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Objective. Infiltration of tumor-associated macrophages is closely linked to the malignant development of human cancers. This
research studies the function of C-C motif chemokine ligand 7 (CCL7) in the macrophage accumulation in lung
adenocarcinoma (LUAD) and the underpinning mechanism. Methods. The expression profile of CCL7 in LUAD and its
correlations with patient’s prognosis and macrophage infiltration were predicted via bioinformatics systems. Artificial up- or
downregulation of CCL7 was induced in LUAD cells to explore its function in the mobility, EMT of cancer cells, and
migration of M2 macrophages. Cancer cells were implanted in NOD/SCID mice to induce xenograft tumors. The CCL7-related
transcription factors or factors were predicted by bioinformatic tools, and the molecular interactions were confirmed by
immunoprecipitation or luciferase assays. Results. CCL7 was highly expressed in LUAD and linked to increased TAM
infiltration. Knockdown of CCL7 suppressed the chemotaxis and M2 skewing of macrophages, and it blocked the EMT and
mobility of LUAD cells. CCL7 downregulation also suppressed macrophage infiltration in xenograft tumors in mice. Spi-1
proto-oncogene (SPI1) was confirmed as an upstream factor activating CCL7 transcription, and LINC01094 was found to bind
to SPI1 to promote its nuclear translocation. Upregulation of SPI1 restored the chemotactic migration and M2 polarization of
macrophages in LUAD cells. Conclusion. This paper reveals that LINC01094 binds to SPI1 to promote its nuclear
translocation, which further activates CCL7 transcription by binding to its promoter, leading to M2 macrophage accumulation
and dissemination of tumor cells.

1. Introduction

Lung cancer takes a place of 11.4% among all cancer cases
worldwide while accounting for 18% of all death cases, leav-
ing it the leading contributor to cancer-related death [1].
Non-small-cell lung cancer (NSCLC) is the major subclass
of lung cancer that makes up for ~85% of all cancer cases,
and lung adenocarcinoma (LUAD) represents the major
subtype of NSCLC [2, 3]. Despite progress in the diagnosis
and therapy for LUAD, such as surgery, chemotherapy,
radiotherapy, and immunotherapy, the treating outcome

remains frustrating with the 5-year survival less than 20%
[4]. In particular, owing to the lack of early symptoms, most
patients are diagnosed at advanced stages with local of dis-
tant metastasis, whose survival rate is extremely low [5].
Developing more effect therapeutic options for lung cancer
treatment remains a major task for researchers in this field.

The tumor microenvironment (TME), featured with
the shortage of nutrients, hypoxic, and acidic environment,
enriches with cancerous and noncancerous cells triggering
tumor development, invasion, and dissemination [6].
Tumor-associated macrophages (TAMs) are highly abundant
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leukocytes in lung cancer whose mutual conversion is deter-
mined by the TME [7]. Upon tumor stimuli, TAMs shift
toward to antitumor (M1) or a protumor (M2) phenotypes
[8]. The M2-skewed macrophages represent the major infil-
trating immune cells leading to tumor growth, epithelial-
mesenchymal transition (EMT), metastasis, angiogenesis,
and immunosuppression [7, 9], making them promising tar-
gets for antitumor treatment.

C-C motif chemokine ligand 7 (CCL7) is a chemotactic
factor of the CC subfamily and an attractant of monocytes
initially found in the culture supernatant of osteosarcoma
cells [10]. CCL7 is lowly expressed in endothelial cells, fibro-
blasts, and monocytes and elevated upon a variety of stimuli
such as interferons and viruses [11]. CCL7 deficiency in
mice led to failed pathogen elimination, and the mice
showed impaired neutrophil and monocyte infiltration in
infected tissues or organs [12], suggesting its essential roles
in recruiting immune cells to the infected microenviron-
ment. Of note, CCL7 has been summarized to play critical
prooncogenic role in cancers via a multitude of mechanisms,
including the recruitment of immune cells to the tumor sites
[13]. High CCL7 expression has been reported in NSCLC
and linked to malignant phenotypes including the mobility
and metastasis of cancer cells [14]. However, the functions
of CCL7 in TAM infiltration in lung cancer and the under-
pinning mechanisms remain unclear.

In this work, the authors aimed to investigate the roles of
CCL7 in the migration and polarization of macrophages and
the malignant phenotypes of LUAD cells by performing
gain- and loss-of-function assays. Moreover, we predicted
the upstream regulators of CCL7 by using integrated bioin-
formatic analyzing tools and systems, and two candidate
upstream regulators including LINC01094 and Spi-1 proto-
oncogene (SPI1) were obtained. Collectively, a LINC01094/
SPI1/CCL7 axis was defined in LUAD, which is potentially
linking to macrophage infiltration and tumor development.

