intermediates in CSR,
point mutations are often found near switch junctions [30], and at
the Sμ region in CSR-stimulated B cells [29,31–33]. On the other
hand, SHM and CSR are independent of each other. IgM (un-
switched) B cells can accumulate SHM at Ig V regions and isotype
switched B cells can have unmutated V sequences. In addition,
several AID mutations selectively affect one but not the other pro-
cess [34], suggesting mechanistic differences between the two
processes.

AID Structure and Substrate Preferences
Although AID is a small protein (24 kDa), working with re-
combinant AID has been notoriously difficult. Full length AID ex-
presses poorly and tends to aggregate, severely hinders its structural
or biochemical characterizations in vitro. Still, even with aggregated
recombinant AID, several important properties of AID were dis-
covered. AID deaminates cytosines on single stranded (ss) DNA
[16–19], but not on double stranded (ds) DNA, RNA, or RNA:DNA
hybrid [17]. The ssDNA specificity is consistent with the fact that
AID’s function is tightly associated with transcription [35,36].
Transcription separates the two DNA strands, at least transiently, to
provide the ssDNA substrate for AID. However, transcription itself
is insufficient to explain why AID targets predominantly V and S
regions while sparing majority of the transcribed regions in the B
cell genome. Another significant discovery is that AID preferably
deaminates cytosines in the WRC (W=A or T; R= A or G) motif
[19,37] which is complementary to the RGYW SHM hotspots pre-
viously identified by sequencing myriads of V regions from hy-
bridomas [38].
The first AID-related crystal structure was obtained from an AID

variant (a hybrid of AID and Apobec3A) that maintains AID’s pre-
ference for WRC and the ability to support SHM [39]. Later, through
elegant protein engineering, the Wu lab produced a monomeric
recombinant AID (AIDmono) that harbors two functional-compa-
tible mutations at the protein surface. AIDmono is much more ac-
tive and exhibits high affinity for G-quadruplex (G4) or branched
DNA substrates by binding to the ssDNA tails in these structures
[40]. Most importantly, a crystal structure was obtained after in-
troduction of three additional mutations that further reduce ag-
gregation tendency [40]. The crystal structure does not contain
information about the DNA substrate, but the substrate binding
grove is clearly observable [40]. A co-crystal structure with a dCMP
at the catalytic center was obtained. That structure predicted a
potential steric hindrance if the dCMP were replaced by CMP [40],
providing a good explanation for why AID deaminates cytosine on
DNA, but not on RNA. Remarkably, a separate positively charged
surface, which the authors called “assistant patch”, was identified
in the structure adjacent to the substrate channel [40]. The orga-
nization of the substrate channel and assistant patch suggests a
bifurcated substrate binding mode that nicely explains AID’s pre-
ferences for the projected ssDNA tails in G4 and branched DNA
(Figure 1). Interestingly, arginine residues (e.g., R171, R174, R178)

in the assistant patch were found, in a separate study, to be critical
for AID’s translocation from gene promoter proximal region to the
gene body, a process that was coined “licensing” [41]. These argi-
nine residues that are important for “licensing” are essential for
AID’s function in CSR and SHM [41]. One of these mutations
(R174S) has been previously found in HIGM2 human patients [42].
In the Wu study [40], G4 was found to be the most favorable sub-
strate for AID. AID does not bind to the G4 core but to the adjacent
ssDNA tails. Whether G4 structure exists in vivo (e.g., at transcribed
S region) remains a point of debate. The Y-shape branched sub-
strates, however, are probably abundant in vivo at places like
stalled transcription bubbles or sites that form DNA secondary
structures. In essence, the mode of binding of AID to G4 and
branched substrates is the same.
The AID crystal structure didn’t explain why AID favors WRC

motif, owing to the lack of information about the DNA substrate in
the structure [39]. Molecular modeling using the bound dCMP as
the anchor predicted a conformational rearrangement that is ne-
cessary to accommodate the substrate at the –1 and –2 positions but
not at the +1 and+2 positions [40]. This strongly suggests that the
–1 and –2 positions are more important than the +1 and +2 po-
sitions for the binding of DNA substrate. Among the three loops that
form the substrate channel, the β4-α4 loop (a.a. 113–123) has been
previously found to specify substrate sequence preferences [43,44].
However, substrate preferences likely involve additional parts of the
molecule. For example, S43P, a mutation found in HIGM2 patients,
changes AID site preference fromWRC to GGC [45], suggesting that
this residue is also involved in substrate specification. It is inter-
esting that AID’s substrate binding affinity (Kd) appears to be se-
quence-independent as measured by electrophoretic mobility shift
assays (EMSA) [40,46], neither does it distinguish RNA versus DNA
[40]. This is difficult to understand at the moment, but it is possible
that the binding measured by EMSA only reflects ionic stacking
between the highly positively charged AID (+11) and the nega-
tively charge nucleic acid rather than an authentic enzyme-sub-
strate interaction. Solving co-crystal structures of AID with its
substrates will address this gap of knowledge.
Elucidating the 3D structure of AID is a major advance in the field,

