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ABSTRACT
Digestive systems in human, animals, and fish are biological reactors and membranes to digest 
food and extract nutrients. Therefore, static and dynamic models of in-vitro digestion systems are 
developed to study e.g. novel food and feed before in-vivo studies. Such models are well 
developed for human, but not to the same extent for animals and fish. On the other hand, recent 
advances in aquaculture nutrition have created several potential fish meal replacements, and the 
assessment of their nutrient digestibility is critical in the application as a fish meal replacement. 
Using an in-vitro method, the assessment of an ingredient digestibility could be faster and less 
expensive compared to using an in-vivo experiment. An in-vitro method has been widely used to 
assess food nutrient digestibility for humans; however, its application for fish is still in the early 
stages. Both the human and fish as monogastric vertebrates share similar gastrointestinal systems; 
thus, the concept from the application for humans could be applied for fish. This review aims to 
improve the in-vitro digestion protocol for fish by adapting the concept from then study for 
humans, summarizing the current available in-vitro digestion model developed for human and fish 
in-vitro digestion study, identifying challenges specifically for fish required to be tackled and 
suggesting an engineering approach to adapt the human in-vitro gastrointestinal model to fish. 
Protocols to conduct in-vitro digestion study for fish are then proposed.
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1. Introduction

Two of the global Sustainable Development Goals 
(SDG) are to achieve food security and improved 

nutrition (SDG 2) and conserving marine 
resources (SDG 14). Sustainable fish aquaculture 
is one of the action to achieve both goals by 
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substituting wild-caught fish, which has been regu-
lated to prevent overfishing, illegal, unreported 
and unregulated fishing, and destructive fishing 
practices [1]. In fact, the aquaculture industry is 
one of the fastest-growing industries, projected to 
grow by one-third in a decade by 2030 [2]. The 
main challenges of fish aquaculture are providing 
the protein for the fish feed, which is currently 
provisioned from fish meal supplied from wild- 
caught fish, thus considered as unsustainable [3]. 
Moreover, the limited supply of fish meal to satisfy 
the aquaculture growth resulted in a higher price 
of fish feed [4]. Therefore, replacing the demands 
for fish meal is the challenge in aquaculture expan-
sion to achieve global sustainability goals, includ-
ing the conservation of using marine resources [5].

Several sustainable alternatives for either partial or 
total replacement of protein from fish meal has been 
proposed in the literature. Animal-based protein, 
mostly the by-products of the food industry such as 
poultry meal [6], meat and bone meal [7–9], and 
feather meal [10], are reported to be suitable as 
a fish meal replacement. However, those protein 
sources are costly and have limited availability [11]. 
Plant-based protein such as soybean, lupine, rapeseed, 
canola, pea, corn gluten, wheat gluten, and cottonseed 
has received significant attention as a fish meal repla-
cement because of their availability, low price, and 
high-protein content [3]. However, the plant-based 
protein was reported to have low digestibility and 
contain antinutrients, limiting their application as 
a fish meal replacement [3]. Recent advances have 
proposed the usage of sustainable protein sources, 
such as insect meal [12], single-cell proteins made of 
bacteria, yeast, microalgae [13], and edible fungi 
[11,14]. Based on the nutritional profile – amino 
acid and fatty acid profile, prebiotic and immunomo-
dulant properties, these sustainable novel ingredients 
have been considered as high-quality fish meal repla-
cements. However, to conclude their suitability as 
a fish meal replacement, those ingredients’ digestibil-
ity must be thoroughly studied for the fish species.

The nutrient digestibility assessment is typically 
conducted in-vivo by feeding trials on the fish 
species of interest, measuring the growth rate, 
fecal content, and fish survival rate [15]. Even 
though it provides a more accurate and represen-
tative result, the in-vivo method is lengthy and 
expensive [16]. The alternative is the in-vitro 

method, conducted by simulating the physiology 
of fish gastrointestinal tract using laboratory 
equipment. This method has gained widespread 
attention to evaluate a potential food or feed pro-
duct’s digestibility for humans [17], terrestrial ani-
mals such as poultry [18], ruminants [19], and 
aquatic species [20], including fish, prawns, and 
mollusks. The main drawback of an in-vitro 
method is that it could not reflect the full com-
plexity of the digestion process that occurs in-vivo, 
thus lacking the accuracy and reliability compared 
to an in-vivo method.