2. Materials and Methods

2.1. Reagents, Primers, and Antibodies. Enzyme-linked
immunosorbent assay (ELISA) kits were procured from
R&D Systems Inc. (Minneapolis, MN, USA), and the
detailed information is presented in Table 1. The primers
were procured from Sangon Biotech Co., Ltd. (Shanghai,
China) with the sequence information given in Table 2.
The antibodies used are listed in Table 3.

2.2. Bioinformatics Analysis. First, the expression of CCL7 in
several LUAD datasets was retrieved in the Oncomine data-
base (http://www.oncomine.org/) as well as in TCGA-LUAD
(https://portal.gdc.cancer.gov/). Transcriptional factors in
TCGA-LUAD that can bind with CCL7 promoter with an
over 0.5 correlation coefficient were analyzed using the R
TFBS package (http://bioconductor.riken.jp/packages/3.2/
bioc/html/TFBSTools.html). We obtained 510 tumor samples
from TCGA-LUAD and discarded over 80% nonexpressed
genes with Log2 (TPM+1) as the thresholds. Putative binding
between LINC01094 and SPI was predicted via the RPIseq sys-
tem (http://pridb.gdcb.iastate.edu/RPISeq/).

2.3. Cell Treatment. The H1299, A549, and H358 cells (low-
invasive) and H125 cells (invasive) were procured from
ATCC (Manassas, VA, USA). All cells were cultured in
RPMI-1640 (Thermo Fisher Scientific, Rockford, IL, USA)
with 10% FBS. HEK-293T cells were procured from ATCC
as well and maintained in 10% FBS-contained DMEM
(Thermo Fisher Scientific). The condition for cell incubation
was maintained at 37°C with 5% CO2. All cell lines used
were free of mycoplasma infection.

Thereafter, 15-μg short hairpin (sh) RNA of CCL7, the
scramble plasmid, or overexpression plasmid of SPI1 or
CCL7, 9μg psPAX2, and 6μg pMD2G package plasmid
were mixed with 45μL Lipofectamine 2000 (Thermo Fisher
Scientific) and transfected into HEK-293T cells. After 48 h,
the lentiviral vectors were used to infect the H125 or A549
cells. After centrifugation using 8μg/mL (Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany) at 1,200× g at 32°C
for 90min, cells infected with lentivirus were harvested for
functional analyses.

2.4. Quantitative PCR (qPCR) Analysis. DNA was amplified
by DNA polymerase (Vazyme Biotech Co., Ltd, Nanjing,
Jiangsu, China). The qPCR analysis was then performed
using the TB Green® Premix Ex Taq™ (Takara Holdings
Inc., Kyoto, Japan) on the Real-Time PCR system (Applied
Biosystems, Foster City, CA, USA). Relative expression
values of gene were calculated by the 2-△△Ct method.
GAPDH was used as the endogenous loading.

2.5. Immunoblot Analysis. Cells were lysed in RIPA buffer
(Beyotime Biotechnology Co., Ltd, Shanghai, China). Total pro-
tein was collected and separated by 10% SDS-PAGE (EpiZyme,
Shanghai, China) and loaded onto PVDF membranes (Milli-
pore, Billerica, MA, USA). After incubation with the primary
antibodies at 4°C for 16h, the membranes were further incu-
bated with horseradish peroxidase-labeled secondary antibody
at 37°C for 1h. The images were developed using the ECL
HRP substrate (Millipore) and analyzed by ImageJ. Full scans
of original gels were provided in Supplementary file 1.

2.6. Induction of M0 Macrophages Using THP-1 Cells. A
human monocytic cell line (THP-1) was procured from
ATCC and maintained in RPMI-1640 supplemented with
10% FBS, HEPES (10mM), and β-mercaptoethanol
(0.05mM) at 37°C with 5% CO2. The THP-1 cells were

Table 1: Catalogue numbers of the ELISA kits.

Target Cat. no

IL-1β QK201

IL-6 QK206

TNF-α QK210

IL-10 D1000B

TGF-β DB100B

Note: ELISA: enzyme-linked immunosorbent assay; IL: interleukin; TNF:
tumor necrosis factor; all kits were procured from the R&D Systems Inc.
(Minneapolis, MN, USA).
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dispersed on culture plates (2 × 105 cells/mL) and treated
with 25nM phorbol 12-myristate 13-acetate (PMA) to
obtain a M0 macrophage phenotype.

2.7. ELISA. The cell culture supernatant was collected, in
which the concentrations of M1 cytokines IL-6, IL-1β, and
TNF-α and M2 cytokines IL-10 and TGF-β were determined
adhering to the instruction manual of the ELISA kits.

2.8. Transwell Assay. Cells were seeded to 24-well Matrigel-
coated Transwell upper chambers at 5 × 104 cells per well
(200μL) and cultured in serum-free medium. Lower chambers
were loaded with 800μL 10%FBS-contained medium. After
24h, noninvading cells were discarded, and cells invaded
through the lower membranes were fixed, stained with crystal
violet, and counted under microscopy and analyzed by ImageJ.