which greatly changes our views of AID’s cognate substrates in
vivo. The bifurcated binding mechanism implies that AID may bind
to and deaminate many DNA secondary structures that expose
multiple ssDNA tracts. This could have important implications in
the understanding of recurrent translocation sites that are vulner-
able to AID-inflicted damages [47]. The assistant patch of AID could
also be occupied by RNA [48], which may play important context-
dependent regulatory roles (Figure 1).

AID Deamination at Ig S Regions
CSR is mediated by the generation and joining of DSBs between two
Ig S regions (donor and acceptor) [20,49,50]. Mammalian S regions
are long, repetitive, and highly enriched for G-rich pentamers such
as GGG(G/C)T and GAGCT on the non-template strand [20,49,50].
Transcription through S regions tends to form R-loop, a secondary
structure that consists of an RNA:DNA hybrid between the RNA
transcript and the DNA template strand, and a displaced non-tem-
plate DNA strand [51]. The G/C skewness between the two DNA
strands renders the RNA transcript highly G-rich. This feature is
thought to promote R-loop formation due to the extraordinary
thermodynamic stability of a duplex formed by a G-rich RNA and a
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C-rich DNA [52]. The GAGCT pentamer contains overlapping AID
hotspots (AGCT) that are thought to be the primary targets for AID
during CSR [53].
How AID deaminates S regions that results in DSBs has been a

long-standing question. It is generally assumed that AID must
deaminate both DNA strands whereas SHM may only require dea-
mination on one strand [54]. Elucidating the abundance and posi-
tions of AID-generated uracils on both strands of S regions is crucial
for understanding the mechanism of DSB formation. Because ur-
acils are not repaired in cells deficient in both UNG2 andMSH2 [14],
AID footprints can be captured from these cells by PCR and DNA
sequencing to locate the positions of C to T transitions [15]. How-
ever, most endogenous S regions are practically impossible to PCR
across the entire lengths [15]. Recently, AID footprint analysis was
performed in the UNG2 and MSH2 double knockout CH12F3 B cell
line that had been engineered to harbor a short core Sα region (1.1
kb). This core Sα allows robust PCR across its entire length while
confers about 50% of WT CSR efficiency [33]. Footprint analysis
from a bulk population of these cells revealed several interesting
features. First, AID deamination occurs predominantly (80%–90%)
at WRCmotifs [33]. Second, the frequency of AID deamination does
not drop across the core Sα [33], which contrasts to the exponential
decrease of SHM frequency across the V regions. R-loops are known
to initiate and terminate randomly in S regions [51]. This feature of
R-loop fits the randomness of deamination across the entire S re-
gion. Third, AID targets both strands with similar frequency
(slightly more deamination on the non-template strand), suggesting
that deamination does not occur directly within the R-loop struc-
ture. Either R-loops must be processed by cellular RNase H [20]
and/or helicases [55] to expose the template strand, or deamination
mostly occurs at the edges of R-loop where branched DNA is
available [20]. In the latter case, R-loop may serve primarily as a
roadblock to stall transcription. Finally, AID deaminates S regions at
very low frequency [33].
The most interesting observations came after capturing footprints

of individual S regions where deaminations on both DNA strands
are illustrated. AID deamination appears to be rare and separated
far from each other [33]. Concurrent deamination at AGCT site was
indeed observed but in only one of the 16 molecules [33]. Several
molecules contain deaminations of two or more consecutive
GAGCT pentamers [33], reflecting a degree of processivity. Inter-
estingly, the processive deamination events are restricted to only
one strand [33]. Finally, the percentage of molecules that harbor
deamination on both strands correlates with the CSR efficiency
when these cells are complemented with UNG2 and MSH2 cDNAs,
and stimulated under the same condition used for footprint analysis
[33], suggesting that DSB formation indeed requires both DNA
strands to be deaminated.
The prevalent hypothesis for S region DSB formation is that AID