Nevertheless, due to its low cost, no ethical restric-
tion, and relatively simple execution, the in-vitro 
digestibility test is suitable for preliminary studies, 
which require a considerable amount of samples to 
be evaluated [17]. It also allows a controlled experi-
ment to study the mechanism of hydrolysis of protein, 
lipid, and carbohydrate in food or feeds products [20]. 
The necessity of understanding the fates of the 
ingested product in humans has given rise to several 
attempts to develop an in-vitro model for the human 
gastrointestinal system in the past few decades [21]. It 
has been widely applied to simulate the digestion 
process in humans, particularly in food science, nutri-
tion, toxicology, pharmacology, and microbiol-
ogy [22].

Similar interest has also been raised in the aqua-
culture industry to utilize an in-vitro method to 
assess the fish feed digestibility [20]. However, 
based on the sheer number of publications, the 
study on in-vitro digestion for fish is still in its 
infancy compared to humans. The in-vitro diges-
tion studies for human has been applied through-
out several different applications (Figure 1). 
Moreover, they were well documented with several 
globally practiced protocols, while the protocols 
for fish was limited and highly varied between 
different authors [23]. Both fish and humans are 
monogastric vertebrates, sharing a similar gastro-
intestinal tract with differences in the anatomical, 
physiological, and enzymatic features. Given the 
huge knowledge gap between human and fish, 
the in-vitro digestion method for fish could be 
improved by applying some of the concepts from 
the study for humans.

This review aims to review the current practice 
of in-vitro digestion study on both humans and 
fish, exploring potential options for applying in- 
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vitro digestion methodology developed for 
humans on fish. Firstly, the current developed in- 
vitro gastrointestinal model for humans is elabo-
rated. The recent studies on in-vitro fish digestion 
are then reviewed, followed by pointing out several 
current challenges in conducting an in-vitro diges-
tion study on fish. An engineering approach of in- 
vitro digestion is then elaborated as the tool to 
adapt the developed human gastrointestinal 
model on fish. Lastly, a protocol for the in-vitro 
digestion for fish is suggested based on the current 
practice on humans.

2. In-vitro Gastrointestinal Model

The gastrointestinal tract of a monogastric animal, 
including humans and fish, consists of a mouth, an 
esophagus, a stomach, and intestines. Food enter-
ing the mouth is masticated and physically broken 
down. Saliva is secreted to hydrolyze the starch 
present in the food, forming a bolus that is trans-
ferred to the stomach through the esophagus. In 
the stomach, the bolus is mixed with the acidic 
gastric juice; together with gastric enzyme, mainly 
pepsin, to digest the protein. After that, chyme – 
the product of the gastric phase – enters the first 
small intestine section called the duodenum and 
has the pH neutralized to 7 prior to mixing with 

bile and pancreatic enzymes, which include tryp-
sin, chymotrypsin, amylase, lipase, phospholipase, 
and several other proteases. Along the later sec-
tions of the small intestine, namely jejunum and 
ileum, nutrients continue being enzymatically 
hydrolyzed while absorbed by the intestinal 
absorptive cells. The undigested material is then 
continued to large intestines, where it is anaerobi-
cally fermented by the microorganism population, 
producing short-chain fatty acids and vitamins, 
which can be absorbed by the intestinal cell. The 
leftover material is then excreted as feces.

An in-vitro gastrointestinal model mimics the 
complex process of food digestion that occurs 
along the gastrointestinal tract. Based on the com-
plexity, the in-vitro digestion model can be cate-
gorized into static and dynamic digestion models.

2.1. Static Digestion Model

The static digestion model is the simplest model to 
simulate the digestion process. Food is first added 
into a reaction vessel (beaker, Erlenmeyer flask, or 
test tube). Then, the digestive fluid and enzymes 
are added for each digestion phase (oral, gastric, 
and intestinal). The pH could be either left uncon-
trolled or kept constant using a pH-stat system. 
Briefly, as an example, 1 g of the sample is added 

Figure 1. Current review articles on in-vitro gastrointestinal digestion of humans, ruminants, and aquatic species for several different 
topics. Proximity of the references to different topics indicates the salient feature of the review articles encompassing multiple 
topics. Numbered references are listed in Supplementary References.
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into a test tube and mixed with 1 mL of simulated 
salivary fluid at pH 7 for 2 min at 37°C. Two 
milliliters of simulated gastric fluid and pepsin 
are then added to the same test tube, and the pH 
is adjusted to 3.0 with HCl, reaching the total 
volume of 4 ml for the gastric phase with pepsin 
activity of 2000 U/mL. After incubation for 
120 min, the pH is adjusted back to 7 with 
NaOH, then 4 mL of simulated intestinal fluid, 
which contains the pancreatin and bile salts, are 
then added to simulate the intestinal phase and 
incubated for 120 min. The final volume of the 
intestinal phase is 8 mL with trypsin activity of 
100 U/mL [24].