2.9. Scratch Test. Cells were seeded in 24-well plates with
serum-free medium. After cell adherence, the cell layer was
scratched by a sterile pipette tip. The cell debris was rinsed
away by PBS, and the width of scratch at 0 and 24 h was
determined to evaluate the 24-h migration rate of cells by
the following formula: migration rate = ðwidth at 0 h −
width at 24 hÞ/width at 0 h × 100%.

2.10. Flow Cytometry. After staining with phycoerythrin- or
Alexa Flour488-conjugated antihuman or antimouse-

specific antibodies, the expression of macrophage markers
was analyzed by flow cytometry. All stained cells were exam-
ined by the flow cytometer (BD Bioscience, San Jose, CA,
USA), and the data were analyzed by the Flow Jo (Tree Star,
Ashland, OR, USA).

2.11. Immunofluorescence Staining. Cells were fixed with
formaldehyde, penetrated with 0.5 Triton X-100, and
blocked with 5% BSA for 1 h. After that, the cells were
reacted with the primary antibodies overnight at 4°C and
then with the goat antirabbit IgG (1 : 200, Thermo Fisher
Scientific) at 37°C for 1 h. DAPI was used for nucleus stain-
ing. The staining was visualized and captured under a laser
scanning confocal microscope.

2.12. Orthotopic Tumorigenesis in Mice. NOD/SCID mice (5
weeks old, 18.0-22.0 g) were procured from SLAC Laboratory
Animal Co., Ltd. (Shanghai, China) and housed in standard
conditions given rodent feed and drinking water ad libitum.
Thereafter, 2 × 106 stably transfected A549, or H125 cells were
injected into the lung tissue of mice. After 6 weeks, the mice
were sacrificed by overdosed pentobarbital (150mg/kg) to
harvest the tumor tissues. A half of each tumor tissue sample
was digested for flow cytometry to examine the portion of
F4/80/CD86- or CD206-positive cells. The other half of sam-
ple was used for immunohistochemistry (IHC) to determine
the expression of CD86 and CD206.

The procedures for care and use of animals were
approved by the Ethics Committee of the Fourth Affiliated
Hospital of China Medical University, and all applicable
institutional and governmental regulations concerning the
ethical use of animals were followed.

2.13. Histological Staining. Tissue sections were dewaxed and
loaded on glass slides for IHC. The tissue sections were
treated xylene, rehydrated, treated with 3% H2O2, and
blocked with 3% BSA for 1 h. Thereafter, the sections were
covered with the antibodies at 4°C for 14 h and then with
HRP-conjugated secondary antibody at 20-25°C for 3 h.
After that, the sections were counter stained with hematox-
ylin, cleaned with xylene, and sealed for microscopy obser-
vation. The staining intensity of each tissue was scored.
The IHC was scored from two aspects: the staining intensity
(0, negative staining; 1, mild staining; 2, moderate staining;

Table 2: Primer sequences for qPCR analysis.

Symbol Forward (5′-3′) Reverse (5′-3′)
CCL7 ACAGAAGGACCACCAGTAGCCA GGTGCTTCATAAAGTCCTGGACC

ZO-1 GTCCAGAATCTCGGAAAAGTGCC CTTTCAGCGCACCATACCAACC

TWIST1 GCCAGGTACATCGACTTCCTCT TCCATCCTCCAGACCGAGAAGG

SNAI1 TGCCCTCAAGATGCACATCCGA GGGACAGGAGAAGGGCTTCTC

SLUG ATCTGCGGCAAGGCGTTTTCCA GAGCCCTCAGATTTGACCTGTC

CD86 CCATCAGCTTGTCTGTTTCATTCC GCTGTAATCCAAGGAATGTGGTC

CD163 CCAGAAGGAACTTGTAGCCACAG CAGGCACCAAGCGTTTTGAGCT

SPI1 GACACGGATCTATACCAACGCC CCGTGAAGTTGTTCTCGGCGAA

LINC01094 GCCAGCCTAAGGAACACGTA GAGTTCAAAGGGCCCCCATC

Table 3: Antibodies, dilution rates, the catalogue numbers, and the
manufacturers.

Antibodies Dilution Cat. no Manufacture

CCL7 1 : 1,000 #MA5-29089 Thermo Fisher Scientific

ZO-1 1 : 2,000 #40-2300 Thermo Fisher Scientific

TWIST1 1 : 500 ab50887 Abcam

SNAI1 1 : 2,000 GTX125918 Genetex

SLUG 1 : 500 ab27568 Abcam

CD86 1 : 1,000 ab239075 Abcam

CD206 1 : 500 GTX42264 Genetex

SPI1 1 : 2,000 #PA5-17505 Thermo Fisher Scientific

GAPDH 1:5,000 ab8245 Abcam

F4/80 1 : 1,000 GTX26640 Genetex

3Journal of Immunology Research



Median Rank

1682.0

Legend

0.001 1

1 5 1025 2510 5 Gene rank (%)