deaminates AGCT sites concurrently on both strands [53], such that
a DSB is formed by two nicks across each other that are generated
by (UNG2) and apurinic/apyrimidinic endonuclease (APE1; Figure
2). Mutagenesis study of switch region sequence motifs confirmed
the importance of overlapping AID hotspots for CSR [53]. However,
AID footprint analysis surprisingly showed that concurrent deami-
nation at AGCT site is an infrequent event, suggesting that this
mechanism may not be the dominant one for S region DSBs as
previously thought.
The rare and distally located deamination event by AID in S re-

gions does provide a good explanation for the importance of MMR
factors in CSR [14,56–62]. MMR is a gap repair that involves Exo1-
mediated strand excision. Distal nicks on different strands can in-
itiate convergent strand excision that results in DSB (Figure 2). This
hypothesis was initially raised to explain the absolute requirement
of MSH2 for CSR in mouse B cells that are deleted of the majority of
the Sμ repeats [63,64]. It was thought that the loss of Sμ repeats
results in a loss of concurrent deamination mechanism, and MMR is
needed because deamination of the remaining sequences at the Sμ
region only results in distal nicks [65]. The latest AID footprint
analysis seems to suggest that even in the presence of abundant
GAGCT pentamers, MMR is likely still the major mechanism for DSB
formation. In this regard, nicks generated by UNG2 and APE1
mainly serve as the entry points for Exo1, not directly forming DSB.
Because Exo1 deficiency results in a more severe CSR defect than
that of MSH2-deficiency, it is likely that Exo1 can be loaded in
MSH2-dependent as well as MSH2-independent manners. In an
artificial system where distal nicks (up to 200 bp apart) are gener-
ated in Sμ and Sα by a Cas9 nickase in AID-KO CH12F3 cells, cells
can switch from IgM to IgA, albeit at very low efficiencies [66],
suggesting that distal nicks can indeed be processed into DSBs. It
will be interesting to test whether DSB formation under this con-
dition requires MMR factors, and whether the absence of U:G mis-
match (due to AID-KO) is a culprit for the low efficiency of
switching.
The scarcity of overlapping AID footprints at AGCT sites came as

a surprise, given the functional importance of AGCT sites in CSR
[53]. However, it does make some sense upon further considera-
tion. If concurrent deamination at AGCT sites were the dominant
mechanism for DSB formation, it would be difficult to explain
several known features of CSR. First, switch junctions are not fo-
cused at AGCT sites [30]. If DSBs always initiate at AGCT sites,
extensive end processing must be proposed to explain the random
distribution of switch junctions within the switch repeats [30].
However, extensive end processing is probably detrimental to CSR
as evidenced by the severe CSR defect in 53bp1-KO B cells [67,68]
that display excessive end resection [69–71]. Second, it does not
explain why MMR factors are required for efficient CSR, even when
switch repeats are present. Third, it seems inconsistent with the

Figure 1. High affinity binding of AID to structured substrates (A) AID contains a substrate channel and an assistant patch that allow bifurcated
substrate binding. (B) AID binds to branched DNA in a bubble, stem loop or other DNA secondary structures. (C) AID binds to a putative structure
called collapsed R-loop that could be formed upon RNase H treatment of R-loop, causing switch repeats to misalign. (D) AID binds to a transcription
bubble where the displaced RNA transcript occupies assistant patch.
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requirement for FAM72a to antagonize UNG2 to achieve fully effi-
cient CSR [26,27]. Finally, it will be difficult to explain why a cat-
alytically crippled mutant UNG can rescue CSR in UNG-KO cells
despite providing only very low UNG activity in these cells [72–75].
Taking all these into consideration, it appears more likely that
cleavage at AGCT sites only accounts for a small percentage of S
region DSBs. The majority of DSBs are likely formed by the MMR
mechanism (Figure 2). UNG is essential, but few are needed to
generate nicks to load the Exo1. So, why are AGCT sites important
for CSR? One explanation could be that having lots of AGCT sites at
S regions increases the chances of cytosine deamination on both
DNA strands because both strands have abundant AID hotspots.
HIGM2 is caused by AID mutations that are defective for CSR.

