
nanomaterials

Article

Combined Effect of Active Packaging of Polyethylene
Filled with a Nano-Carrier of Salicylate and Modified
Atmosphere to Improve the Shelf Life of
Fresh Blueberries

Valeria Bugatti 1,2,†, Maria Cefola 3,† , Nicola Montemurro 3,4, Michela Palumbo 3,5,
Laura Quintieri 4 , Bernardo Pace 3,* and Giuliana Gorrasi 1,*

1 Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
vbugatti@unisa.it

2 Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Napoli, Italy
3 Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT,

Via Michele Protano, 71121 Foggia, Italy; maria.cefola@ispa.cnr.it (M.C.);
nicola.montemurro@ispa.cnr.it (N.M.); michela.palumbo@ispa.cnr.it (M.P.)

4 Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O,
70125 Bari, Italy; laura.quintieri@ispa.cnr.it

5 Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25,
71122 Foggia, Italy

* Correspondence: bernardo.pace@ispa.cnr.it (B.P.); ggorrasi@unisa.it (G.G.)
† These authors contributed equally to this work.

Received: 24 November 2020; Accepted: 12 December 2020; Published: 14 December 2020 ����������
�������

Abstract: Blueberries are popular among consumers for their high nutritional value but are highly
perishable due to the microbial decay. The use of active packaging that is able to interact with the
food through releasing or absorbing substances can be a valid approach to preserve the quality and
increase the fruit’s shelf-life. In this paper, an active packaging based on polyethylene (PE) filled with
a nano-carrier of salicylate was prepared and characterized. Fresh blueberries were packaged in
passive modified atmosphere packaging (pMA) for 13 days at 8 ◦C. The combination of the active
filler in bulk and pMA showed a significant inhibition of mold development and a reduction of the
respiration rate of fruits. Moreover, the release of salicylate on blueberries did not alter the fruits’
sensory traits and preserved the firmness and the nutritional quality. Finally, the combination of
active packaging and pMA resulted a valid solution to extend blueberries’ shelf-life up to 13 days.

Keywords: layered double hydroxides (LDHs); polyethylene; microbial control; postharvest
quality; marketability

1. Introduction

Highbush blueberry (Vaccinium corymbosum L.), also called blue huckleberry [1,2], in the last
years, has become popular in Europe, where the production and commercialization have extensively
increased [3] for fresh consumption and its derived products [4]. The increase in popularity of these
small fruits among consumers is mainly due to high nutritional value and their pleasing flavor and
taste [5,6].

These fruits lose their shelf-life from gray mold (Botrytis spp.) development, mechanical damage,
and water and nutritional loss [7–9].

Modified atmosphere (MA) packaging reducing the respiration rate and weight loss during
storage might be a useful tool to prolong blueberry shelf-life. In addition to MA, active packaging
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represents an innovative approach to prolong the fruits’ shelf-life, ensuring their quality, integrity,
and safety. The European regulation (EC) No 450/2009 defines an active packaging as a system that
interacts with the food, releasing or absorbing substances into or from the packaged food or the
environment surrounding the food. As a consequence, active packaging can be divided in two main
categories: scavenging systems and active-releasing systems. The scavenging materials are able
to remove undesired compounds from the food or its environment (i.e., moisture, oxygen, carbon
dioxide, ethylene, odors), while the active-releasing materials add compounds to the packaged food
or into the headspace (i.e., antimicrobial molecules, antioxidants, ethylene, carbon dioxide, flavors,
ethanol) [10–14]. The addition of active molecules to the packaging, instead of directly to the food,
helps to decrease the amount of such substances required to prolong the food’s shelf life. Indeed,
when the active molecules are added directly to the product, their activity may be reduced or inhibited
as a result of interaction between the active substances and the food components, and/or during the
processing of the product. With the aim of introducing as few active molecules as possible into the bulk
of the packaging, an interesting solution is the use of a nano-carrier that is able to release the molecules
in a controlled way. In the last few years, it has been demonstrated that Layered Double Hydroxides
(LDHs) are excellent carriers to delivery active molecules from the food packaging materials [15–18].
They can be produced on a large scale and with a high level of purity and can be modified with almost
any type of organic anion. They improve the physical and barrier properties of the polymer matrix
in which they are dispensed and act as nano-carriers of the active molecules intercalated between
their layers.