One of the static digestion model challenges is 
determining the experimental condition (pH, 
amount of enzymes, duration). It needs to resem-
ble the in-vivo digestion physiology present in 
humans or fish. Previously, there was a lack of 
a standardized protocol; each author adopted 
a different protocol with several slight but critical 
variations [24,25], causing results from different 
studies impossible to be compared. In response 
to that, an international network INFOGEST was 
established, consisting of experts from multidisci-
plinary fields from 32 countries. One of the pri-
mary outcomes was an international consensus to 
harmonize the in-vitro digestion protocol simulat-
ing an adult human digestion process, known as 
INFOGEST methods [24,26]. There are also other 
standardized methods such as United States 
Pharmacopoeia methods and Unified BARGE 
Method. However, those methods are not suitable 
to assess food products as they were developed for 
different purposes: pharmaceutical products and 
contaminants in a soil sample or mycotoxins in 
food [24].

Due to its simplicity, the static digestion model 
is suitable for in-vitro digestion studies with the 
research objective to screen, compare, or build 
a hypothesis where a considerable number of sam-
ples need to be analyzed. In particular, static diges-
tion model is widely used to evaluate the effect of 
food processing on the nutrient bioaccessibility 
(nutrient released from the food matrix), bioavail-
ability (including nutrient absorption), or aller-
genic peptides. Several food processing 
techniques, such as heat-treatment [27–30], drying 
[31], curing/aging [32], ultrasonication [33,34], 

and protein extraction [35], have been employed 
for numerous food products.

Despite its advantage as a simple and fast pro-
tocol, static digestion method cannot mimic the 
complex digestion processes present in the in-vivo 
condition [24]. It assumes that between the pH 
changes instantaneously between different diges-
tion phases, lacking the gradual addition of gastric 
fluid (acid and pepsin) and gastric emptying. The 
intestinal phase does not include continuous nutri-
ent removal, resembling the absorption process by 
intestinal cells. These shortcomings render the 
method unsuitable for detailed analysis of the dif-
ferent digestion process stages [36].

2.2. Dynamic Digestion Model

The dynamic digestion model is a computer- 
controlled model capable of simulating the complex 
digestion processes, which are not included in the 
static model, such as gastric mixing, gradual secre-
tion of gastric juice, gastric emptying, and nutrient 
absorption. The significance of those phenomena 
will be discussed in the next section. Operating in 
a dynamic digestion model indubitably has better 
accuracy, represents the in-vivo conditions, and pro-
vides digestion kinetics compared to the static diges-
tion model. However, it is time-consuming, highly 
complex, and requires more expensive enzymes, 
thus far less accessible than a static model [36]. 
Dynamic gastrointestinal model has been used to 
investigate the process of digestion in details, such 
as properties of lipid emulsion for lipid-soluble 
nutrients [37], novel food or drug encapsulation 
technique [38,39], kinetic of structural changes and 
release of proteins and lipids [40], kinetics of lipid 
oxidation during digestion process [41], possible 
interactions between different food on nutrients 
digestibility [42], and effect of food rheological prop-
erties [43–45] .

Several dynamic digestion models have been 
proposed for the in-vitro digestion study on 
humans. They are categorized as mono- 
compartmental and multi-compartmental models 
[21]. Most of the mono-compartmental models 
simulate gastric digestion in detail, including the 
physical gastric contraction, the fluid mechanics of 
mixing, the gradual addition of gastric juice, and 
gastric emptying. Several gastric models have been 
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proposed (Table 1). All of the gastric models had 
the main chamber made up of an elastic material 
and incorporated with the gradual addition of 
gastric juice and pH control systems. HGS has 
a significantly higher gastric volume of 7 Liters, 
capable of simulating an actual human full meal, 
compared to other gastric models with chamber 
volume ranging from 500 to 900 ml. Each of the 
developed gastric models has different apparatus 
to simulate the gastric contraction, such as water 
pressure (1), rollers (2 4), pistons (3 5), and ropes 
(6). Some models resemble the J-shaped anatomi-
cal feature of the human stomach made by 3D 
printing (3 4 5 6). There are also several options 
to simulate the small opening pyloric valve and 
gastric emptying, for instance, using an elastic 
annulus (1 6), mesh filter (2), or a tapered struc-
tural design (3 4).