NAUpDown

1. Lung adenocarcinoma vs normal
Beer Lung. Nat Med, 2002

2. Lung adenocarcinoma vs normal
Bhettacherjee. Proc Natl Aced Sci USA, 2001

4. Lung adenocarcinoma vs normal
Landi Lung. Plos One, 2008

3. Lung adenocarcinoma vs normal
Hou Lung. Plos One, 2010

5. Lung adenocarcinoma vs normal
Okoyomo Lung. Cancer Res, 2012

6. Lung adenocarcinoma vs normal
Steorman, Am J Pathol 2005

8. Lung adenocarcinoma vs normal
Su Lung, Genomics, 2005

7. Lung adenocarcinoma vs normal
Garber, Proc Natl Aced Sci USA, 2001

1

2 3 4 5 6 7 8CCL7

P-value Gene Published studies

(a)

Ex
pr

es
sio

n 
lo

g2
 (T

PM
+1

)

⁎

LUAD
(num(T) = 483; num(N) = 347)

0

1

2

3

4

5

6

(b)

CCL7 (208075_s_at)

Number risk
Low
High

965
960

461
366

116
87

33
24

6
1

Time (months)
100 200150500

0.0

0.2

0.4Pr
ob

ab
ili

ty

0.8

0.6

1.0 HR = 1.41 (1.24 – 1.6)
logrank P = 1.2e–07

Expression
Low
High

(c)

Figure 1: Continued.
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3, strong staining) and the portion of positive cells (0, nega-
tive; 1, <10%; 2, ≥10% and<33%; 3,≥33% and<66%; and
4,≥ 66%). The final IHC score was obtained by the product
of the two scores above. A score of 6 was set as the cut-off
value for genes with low (0-6) or high [6–12] expression.

2.14. Biotin-RNA Pull down. Biotinylated LINC01094 probe
and the control probe were synthesized by the RioBio Co.,
Ltd. (Guangzhou, Guangdong, China). The RNA pull-
down assay was then performed adhering to the manufac-
turer’s instructions. The enrichment of target protein was
analyzed by immunoblot analysis.

2.15. RNA Immunoprecipitation (RIP). The RIP assay was
carried out in accordance with the instruction manual of a
Magna RIP kit (Millipore). The precipitated RNA was iso-
lated by TRIzol and quantified by qPCR analysis after
reverse transcription.

2.16. Chromatin Immunoprecipitation (ChIP). Cells were
fixed and soaked in formaldehyde (1%) for 10min of
DNA-protein cross-linking, and the reaction was terminated

by glycine. The chromatin was ultrasonicated to 500-
1,000 bp fragments. The ChIP assay was then performed fol-
lowing the instructions of a Magnetic Bead ChIP Kit
(Thermo Fisher Scientific). The enriched DNA fragment
was quantified by qPCR analysis.

2.17. Fluorescence In Situ Hybridization (FISH). Cells were
rinsed with RNase inhibitor-contained PBS for 3min and
treated with 0.3% Triton X-100 for 5min. The cells were
washed with washing buffer at 40°C, whereas tissue sections
were rinsed with 2X SSC. The cell/tissue slides were reacted
with preamplifier, amplifier, and labeling probe at 40°C for
1h. After DAPI staining, the cells were observed under the
microscope. For FISH assay, fixed cells were penetrated with
0.3% Triton-X 100, and sealed with 5% BSA. The tissue slides
were soaked in acetone and treated soaked in the antigen
retrieval solution at 37°C for 5min. After hybridization with
the FISH probe, the probes were washed, and the cells/tissue
slides were incubated with the secondary antibody at 20-
25°C for 1h and then stained with 1×DAPI. The images were
captured under the confocal microscopy, and the colocaliza-
tion in cells or tissues was analyzed by ImageJ.
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Figure 1: CCL7 is highly expressed in LUAD and linked to increased TAM infiltration. (a) CCL7 expression in LUAD and normal lung
tissues in the Oncomine database; (b) CCL7 expression in TCGA-LUAD database of tumor tissues and in GTex database of normal lung
tissues; (c) correlation between CCL7 expression and patient’s prognosis; (d) correlation of CCL7 expression with the immune cell
infiltration in LUAD patients; (e) correlations of CCL7 expression with the M2 macrophage markers ARG1 and CD206.
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Figure 2: CCL7 knockdown suppresses EMT and mobility of LUAD cells. mRNA (a) and protein (b) levels of CCL7 in H1299, A549, H358 (low-
invasive), andH125 (high-invasive) cells detected by qPCR andWB analyses; mRNA (c) and protein (d) levels of CCL7 in A549 andH125 cells after
overexpression plasmid or shRNA transfection determined by qPCR and WB analyses; mRNA (e) and protein (f) levels of epithelial marker ZO-1
and mesenchymal markers Twist1, Snai1, and Slug in A549 and H125 cells examined by qPCR and WB analyses; (g) 24-h migration rate of A549
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7Journal of Immunology Research