The present paper reports the preparation and characterization of active packaging obtained using
a master batch of polyethylene (PE) and 25% (wt/wt) of active filler based on LDH and salicylate (listed
in EC-Directive 10/2011/EC of 14 January 2011) [19]. Then, the postharvest quality of fresh blueberries
packaged under modified atmosphere using the produced active material was followed during the
storage at 8 ◦C for 13 days.

2. Materials and Methods

2.1. Active Packaging Material Preparation

Polyethylene (PE) (PRISMA AD PE RIPE RET 91735), moisture 1500 ppm and density 0.92 g/cm3,
used for the masterbatch and the film, was supplied by Frilvam SpA (Nerviano, Italy). The active filler,
having the trade name of A3B9® and based on an LDH intercalated with antimicrobial salicylate anion
(Commission Regulation (EU) No. 10/2011), was produced by Nicefiller Ltd. (Fisciano, Italy), which
is a startup of the University of Salerno (Salerno, Italy). The synthesis was conducted accordingly
to a previously reported procedure [20]. The filler was micronized by Food and Phama Systems
srl (Fiorenzuola d’Arda, Italy) to obtain 1–2 micron sized particles. The PE masterbatch (MB) was
obtained by mixing 25 wt% of A3B9® filler, previously dried at 105 ◦C for 24 h, with 75 wt% of PE in a
twin-screw extruder at 110 ◦C and extruding the mixture through a strand die. The strand was cooled,
cut, and dried at 70 ◦C for 3 h.

Starting from 40% of MB based on PE and 25% filler A3B9®, rolls (10–12 cm wide) of multilayer PE
film (three layers) were prepared using a three-extruder bubble co-extrusion plant, with 10% filler in the
10 micron thick PE layer (50-micron total thickness). The operation determined the process conditions
in terms of thermal profiles along the machines, screw rotation speed, collection and inflation and
ironing conditions. A sample of PE with the active molecule, at the same amount present in the
active filler (i.e., 8.4%), simply mixed into the film was prepared in the same described experimental
conditions. Then, active bags were prepared from active PE coils and used to package blueberries as
described below.
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2.2. Active Packaging Material Characterization

The masterbatch was prepared by means of an ICMA San Giorgio (San Giorgio su Legnano,
Italy) co-rotating twin-screw extrusion system, with a temperature profile varying between 110 and
120 ◦C. The PE film was prepared by means of a Gefran Beyond Technology (Provaglio d’Iseo, Italy)
three-extruder bubble co-extrusion plant, consisting of 3 extrusion lines for polyethylene film for the
production of open mouth bags. There are 3 extruders, 60 Kw each, which are equipped with the
towing and collection, respectively: two 800 mm and one 1000 mm.

X-ray diffraction (XRD) patterns were taken in reflection with an automatic Bruker diffractometer
D8 (Karlsruhe, Germany), using nickel-filtered Cu Kα radiation (Kα = 1.54050 Å) and operating at
40 kV and 40 mA, with a step scan of 0.05◦ of 2θ and 3 s of counting time.

The release kinetics of salicylate was followed using a Shimadzu UV-2401 PC spectrometer (Kyoto,
Japan). The tests were performed using 4 cm2 rectangular specimens placed into 25 mL Ethanol
50% solution and stirred at 100 rpm in an orbital shaker (VDRL MOD. 711+, Asal S.r.l., Milan, Italy).
The release medium was withdrawn at fixed time intervals and replenished with fresh medium.
The considered band was 230 nm.

Global migration tests were performed on the PE film treated with A3B9® filler samples according
to the following procedure. PE film specimens with 1 dm2 of surface area (10 cm × 10 cm, 0.10 mm
thickness) were put into contact with 100 mL simulant (preconditioned at 40 ◦C) in a borosilicate
glass tube closed with a screw cap internally layered with Teflon®. The obtained surface/volume
ratio was 10 dm2/L. Migration tests after contact for 10 days at 40 ◦C were performed using as
simulants A (Ethanol at 10%), B (Acetic acid at 3%), C (Ethanol at 20%), D1 (Ethanol at 50%), and D2
(oil). The overall migration test was performed on different aliquots from the same contact sample.
The overall migration results were calculated by using 6 dm2/kg food (6 dm2/L simulant) as per the
conventional EU surface/volume ratio. A known aliquot of the simulant from the contact solution was
transferred into a weighted quartz capsule and evaporated to dryness until constant weight. From the
differences between the weights, the overall migration was derived in accordance to EN 1186 Migration
Testing for Food Contact Materials. The data were averaged on five samples.