Another organ that is widely modeled for an in- 
vitro study is the colon. Several models were pro-
posed, including TIM-2, artificial colon (ARCOL), 
Dynamic Colon Model (DCM), and several others 

[46–49]. ARCOL simulates the colon fermentation 
in a bioreactor equipped with hollow fiber mem-
branes using fresh feces from volunteers as the 
inoculum. DCM is a biomechanical model made 
up of 10 membrane segments inflated by compu-
ter-controlled hydraulic syringes, simulating the 
peristaltic movement validated with Magnetic 
Resonance Imaging (MRI).

In a multi-compartmental model, the digestion 
process is simulated in several reaction chambers 
representing the mouth, stomach, and intestines. 
Several multi-compartmental gastrointestinal mod-
els have been developed (Table 1). Each model is 
unique in terms of the reaction vessel, contraction 
and mixing mechanism, gastric emptying, the inclu-
sion of oral phase, nutrient absorption, or large 
intestine fermentation. The reaction chamber can 
be modeled with several commercial computer- 
controlled stirred tank bioreactors (9 11 12 13 14 
15) or custom design elastic chambers with water 
pressure modulation (10). The nutrient absorption 
process has been modeled in several configurations, 
such as an external hollow fiber membrane filtration 
(10), a membrane bioreactor unit (15), or a tubular 
bioreactor made of a ceramic microfiltration mem-
brane (14). The colonic fermentation is included in 
several models (11 12).

Recently, a standardized semi-dynamic model 
for in-vitro digestion study on humans was pro-
posed [36]. Semi-dynamic means that the model 
simulates the gastric phase dynamic process, but 
not the intestinal phase: the gradual addition of 
gastric juice was achieved using an automatic titra-
tor, mixing was carried out by a 3D-printed stirrer, 
gastric emptying was performed by manual peri-
odical transfer of the product from the gastric 
phase into several test tubes. Each test tube then 
proceeded with the same standardized static diges-
tion protocol of the intestinal phase. This semi- 
dynamic model is easily replicated as it only 
requires standard chemical laboratory equipment.

2.3. Engineering Aspect of the Dynamic Model

Developing a dynamic in-vitro digestion model 
requires mimicking the physical and biochemical 
processes in the gastrointestinal tract. Validating an 
in-vitro model with the in-vivo experiment is com-
monly carried out by only comparing the 

Table 1. Dynamic in-vitro gastrointestinal model.
Code* Name Reference

1 Mono- 
compartmental

Dynamic Gastric Model 
(DGM)

[153]

2 Human Gastric Simulator 
(HGS) v1.0 and v.2.0

[51,154]

3 Gastric Simulation Model 
(GSM)

[155]

4 Gastric Digestion Simulator 
(GDS)

[156]

5 In-vitro Mechanical Gastric 
System (IMGS)

[157]

6 Dynamic In-vitro Human 
Stomach (DIVHS)

[158,159]

7 Artificial Colon (ARCOL) [160]
8 Dynamic Colon Model (DCM) [161]
9 Multi- 

compartmental
Dynamic gastrointestinal 

digester (DIDGI®)
[59]

10 TNO gastrointestinal model 
(TIM-1, TIM-2, tiny-TIM)

[60,162]

11 Simulator of the Human 
Intestinal Microbial 
Ecosystem (SHIME)

[163]

12 Simulator of the 
Gastrointestinal Tract 
(SIMGI)

[164]

13 Engineered Stomach And 
Small Intestine 
Model (ESIN)

[165]

14 SimuGIT [39]
15 Membrane bioreactor with 

dialysis cell
[102,103]

*The references in parentheses throughout features of dynamic 
digestion models indicate the code number in this table

3044 R. WANG ET AL.



biochemical data of the digesta. It is beneficial to also 
compare the physical properties of the digesta, for 
instance, digesta viscosity and particle size distribu-
tion. Moreover, these physical properties allow the 
quantification of the physical process in the dynamic 
model to coincide with the in-vivo condition.

The complex digestion processes can be identi-
fied as several fundamental unit processes such as 
size reduction, mixing, transport, filtration, bio-
chemical reaction, and microbial fermentation 
(Figure 2). These processes can be characterized 
by using an engineering approach widely used in 
food or chemical process industries. Bornhorst 
et al. [50] reviewed several engineering approaches 
to model the in-vitro digestion process.

The particle size distribution function is the key 
characterization parameter of the size-reduction 
process (e.g. in the cement and mining industry). 