These mutations are found throughout the AID gene body [76],
affecting AID’s enzyme activity, protein folding and/or stability.
Several AID mutants maintain a significant level of deaminase ac-
tivity [34,45]. One such mutation, the C-terminal truncation of AID
(hereafter called AID∆C) [42], has been most extensively studied.
The C-terminus (~10 a.a.) of AID comprises a nuclear exporting
signal that directs AID to the cytoplasm where majority of the cel-
lular AID accumulates [77,78]. AID∆C is an active deaminase with a
specific activity even higher than theWT [79]. Although AID∆C fails
to mediate CSR in AID-KO B cells, it can mutate the 5′-Sμ region in
these cells [31], or induce gene conversion in DT40 cells [80],
suggesting that the mutation only affects CSR, but not SHM. In
human patients, this mutation has a dominant negative (DN) phe-
notype on CSR [42]. The DN effect has been recapitulated in vitro in
cultured mouse B cells [80–82], but not yet in animal models.
AID∆C expresses poorly in mammalian cells likely due to its pri-
mary residence in the nucleus where it is vulnerable to proteosome-
mediated degradation [77]. The molecular basis of the DN effect is
still elusive. If AID must function in CSR as a multimer, then one
bad subunit ruins the entire complex. However, there has been
insufficient evidence to support this hypothesis. Alternatively,

AID∆C might produce aberrant DNA damages that are difficult to
repair. One study reported interactions of the AID C-terminus with
UNG2, MSH2 and MSH6, and argued that such interactions may
influence the subsequent DNA repair [81]. Another study demon-
strated excessive end processing and reduced level of end-joining
factors at S regions in AID∆C-expressing cells [80]. Both studies
revealed that deaminase activity is required for the DN effect of
AID∆C [80,81], which is consistent with the aberrant DNA damage
hypothesis.

AID Deamination at Ig V Regions
Unlike S regions, V region sequences do not have features that
promote R-loop formation. Although protein-dependent short
stretches of ssDNA has been reported at Ig V regions [83], how
much they contribute to SHM is unclear. Moreover, SHM of V re-
gions likely only requires AID deamination on one of the two DNA
strands [54]. This may be an important factor why certain AID
mutations differentially affect SHM and CSR [34]. V regions are
privileged sites for SHM regardless of the local sequences [29], but
the reason for this privilege is unclear. Searching for cis-acting
elements for AID recruitment has been an ever-lasting effort [84–
88]. Ig enhancers, not Ig promoters, contain elements that specify
SHM activity [89]. However, Ig enhancers contain a myriad of
transcription factor sites, and it has been difficult to pinpoint which
ones are more important than others and why.
A lingering question in the field is why ex vivo stimulated mouse

spleen B cells accumulate few V region mutations despite a high
level of AID expression and robust CSR [90,91]. It is known that the
5′-Sμ region accumulates mutations in these ex vivo stimulated cells
[90], suggesting that the SHM machinery is intact. One study found
that SHM activity coincides with the presence of suppressor of Ty 5
homolog (Spt5) [92], a transcription elongation factor that is asso-
ciated with paused RNA polymerase II. In ex vivo stimulated B cells,
Spt5 is found at 5′-Sμ but not V regions [92], whereas in germinal

Figure 2. Model of DSB formation at switch regions (A) AID generates rare and distally spaced uracils at switch regions. (B) A minor pathway of
DSB formation is through concurrent deamination at AGCT sites that contain overlapping AID hotspots. Close nicks produced by UNG2 and APE1
result in DSB. (C) The major pathway of DSB formation requires both BER and MMR factors. BER produces nicks that serve as loading sites for
Exo1. The MSH2/6 heteroduplex binds to a U:G mismatch and facilitates Exo1 loading at nicks to initiate 5′–3′ strand excision. If a nick is located at
the 3′ of the U:G mismatch, endonuclease activity of MLH1/PMS2 is required to generate a nick at the 5′ of the mismatch. Convergent Exo1-
mediated strand excision results in DSB formation.
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center B cells, Spt5 is found to associate with the V regions [92].
Therefore, Spt5 appears to be a good marker for SHM activity at
different regions [92]. Interestingly, deep sequencing analysis re-
vealed a very low level of V region mutations in ex vivo stimulated B
cells, but the mutation profile nevertheless matches that of the
germinal center B cells [29]. These data imply a quantitative rather
than a qualitative difference of AID targeting to the V regions. Si-
milarly, cytokine-stimulated CH12F3 cells undergo robust CSR to
IgA, but do not mutate their VH regions [32]. AID in CH12F3 cells is
primarily located to the Sμ region and not to the VH region [32].
Even when AID is retargeted to the VH region by a trick of knocking
down a splice factor (PTBP2) that is required for S region associa-
tion of AID, the VH region is still not mutated [32]. Therefore, AID
occupancy does not directly correlate with SHM activity. This ad-
ditional layer of regulation of SHM is still a mystery.
Historically, both SHM and CSR were thought to occur in cen-