2.3. Blueberries Packaging and Storage

Blueberries (Vaccinium corymbosum L., cv Rebel) were harvested at commercial maturity stage
(full color berries and total soluble solids of 9.4 ± 1.1◦Brix) by Naturagri srl (San Giorgio Lucano, Italy)
and transported in refrigerated condition to the Postharvest Laboratory of Institute of Science of Food
Production. About 4 kg of berries were selected to eliminate fruits with evident defects or diseases;
then, 500 g of fruit were used for the initial analysis in three replicates, while the remaining samples
were divided in 2 lots (one for each treatment) of about 1.5 kg each. Fruits (about 80 g for replicates)
were put in PE active bags (15 × 10 cm) and closed in triplicate in a passive modified atmosphere
(Active-pMA) or were put in open PE bags (Control). All samples were stored at 8 ◦C and were
analyzed after 3, 7, and 13 days. Daily, the gas composition inside Active-pMA bags was measured
using a gas analyzer (CheckPoint O2/CO2-Dansensor® Mocon, Ringsted, Denmark). At each storage
time, berries belonging to each packaging treatment, in triplicate, were analyzed for postharvest
quality evaluation.

2.4. Blueberries Postharvest Quality Evaluation

2.4.1. Chemicals and Reagents

For the quality determinations, methanol, acetone, 2,2-diphenyl-1-picrylhydrazyl (DPPH),
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), and gallic acid were obtained from
Sigma–Aldrich (St. Louis, MO, USA). Folin–Ciocalteu’s phenol reagent was purchased from Merck
(Darmstadt, Germany). For the microbiological analyses, all culture media and related supplements
were purchased from Oxoid (OxoidSPA Rodano, Milano, Italy).
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2.4.2. Respiration Rate and Weight Loss

The respiration rate was measured initially and at each sampling time (just after the opening
of the bags), using a closed system [21], placing 50 g of product (3 replicates per treatment) into
3.6 L sealed plastic jars (one jar for each replicate), where CO2 was allowed to accumulate. The CO2

concentration inside the jars was monitored at regular time intervals up to reach the value of 0.1% as
the concentration of the CO2 standard. Respiration rate was evaluated at 8 ◦C and expressed as mL
CO2/kg h. The weight loss was measured as reported in [22].

2.4.3. Sensory Evaluation and Color

Berries were sensory scored by a group of eight trained researchers at the beginning of the
experiment and during the storage period. A selected group of 10 panelists (made up of 5 females
and 5 males), previously involved as members of trained descriptive analysis panels, was trained to
illustrate the descriptors of blueberries.

Coded (3 digits) samples were presented to the trained researchers (judges) individually, to enable
them to make independent evaluations. Off-odor (just after opening the bag) was evaluated using
a 5-point scale where 5 = severe (very strong off-odor), 3 = moderate off-odor, and 1 = none
(no off-odor) [23]. Visual quality was evaluated using a 5-point rating scale, where 5 = excellent and
1 = severe visual defects, according to [24].

The color was acquired using a colorimeter (CR-400-Konica Minolta, Osaka, Japan) as reported in
Pace et al. [25] on 10 berries, as the mean value of two opposite point for each berry. The color was
expressed as hue angle (h = arctan b∗

a∗ ) calculated from primary L*, a*, and b* readings.

2.4.4. Firmness, Total Soluble Solids, Titratable Acidity, and pH

The berries firmness was evaluated on 10 fruits per replicate by using a texture analyzer (ZwickLine
Z0.5-Zwick/Roell, Ulm, Germany) equipped with a plate of 100 mm in diameter. Results were expressed
as the ratio between the force that achieved the 2 mm of deformation of the berries and the fruit
weight (N/g).