Co-culture

LUAD cells

0.4 𝜇m membrane
PMA-treated THP-1

48 h Harvest supernatant & cells  

FACS

(a)

0

20

40

60

80

M
ac

ro
ph

ag
e m

ig
ra

tio
n

PMA-THP-1 co-cultured with LUAD cells

H125CCL7High H125CCL7LowA549CCL7Low A549CCL7High

H
12

5C
CL

7H
ig

h

H
12

5C
CL

7L
ow

A
54

9C
CL

7L
ow

A
54

9C
CL

7H
ig

h

⁎⁎

⁎⁎⁎

(b)

⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎⁎

Co-culture with PMA-THP-1 Co-culture with PMA-THP-1

IL
-1

b 
co

nt
en

t (
pg

/m
L)

Co-culture with PMA-THP-1

TN
Fa

 co
nt

en
t(p

g/
m

L)

Co-culture with PMA-THP-1

TG
F𝛽

 co
nt

en
t (

pg
/m

L)

Co-culture with PMA-THP-1

IL
-1

0 
co

nt
en

t (
pg

/m
L)

0
20
40
60
80

100

IL
-6

 co
nt

en
t (

pg
/m

L)

0
50

100
150
200
250

A
54

9C
CL

7L
ow

A
54

9C
CL

7H
ig

h

H
12

5C
CL

7H
ig

h

H
12

5C
CL

7L
ow

A
54

9C
CL

7L
ow

A
54

9C
CL

7H
ig

h

H
12

5C
CL

7H
ig

h

H
12

5C
CL

7L
ow

0
100
200
300
400
500

A
54

9C
CL

7L
ow

A
54

9C
CL

7H
ig

h

H
12

5C
CL

7H
ig

h

H
12

5C
CL

7L
ow

0
100
200
300
400
500

A
54

9C
CL

7L
ow

A
54

9C
CL

7H
ig

h

H
12

5C
CL

7H
ig

h

H
12

5C
CL

7L
ow

0

100

200

300

A
54

9C
CL

7L
ow

A
54

9C
CL

7H
ig

h

H
12

5C
CL

7H
ig

h

H
12

5C
CL

7L
ow

(c)

CD86 CD163
0.0

0.5

1.0

1.5

m
RN

 A
 to

 G
A

PD
H

H125CCL7High

H125CCL7Low

A549CCL7Low

A549CCL7High

Co-culture with PMA-THP-1

(d)

Figure 3: Continued.

8 Journal of Immunology Research



2.18. Statistical Analysis. The SPSS 21.0 (IBM, SPSS, IL,
USA) was used for data analysis. Data were presented as
the mean ± SD. Differences between groups were analyzed
by the Student’s t -test or one-/two-way ANOVA. Kaplan-
Meier analysis was conducted for data analysis. p < 0:05
refers to statistical significance.

3. Results

3.1. CCL7 Is Abundantly Expressed in LUAD and Linked to
Increased TAM Infiltration. To examine the function of
CCL7 in LUAD, we first predicted the CCL7 expression in
several LUAD datasets in Oncomine (https://www.oncomine
.org/). It was indicated that CCL7 expression is significantly
increased in LUAD tissues versus the normal tissues
(Figure 1(a)). A similar trend was observed in TCGA-LUAD
(Figure 1(b)). Moreover, patients with higher CCL7 levels were
suggested to have worse prognosis probability (Figure 1(c)).
CCL7 is one of the chemokines that show close correlation with
immunity. We therefore examined whether CCL7 has specific

correlations with the immune cell infiltration in LUAD patients
in TCGA-LUAD using the R CIBERSORT package. Of note,
the CCL7 expression was found to be positively linked to mac-
rophages infiltration (Figure 1(d)). In addition, data in TCGA-
LUAD suggest that CCL7 have positive correlations with M2
macrophagemarkers Arg1 and CD206 (Figure 1(e)). Therefore,
we postulated that CCL7 might affect the infiltration of M2
TAMs to promote LUAD development and lead to poor
patient’s prognosis.

3.2. CCL7 Knockdown Suppresses EMT and Mobility of
LUAD Cells. To confirm whether and how CCL7 affects
LUAD progression, we first examined the CCL7 expression
in H1299, A549, H358 (low-invasive), and H125 (high-inva-
sive) cells. CCL7 had the lowest expression in A549 cells
whereas the highest expression in H125 cells (Figures 2(a)
and 2(b)). Thereafter, overexpression plasmid of CCL7 was
transfected in A549 cells, while shRNA of CCL7 was trans-
fected in H125 cells. The transfections were determined by
qPCR and WB analyses, and the cells were designated
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Figure 3: CCL7 knockdown suppresses chemotaxis and M2 skewing of macrophages. (a) A sketch map for the Transwell coculture system
of PMA-treated THP-1 cells and LUAD cells (A549 and H125); (b) number of migrated THP-1 cells examined by crystal violet staining; (c)
expression of M1 cytokines (IL-6, IL-1β, and TNF-α) and M2 cytokines (IL-10 and TGF-β) in the culture medium determined by ELISA
kits; mRNA (d) and protein (e) levels of CD86 and CD206 in cocultured THP-1 cells examined by qPCR and WB analyses; (f) staining
intensity of CD86 (red) and CD206 (green) in THP-1 cells determined by immunofluorescence staining. Repetition = 3. Data are
presented as the mean ± SD. ∗∗p < 0:01.
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A549CCL7Low (transfected with empty plasmid), A549CCL7High