troblasts in germinal centers. However, a recent study provided
strong evidence that CSR occurs predominantly in B cells when they
make the initial contact with T cells prior to the germinal center
formation [93]. In contrast, SHM occurs inside the germinal center.
This makes the differential AID targeting during CSR and SHMmore
palpable, as the two processes occur at different stages of B cell
development. Bcl6 is highly expressed in germinal center B cells and
functions as a master regulator of germinal center reactions. Bcl6
gene disruption in DT40 cells results in the loss of AID expression
and SHM [94]. However, forced expression of AID does not rescue
SHM in Bcl6 deficient cells [94], nor does complementing the cells
with a Bcl6 transgene that partially restores Bcl6 expression. A
change of gene expression profile was noted, suggesting a change of
cell identity that could not be easily reversed [94]. It is currently
unknown which Bcl6 target genes are needed to restore SHM in
those cells. CH12F3 cells do not express Bcl6 (KY, unpublished),
likely a reason why CH12F3 cells do not mutate V regions.
A recent study reported the instigation of V region SHM by ret-

roviral transduction of AID in CH12F3 or ex vivo stimulated B cells,
but only if the endogenous AID gene were disrupted [95]. The au-
thors proposed an unknown SHM-specific factor that is sequestered
by the basal level of AID protein in unstimulated cells. This ex-
planation is not very satisfactory, as there is very little AID protein
expressed without stimulation. Therefore, whatever unknown fac-
tor that is sequestered by AID must exist at an even lower level. It
cannot be ruled out, however, that the basal level AID may some-
how affect the expressions of other genes or cell identity that ren-
ders the cell non-permissive for V region SHM. This surprising
discovery may have created a valuable experimental platform for
further investigations of transacting factors that are essential for
SHM.

AID Off-targets
AID-mediated off-target mutations are threats to genome integrity,
which may explain why more than 90% of human lymphomas are
of B cell origin [96]. It has been well known that AID targets are not
restricted to Ig genes, as SHM-like mutations accumulate at proto-
oncogenes such as Bcl6 and others in germinal center and neo-
plastic B cells [89,97,98]. A large-scale DNA sequencing study re-
vealed that as many as 25% of germinal center expressed gene are
subject to AID damages [91]. Of these, some are deaminated by AID
but manage to avoid mutation thanks to high fidelity DNA repair.
This study revealed two levels of protection (targeting and repair)

against AID-induced damages. Genome-wide chromatin im-
munoprecipitation using an anti-AID antibody identified 5910 genes
that are occupied by AID in ex vivo stimulated B cells [99]. These
studies all pointed to a promiscuous nature of AID targeting. As
expected, AID off-target activities are linked to open chromatins and
active transcription. Genome-wide studies also identified super
enhancers (SEs) as prominent AID off-targets [100,101]. SEs are
clusters of enhancers that are hyper-acetylated, highly active, en-
gaging long-range interactions, and controlling cell type-specific
gene expressions [102]. It should be noted that only a small per-
centage of SEs are AID targets. Therefore, neither high level tran-
scription nor SEs are sufficient to specify where SHM accumulates.
Divergent and convergent transcriptions have also been described
as features that favor AID-targeting [101,103]. Contradictory as it
may seem, divergent and convergent transcriptions probably re-
present the same topological mechanism of promoting ss DNA,
depending on the timing of transcription [104].
Despite great interests and intensive research efforts, the target-

ing mechanism for AID remains obscure. Not a single or simple
combination of motifs or features can be used for reliable prediction
of AID off-targets. No single characteristic was found to be sufficient
or essential for recruiting AID. It seems that a very large number of
factors collectively control the where-about of AID and SHM in the B
cell genome. Recent CSR studies proposed a concept called “re-
combination center” as a key element of the chromatin loop ex-
trusion mechanism that governs CSR [105–107]. It is tempting to
speculate a similar mechanism for SHM such that AID may be en-
riched (physically and/or functionally) at discrete sub-nuclear lo-
cations and that access to these locations confers SHM activity.
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