For the measurement of total soluble solids, titratable acidity, and pH, the same berries extract
was used. About 4 g of berries were homogenized (T 25 digital ULTRA-TURRAX®-IKA, Staufen,
Germany) in 20 mL of distilled water for 1 min and then filtered through 2 layers of cheesecloth to
obtain the berries extract. The total soluble solids content was measured using a digital refractometer
(DBR35-XS Instruments, Carpi, Italy) and expressed in ◦Brix. Titratable acidity was determined using
a semiautomatic titrator (PH-Burette 24 -Crison Instrument, Barcelona, Spain) with 0.1 M NaOH to the
final pH 8.1, and results were expressed as percentage of citric acid. The same instrument was used to
measure the pH.

2.4.5. Total Phenols, Antioxidant Activity, and Carotenoids

The total phenols and antioxidant activity was measured in a previous study [26]. The content of
total phenols was calculated based on the calibration curve of gallic acid (50–500 µg/mL, R2 = 0.99) and
was expressed as mg gallic acid per 100 g of fresh weight (fw). For antioxidant activity, results were
expressed as milligrams of Trolox per 100 g of fw using a Trolox calibration curve (82–625 µM).

For the determination of carotenoids, 5 g of berries tissue were homogenized in acetone/water
(80:20 v/v) and then centrifuged at 6440× g for 5 min. To remove all pigments, the extraction procedure
was repeated 3 times, and the extracts were combined. The absorbance (Abs) was read immediately
after the extraction at three wavelengths: 663.2, 646.8, and 470 nm. Carotenoids were calculated using
the following formula: [(1000 × Abs 470) − (1.82 × Ca) − (85.02 × Cb)]/198, where Ca = (12.25 × Abs
663.2) − (2.79 × Abs 646.8), and Cb = (21.50 × Abs 646.8) − (5.10 × Abs 663.2) [27]. Results were
expressed as mg of carotenoids per 100 g of fruit on fw.
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2.4.6. Microbiological Analysis

At 0, 3, 7, and 13 days of cold incubation (8 ◦C), blueberry samples, in Active-pMA or Control,
were transferred (25 g), in triplicate, into individual sterile stomacher bags and then homogenized in
225 mL of 0.1% peptone water for 1 min. Then, serial dilutions, in triplicate, of the resultant suspensions
were performed in 0.1% peptone water and plated on selective culture media as follows: total aerobic
bacterial counts (TBC) were enumerated on Plate Count Agar (PCA) supplemented with cycloheximide
(0.1 mg/mL) after 24 h of incubation at 30 ◦C [28]; total coliforms were enumerated on Violet Red Bile
Agar (VRBA) after 24 h at 37 ◦C [29]; Pseudomonas spp. were enumerated on Pseudomonads Agar Base
(PSA; amended with Pseudomonas CFC selective supplement, Oxoid) after incubation at 30 ◦C for 24 h;
yeasts and molds were enumerated on Dichloran Rose Bengal Chloranphenicol agar (DRBC, Merck,
Germany) agar after 96 h at 25 ◦C [30]. Microbial counts were expressed as log CFU (colony-forming
units) per gram of fresh blueberries.

2.4.7. Statistical Analysis

For the postharvest quality parameters, the effect of treatments (Active-pMA and Control), storage
time (3, 7, and 13 days), and their interaction were tested by performing a multifactor ANOVA using
StatGraphics Centurion XVI.I (StatPoint Technologies, Inc., Warrenton, VA, USA). When the interaction
(treatment x storage time) was significant, data were presented as graphs with mean values ± standard
deviation. For microbiological analysis, statistical significance (p values) of the results was calculated
by unpaired two-tailed Student’s t test using GraphPad Prism 8 software (San Diego, CA, USA).