(transfected with CCL7 overexpression plasmid), H125Ccl7high

(transfected with scramble shRNA), and H125CCL7Low (trans-
fected with shRNA of CCL7), respectively (Figures 2(c) and
2(d)). Of note, we observed that the CCL7-low cells had signif-
icantly higher levels of ZO-1 (epithelial marker) whereas lower
levels of Twist1, Snai1, and Slug (mesenchymal markers) than
the CCL7-high cells (Figures 2(e) and 2(f)). In general, an
increase in mesenchymal markers indicates a rise in the
“mobility” of cells. Therefore, we further analyzed the mobility
of cells using the scratch test and Transwell assay. It was
observed that the CCL7-low cells had reduced migratory and
invasive capacities compared to the CCL7-high cells
(Figures 2(g) and 2(h)).

3.3. CCL7 Knockdown Suppresses Chemotactic Migration
and M2 Polarization of Macrophages. The findings in
Figure 2 indicates that high CCL7 expression is linked to
the mobility of LUAD cells, and results in Figures 1(d) and
1(e) suggest that CCL7 is potentially linked to M2 macro-
phage infiltration. To test this, we treated THP-1 cells with
PMA to induce M0 macrophages, which were then cocul-
tured with A549 and H125 cells in Transwell chambers
(Figure 3(a)). It was found that that the CCL7-high cells
attracted increased number of macrophages compared to
CCL7-low cells (Figure 3(b)). After that, we further exam-
ined the M1 cytokines IL-6, IL-1β, and TNF-α as well as
M2 cytokines IL-10 and TGF-β in the culture supernatant.
ELISA findings revealed that the THP-1 cells secreted
increased M2 cytokines where reduced M1 cytokines when
cocultured with the CCL7-high cells (Figure 3(c)). The
THP-1 cells were harvested thereafter, and increased M2
markers along with decreased M1 markers were detected
in macrophages cocultured with the CCL7-high LUAD cells,
as examined by qPCR and WB analyses (Figures 3(d) and
3(e)). Moreover, the immunofluorescence assay further
showed that the CD206 staining was strengthened whereas
staining of CD86 was weakened in THP-1 cells cocultured
with the CCL7-high LUAD cells (Figure 3(f)).

3.4. Xenograft Tumors Formed by CCL7-Low Cells Have
Reduced Macrophage Infiltration. We then shifted the focus
on the role of CCL7 in LUAD tumorigenesis in vivo. Stably
transfected A549 or H125 cells were injected to the lung tis-
sue of NOD/SCID mice. After 6 weeks, the animals were
sacrificed to collect the lung tissues. It was found that the
xenograft tumors formed by CCL7-low cells were in signifi-
cantly smaller size than those formed by CCL7-high cells
(Figure 4(a)). A half of each tumor tissue sample was
digested for flow cytometry to examine the portion of F4/
80/CD86- or CD206-positive cells. The other half of sample
was used for IHC to determine the expression of CD86 and
CD206. Both IHC and flow cytometry results revealed that
the tumors formed by CCL7-low cells had significantly
increased infiltration of M2 macrophages (Figures 4(b)–
4(e)). Another 10 mice in each group were applied for sur-
vival test. It was observed that the survival rate of mice
injected with CCL7-low cells was lower than those injected
with CC7-high cells (Figure 4(f)). These findings indicate
that CCL7 promotes LUAD tumorigenesis and M2 macro-
phage infiltration in vivo as well.

3.5. SPI1 Promotes CCL7 Transcription. To find the possible
mechanisms responsible for CCL7 upregulation in LUAD,
we then analyzed the transcription factors that can bind to
CCL7 promoter with an over 0.5 correlation coefficient in
TCGA-LUAD using the R TFBS package. SPI1 was the only
outcome showing a correlation coefficient of 0.58 with the
CCL7 promoter (Figure 5(a)). Thereafter, we further ana-
lyzed the binding between SPI1 and CCL7 promoter via
JASPAR (http://jaspar.genereg.net/). We first obtained from
Ensembl (http://www.ensembl.org/index.html) that the pro-
moter sequence of CCL7 is located at chr17:34,269,621-
34,270,220. According to the prediction results, we found
that SPI1 have two main binding sites with CCL7 promoter
(Figures 5(b) and 5(c)). To clarify the specific binding
sequence, the promoter sites were fragmented to three
sections A, B, and C) using the Crispr-Cas9 system
(Figure 5(d)). It was noteworthy that the CCL7 expression
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in A549 cells was reduced after knockdown of the fragment
C or fragments A, B, and C; however, the gene expression
was not significantly affected in the absence of A or B frag-
ments (Figures 5(e) and 5(f)). ChIP-qPCR assay was then
performed to examine the binding between SPI1 and
CCL7. It was found that the abundance of CCL7 promoters
reacted with anti-SPI1 was significantly increased compared
to IgG (Figure 5(g)). In the luciferase assay, the CCL7 pro-
moter sequence was inserted to the pGL4-Luc vectors, which