3. Results

3.1. Packaging Material Characterization

Figure 1 reports the XRD of PE (A) and PE filled with LDH salicylate (B). It is evident that PE
(Figure 1A) shows its typical orthorombic cell with the peaks at 2θ = 21.6◦ and 2θ = 23.8◦. Such a
structure is retained in the active film (Figure 1B). In the latter, there is also a peak at 2θ = 6.02◦ that is
related to the intercalation of the active molecule (see inset) between the pristine LDH–NO3 layers for
which the interlayer distance shows a peak at 2θ = 10.2◦ [31]. Figure 2 reports the release of salicylate
from the active packaging as a function of the time and the release of the active molecule, at the same
amount of the molecule intercalated between the LDHs’ layers (i.e., 8.4% wt/wt) simply blended into
the PE film. After a first burst, due to the release of the active molecule from the film surface, it is
possible to observe slower release zones. In the case of the sample with an active molecule simply
blended to the PE, the second release step is due to the counter-diffusion of the salicylate from the bulk
of the material. The complete release (100% of blended molecule) is reached in 7 days. The sample of
active PE (PE filled with LDH and salicylate) shows three release zones. After the burst that is much
lower than the one observed from the PE with the molecule simply blended, we observed two release
steps in which the active molecule is de-intercalated from the LDHs’ lamellae and counter-diffused
out of the bulk. The amount of released salicylate, at any contact time, is always slow for the active
film. The complete release of the intercalated molecule is reached in 12 days. We underline that such
measurements were used mainly to demonstrate that salicylate was successfully intercalated between
the LDH’s layers. The migration of such molecules, being non-volatile, into the packaged fruits is
supposed to not follow the same mechanism registered in saline solution. Anyway, blueberries are
fruits with a “complex composition”, and at the interface fruit/packaging we do not exclude an ionic
exchange of the active salicylate with anions inside the fruits.

In order to demonstrate that the prepared active packaging is suitable for food contact,
we performed overall migration tests on the film treated. Table 1 reports the global migration
evaluated on the active packaging, in different food simulants, accordingly to UNI EN 1186-1:2003 [32]
and UNI EN 1186-9:2003 [33]. The experimental results, in compliance with the migration limits,
demonstrate the suitability of the considered material for food contact.
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Figure 2. Release of salicylate bonded to Layered Double Hydroxides nanofiller from active film and
simply blended into PE

Table 1. Global migration into aqueous food simulant by filling a container UNI EN 1186-1: 2003 +

UNI EN 1186-9: 2003 for the film based on the active PE filled with Layered Double Hydroxides and
salicylate (contact time 10 day, temperature test 40 ◦C).

Simulant Global Migration Average in the Simulant (mg/dm2)

A Ethanol at 10% (v/v) 2.1
B Acetic acid at 3% (v/v) 4.2
C Ethanol at 20% (v/v) 2.5

D1 Ethanol at 50% (v/v) 3.7
D2 Oil <2

Limit 10
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3.2. Effect of Active-pMA on Postharvest Quality Parameters of Blueberries

Changes in gas composition inside Active-pMA bags are reported in Figure 3. Starting from the
air composition (21 kPa O2 and 0.03 kPa CO2), the oxygen was gradually consumed by the product,
with a consequent CO2 accumulation, reaching the equilibrium already after 24 h of storage at 8 ◦C,
with mean values of 15.1 (±1.3) kPa O2 and 6.0 (±0.8) kPa CO2 (Figure 3).

The effect of treatments, storage time, and their interaction on the quality parameters evaluated
in blueberries is reported in Table 2. Respiration rate, weight loss, and visual quality were affected
by both treatments and storage time, and by their interaction. In addition, firmness was affected
only by the interaction treatment x storage time. Regarding the other quality parameters, such as
color, off-odor, total soluble solids, titratable acidity, pH, total phenols, antioxidant activity, and total
carotenoids, the multifactor ANOVA analysis did not showed any significant effect of the factors
considered. Regarding the parameters just mentioned, their values at harvest are reported in Table 3.
No off-odor was perceived by judges during the trial.
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Figure 3. Changes in gas composition inside Active-pMA bags of blueberries (cv Rebel) stored
for 13 days at 8 ◦C. Data are mean values (n = 3) ± standard deviation. pMA: passive modified
atmosphere packaging.

Changes in the respiration rate, weight loss, visual quality, and firmness during storage are
reported in Figure 4. The respiration rate measured at harvest was 17.2 (± 0.3) mL CO2/kg h, and this
value remained unchanged in the Control for the entire experiment. Meanwhile, in Active-pMA,
a significant reduction was observed after 3 days followed by an increase after 7 days, and a slight
decrease at the end of the storage was measured (Figure 4A). As expected, samples stored in the
Control showed a significant weight loss during storage, reaching a mean value of 3.3 (±0.4)% after
13 days at 8 ◦C, while in Active-pMA, the weight loss was very restricted (0.7 ± 0.3%) (Figure 4B).