was cotransfected with overexpression plasmid of SPI1 in
293T cells. The luciferase activity in cells was increased
upon SPI1 overexpression (Figure 5(h)). Therefore, it can
be opined that SPI1 binds to CCL7 promoter to activate its
activation.

3.6. Overexpression of SPI1 in CCL7-Low Cells Promotes
Macrophage Migration and M2 Polarization. To validate
the functional interaction between SPI1 and CCL7, we
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transfected overexpression plasmid of SPI1 in H125Ccl7Low

cells and shRNA of SPI1 in A549CCL7High cells. The overex-
pression of SPI1 restored the CCL7 expression in H125 cells
and vice versa (Figures 6(a) and 6(b)). These cells were
cocultured with PMA-treated THP-1 cells in the Transwell
system as well. Of note, the chemotactic migration of

THP-1 cells was promoted when cocultured with
H125Ccl7Low cells upon SPI1 upregulation but suppressed
with A549CCL7High cells upon SPI1 downregulation
(Figure 6(c)). The polarization of THP-1 cells was analyzed
as well. As expected, the SPI1-overexpression condition pro-
moted the M2 macrophage polarization as well as the
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Figure 6: Overexpression of SPI1 in CCL7-low cells promotes macrophage migration and M2 polarization. mRNA (a) and protein (b) levels
of SPI1 and CCL7 in H125CCL7Low and A549CCL7High cells after SPI1 overexpression plasmid or shRNA transfection detected by qPCR and
WB analyses; (c) number of migrated THP-1 cells examined by crystal violet staining; mRNA (d) and protein (e) levels of CD86 and CD206
in cocultured THP-1 cells examined by qPCR and WB analyses; (f) expression of M1 cytokines (IL-6, IL-1β, and TNF-α) and M2 cytokines
(IL-10 and TGF-β) in the culture medium determined by ELISA kits. Repetition = 3. Data are presented as the mean ± SD. ∗∗p < 0:01.
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secretion of M2 cytokines. Reverse trends were found in the
setting of SPI1 suppression where the M2 skewing of THP-1
cells was significantly blocked (Figures 6(d)–6(f)).

3.7. LINC01094 Binds to SPI1 to Regulate CCL7 Expression.
More molecules involved in CCL7 regulation were explored.
We obtained 510 tumor samples from TCGA-LUAD and
discarded over 80% nonexpressed genes with Log2 (TPM
+1) as the thresholds. Moreover, according to the cor. test
and Pearson’s correlation analyses, we obtained that
LINC01094 showed strong correlation with CCL7
(Figure 7(a)). Moreover, data in the RPIseq system suggested
that LINC01094 has significant binding relationship with
SPI1 (Figure 7(b)). To validate this, we performed RIP assay,
by which we found increased LINC01094 enrichment in the
complexes precipitated by anti-SPI1 (Figure 7(c)). More-
over, the biotin-LINC01094-based RNA pull-down assay
also suggested that LINC01094 could bind to SPI1
(Figure 7(d)). The FISH assay also suggested that
LINC01094 and SPI1 had a colocalization in nucleus
(Figure 7(e)). To confirm the potential relationship between
LINC01094 and CCL7, artificial knockdown of LINC01094
was introduced in A549 and H125 cells, after which the CCL7
expression was significantly reduced as well (Figures 7(f) and
7(g)). Taken together, we opine that LINC01094 binds to SPI1
and promotes its nuclear translocation, which therefore binds
to CCL7 promoter and activates its transcription, leading to
increased chemotaxis and M2 skewing of macrophages in
LUAD and aggravated tumor progression.

4. Discussion

In the TME, the major population of TAM is M2 phenotype
which expresses immune checkpoint modulators including
programmed death ligand 1 to grant immunosuppression
to cancer cells; however, they may reskew to the M1 pheno-
type and fulfill tumor-suppressing functions [9, 15]. Identi-
fying key molecules implicated in the M2 polarization of

macrophages may help develop novel therapeutic targets
for tumor elimination. In the present study, we observed
that CCL7, which can be upregulated by LINC01094-
mediated SPI1, is linked to increased tumor M2 macrophage
accumulation and malignant development of LUAD cells.