Regarding the visual quality, as shown in Figure 4C, the blueberries stored in Active-pMA were
judged very good (mean score of about 4.5) for the entire storage, whereas Control samples showed a
significant reduction of visual quality starting from the 7th day in storage, reaching at the end of the
trial a mean score below 2 (Figure 4C). This was due to the dehydration and to the mold development
observed on the Control fruit. As for firmness, at the end of storage, the Control fruits were softer than
the Active-pMA fruits (Figure 4D).
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Figure 4. Changes in respiration rate (A), weight loss (B), visual quality (C) and firmness (D) in
blueberries (cv Rebel) stored in Active-pMA or in air (Control) for 13 days at 8 ◦C. Data are mean values
(n = 3) ± standard deviation.
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Table 2. Effect of treatment (Active-pMA and Control) (A), storage time (3, 7, and 13 days at 8 ◦C) (B)
and their interaction (A × B) on quality parameters evaluated in blueberries (cv Rebel).

Quality Parameter A B A × B

Respiration rate (mL CO2/kg h) **** **** ****
Weight loss % **** **** ****
Off-odor (5-1) ns ns ns

Visual quality (5-1) **** **** ****
Color (hue angle) ns ns ns

Firmness (N/g) ns ns *
Total soluble solids (◦Brix) ns ns ns

Titratable acidity (citric acid %) ns ns ns
pH ns ns ns

Total phenols (mg gallic acid/100 g fw) ns ns ns
Antioxidant activity (mg Trolox/100 g fw) ns ns ns

Carotenoids (mg/100 g fw) ns ns ns

Asterisks indicate the significance level for each factor of the ANOVA test (ns, not significant; * p≤ 0.05; **** p ≤ 0.0001).

Table 3. Quality parameters evaluated in blueberries (Vaccinium corymbosum L., cv Rebel) at harvest.
Data are mean of three replicates ± standard deviation.

Quality Parameter

Total soluble solids (◦Brix) 10.0 ± 0.4
pH 4.5 ± 0.3

Hue angle (h◦) 106.6 ± 6.3
Total phenols (mg gallic acid/100 g fw) 222.4 ± 29.3

Antioxidant activity (mg Trolox/100 g fw) 216.1 ± 27.5
Titratable acidity (citric acid %) 1.19 ± 0.10

Carotenoids (mg/100 g fw) 0.52 ± 0.19

Results from microbiological analysis showed the inhibitory effect of Active-pMA against all
microbial populations naturally contaminating blueberries and herein analyzed (TBC, Pseudomonas
spp, total coliforms, yeast, and molds). Figure 5 shows TBC, yeast, and mold counts registered in
samples stored in Active-pMA and the related Control throughout cold storage.
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Figure 5. Total bacteria counts (TBC) (A), mold and yeast (M/Y) (B) (Log colony-forming units (CFU)
g−1) determined in blueberries (cv.Rebel) stored in Active-pMA or in air (Control) for 13 days at
8 ◦C. Data are mean values (n = 3) ± standard deviation. Asterisks indicate statistically significance
differences (Student’s test, ** p < 0.01 * p < 0.05).
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In particular, mold and yeast reduced significantly (p < 0.05) their load in the Active-pMA sample
starting from the 7th day of incubation. Likewise, except for day 3 of sampling, TBC in Active-pMA
blueberries did not show concentration values above the detection limit (2 log CFU/g) over the entire
period of incubation; by contrast, in the Control sample, TBC reached about 6 log CFU/g at the end of
storage. Regarding Pseudomonas spp. and total coliforms, counts of 4 and 6 log CFU/g, respectively
were registered in Control samples at the end of the storage; no bacterial cells were instead enumerated
in the Active-pMA fruits (above the detection limit).

For the visual quality evaluation, the following 5-point rating scale was used: 5 = excellent (fresh
appearance, full sensory acceptability); 4 = good (product acceptable from a sensory point of view);
3 = limit of sensory acceptability; 2 = product has notable visual defects; and 1 = severe visual defects.

4. Discussion

In the present research paper, the combined effect of active bags and passive modified atmosphere
packaging (pMA) of 15 kPa O2 and 6 kPa CO2 at equilibrium on the quality of blueberries stored
until 13 days at 8 ◦C was investigated. Since then, several researchers reported the fungistatic
action of CO2 at concentrations higher than 10 kPa [34–37]; the effect on the reduction of the molds
development in blueberries stored in Active-pMA was probably due to the use of antimicrobial
packaging rather than the CO2 level inside the bags. In support of this hypothesis, the results showed
that the antimicrobial effect was registered starting from the 7th day of storage, a sampling time in
which the salicylate concentration was released by more than 80%. The efficacy of salicylic acid used as
dipping solution in combination or not with heat and ultrasound treatments, or incorporated in edible
coating, in counteracting microbial spoilage was previously reported for several stored fruits [38–40].
In accordance with our results, the authors reported that salicylic acid effectively had delayed the
development of molds by maintaining fruit firmness and inner quality [40,41]. Recently, [42] found a
significant effect of an active packaging based on salycilate release on the reduction of total mesophilic
aerobic count (TBC) and mold and yeast population in table grapes stored for 14 days at 10 ◦C.

In detail, the mechanism of action involved conidia membrane damage with the consequent
inhibition of fungal spore germination [43]. In addition, to molds contamination, the occurrence of
several bacteria (e.g., coliforms, Listeria spp.) also contribute to blackberries decays within several days
after harvest [44–46]. In particular, coliform contamination could be influenced by the conditions of
hygiene prevailing during post-harvest handling and packing [47]. Interestingly, the antimicrobial
effect of the herein developed packaging system was registered also against this latter population,
thus improving hygiene standards of fruits during storage.

On the other hand, the atmosphere modification causes a significant reduction of respiration
rate as compared with the Control. This behavior was previously observed in other produce [22,48],
and, in general, it is well known that the modification of the atmosphere is able to reduce the rate of
respiration of fruit and vegetables [49].

Blueberries postharvest quality loss is mainly due to mold development and dehydration, which
results in fruit shriveling, brightness loss, and softening. All these factors affect the visual quality,
limiting the marketability [50]. The use of Active-pMA was able to keep a good relative humidity inside
the bags, avoiding water loss, maintaining the firmness, and thus preserving the fruit visual quality.
The authors of [51] reported that in order to delay softening during the postharvest life of blueberries,
it is important minimize the weight loss and the cell wall degradation. These results were in accordance
with previous studies exploiting salicylic acid as a preservative agent of stored fruits [38,39]. Moreover,
no off-odor was perceived in blueberries stored in active bags; thus, the salicylate release did not alter
the fruit sensory quality.

Regarding the compositional quality, the Active-pMA preserved the initial content in phenolic
compounds, total carotenoids, and the antioxidant activity during storage. Blueberries are fruit with
one of the highest antioxidant capacities that is largely influenced by total phenolic content and in a
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small portion by ascorbic acid [52,53]. Starting from these points, maintaining a high level of phenolic
compounds and antioxidant activity is a priority for the postharvest handling process.

5. Conclusions

A novel food packaging material based on polyethylene coated with a food grade acrylic resin
filled with a nano-carrier of antimicrobial salicylate (listed in EC-Directive 10/2011) was prepared.
The nano-carrier was constituted of an anionic clay, such as layered double hydroxide, to which the
active molecule has been linked with an ionic bond. The successful incorporation of the antimicrobial
into the layered double hydroxide was demonstrated through X-ray diffraction analysis and the study
of controlled release.

The use of Active-pMA resulted in valid solution to store blueberries for 13 days at 8 ◦C, allowing
a 50% shelf-life extension respect to the Control. The main effect of Active-pMA was the control of
mold development, which was mainly due to the release of antimicrobial agents. Moreover, the storage
in active bags delayed the rate of respiration and limited weight loss, preserving the fruit firmness.
The Active-pMA also preserved the content in healthy compounds. In support of this hypothesis,
the results showed that the antimicrobial effect was registered starting from the 7th day of storage,
a sampling time in which the salicylate concentration was released by more than 80%.
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