CCL7 has reportedly been highly expressed in advanced
cancers and linked to the more aggressive malignant pheno-
type of cancer cells such as survival, proliferation, EMT,
invasion, and metastasis [16]. Likewise, CCL7 upregulation
has been observed in the NSCLC tissues in the study by
Han et al., and this overexpression was linked to poor prog-
nosis of patients [14]. In this work, we first predicted ele-
vated CCL7 expression in LUAD and its correlation with
increased macrophage infiltration using bioinformatics tools
involving Oncomine and TCGA-LUAD. Later, we identified
increased CCL7 expression and observed that the CCL7
knockdown in LUAD cells suppressed the EMT and metas-
tasis of CC. More importantly, the CCL7 knockdown
blocked the chemotaxis and M2 polarization of macro-
phages. In a previous report by Parikh et al., CCL7 was iden-
tified in lung adenomas extracted from aged mice with
significant immune cell accumulation, and the adenomas
from these mice showed higher invasiveness [17]. Moreover,
high CCL7 levels recruit the TAMs expressing CCR2 on
their surface, leading to increased vascular permeability
[18, 19]. Similar situations have been found in NSCLC that
CCL7 recruited TAM to the tumors via interacting its recep-
tors including CCR2, CCR3, CCR4, and CCR5 to augment
its malignant development [20]. Interestingly, CCL7 has also
been identified as a chemoattractant for neutrophils partici-
pating in the TME formation, which increased the invasive-
ness of cells [21]. In this work, the promoting roles of CCL7
in M2 skewing and tumor development were validated
in vivo that the CCL7 suppression blocked the xenograft
tumorigenic ability of cells and suppressed M2 macrophage
infiltration in the tumor tissues.

When it comes to the upstream regulator of CCL7 in
LUAD, we obtained the transcription factor SPI1 as its
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Figure 7: LINC01094 binds to SPI1 to regulate CCL7 expression. (a) Correlation of LINC01094 with CCL7 predicted in the TCGA-LUAD
database; (b) binding relationship between LINC01094 and SPI1 validated in TCGA-LUAD database; binding between LINC01094 and SPI1
examined by RIP (c) and biotin-LINC01094-based RNA pull down (d) assays; (e) subcellular localization of LINC01094 and SPI1 in H125
and A549 cells examined by FISH assay; mRNA (f) and protein (g) levels of CCL7 in A549 and H125 cells after LINC01094 knockdown
examined by qPCR and WB analyses. Repetition = 3. Data are presented as the mean ± SD. ∗∗p < 0:01.
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regulator via bioinformatics analyses and luciferase and
immunoprecipitation assays. SPI1 is located in the p11.22
region of human chromosome 11 [22]. SPI1 fulfills critical
functions in the maintenance of immune cells, with its
knockout or defects leading to defects in multiple types of
immune cells including macrophages [23, 24]. A recent pub-
lication by Huang et al. revealed that SPI1 was correlated
with a multitude of infiltrating immune cells and tumor-
related signaling pathways, therefore, leading to poor prog-
nosis for gastric cancer [25]. Likewise, SPI1 has been identi-
fied as one of the prognostic genes for esophageal squamous
cell carcinoma correlating with M2 macrophage accumula-
tion and poor patient’s prognosis [26, 27]. SPI1 was reported
as a candidate gene for squamous lung cancer [28]. It has
been reported to activate the transcription of SnoRNA host
gene 6 to promote the growth and mobility of NSCLC cells
[29]. However, there has no evidence concerning the role
of SPI1 in the macrophage skewing and accumulation in
lung cancer. In this work, we found that the M2 skewing
of macrophages blocked by CCL7 knockdown was restored
upon SPI1 overexpression. Moreover, we identified that
lncRNA LINC01094 showed a positive correlation with
SPI1 via having binding relationship with SPI1. Though
without protein-coding functions, the lncRNAs fulfill signif-
icant functions in biology via RNA-DNA, RNA-RNA, or
RNA-protein interactions [30]. They can bind with specific
transcription factors to achieve gene regulation at the tran-
scriptional level [31]. The LINC01094 has been linked to
development and progression of several cancer types [32,
33], though its specific role in lung cancer remains unde-
fined yet. More importantly, this lncRNA has been found
to trigger EMT of gastric cancer cells via modulating macro-
phage infiltration. Here, we found that LINC01094 could
bind to SPI1 to enhance its nuclear translocation and tran-
scriptional function, which is possibly responsible for the
CCL7 upregulation in LUAD.

Collectively, this research suggests that LINC01094
binds to SPI1 to promote its nuclear translocation, which
further activates CCL7 transcription by binding to its pro-
moter, leading to M2 macrophage accumulation and dis-
semination of tumor cells. However, one major weak point
of the present work is that the exact roles of LINC01094
were not investigated. More experiments concerning the rel-
evance of LINC01094 to macrophage infiltration and LUAD
development, both in vitro and in vivo, are required in the
future. Targeting any member of the LINC01094/SPI1/
CCL7 axis may help reduce the infiltration of M2 macro-
phage and metastasis of LUAD cells.
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