The parameter could be adopted for the in-vitro 
digestion process to estimate the degree of food 
breakdown during the oral and gastric phases. The 
in-vivo data of this parameter allows the design of 
the in-vitro oral and gastric size-reduction process. 
During the in-vitro digestion process, the kinetics 
of particle size distribution could reveal the 
mechanism of food breakdown during the gastric 
phase [51].

Mixing is an important factor since it assists 
with the breakdown of the food matrix and pro-
motes gastric enzyme diffusion [51,52]. Mixing is 
a common unit processing in nearly all industries. 
One of the parameters to quantify the degree of 
mixing is the mixing index. The mixing index can 
be calculated with several methods based on the 
application as reviewed by Bornhorst [53]. 
Gradual secretion of gastric juice simulates 

Figure 2. Block flow diagram of the human gastrointestinal digestion process modeled as various unit operations adapted from 
Bornhorst et al. [50], with the simulation scope of several current developed dynamic in-vitro gastrointestinal models.

BIOENGINEERED 3045



a gradual decrease in pH as the bolus enters the 
gastric compartment to final pH 3. This gradual 
pH decrease provides extra time for salivary amy-
lase, gastric lipase to maintain their enzymatic 
activity to hydrolyze starch and lipids before they 
are inactivated by acidic pH. Gastric lipase con-
tributes about 25% of total food lipid digestion for 
humans [24]. The parameter that quantifies the 
gradual decrease in pH is the buffering capacity. 
Buffering capacity of food is measured by acidic 
titration, with several calculation methods were 
proposed [54].

Gastric emptying simulates the gradual transfer of 
chyme from the gastric phase into the duodenum. It is 
known to significantly affect the accuracy of the in- 
vitro digestion models [24,55,56]. For example, in the 
case of milk protein digestion, gastric emptying causes 
a faster release of acid-soluble proteins (ex. whey 
protein) into the intestinal phase while prolonging 
the duration of acid-coagulated protein (ex. casein) 
in the stomach. This circumstance was validated in an 
in-vivo trial by blood plasma measurement [57]; thus, 
whey and casein are termed as fast and slow protein, 
respectively.

Gastric emptying has been studied in detail for 
several important goals, such as in the design for oral 
drug delivery and probiotics survival. Gastric empty-
ing by the pyloric sphincter can be represented by 
the filtration unit with a specific mesh size (1–3 mm 
for humans). There are several mathematical models 
for gastric emptying, ranging from the simplest 
based on food caloric content [36] to a stochastic 
model [58]. The modified power-exponential model 
has been widely used in developing a dynamic in- 
vitro gastrointestinal model [59–61]. The gradual 
transfer of the gastric digesta into the duodenum 
causes the intestinal enzymatic reaction to resemble 
a continuous plug-flow bioreactor configuration. 
From a bioreaction engineering aspect, an ideal 
plug flow reactor has the same performance equation 
as a batch reactor. This concept was utilized in the 
standardized semi-dynamic protocol by transferring 
portions of ongoing gastric-phase digesta into sev-
eral batches of static intestinal phase.

Nutrient absorption by intestinal cells can be 
simulated by using a membrane filtration unit. 
Incorporation of nutrient absorption process in 
a dynamic model enables the continuous removal 
of enzymatic hydrolysis products. Continuous 

product removal eliminates the effect of product 
inhibition on intestinal digestive enzymes, particu-
larly trypsin and chymotrypsin, which were 
reported to exhibit product inhibition [62–65]. 
Based on the in-vivo data of blood nutrient con-
centration, the nutrient absorption process in 
a dynamic in-vitro model can be designed using 
engineering analysis of mass transfer [66–68].

Several authors have modeled the intestinal 
digestion process [69–72]. Pompa et al. [73] 
employed reaction engineering approach by con-
sidering intestines as sequences of continuous stir-
red tank reactor coupled with membrane filtration 
unit. There are three type of intestinal movement, 
namely peristaltic, segmentation, and pendular 
movement. The significance of each intestinal 
motility and villi structure on the nutrient flow 
and mass transfer has been studied in details by 
several authors [70,74,75].

Recent advances in clinical technologies, such as 
such as Positron Emission Tomography (PET) or 
MRI scan have enabled the measurement of the 
several engineering parameter in an in-vivo condi-
tion. Imaging technologies of gastric and duode-
num were reviewed by Schulze [76] MRI scan 
provides real-time high-resolution imaging of gas-
trointestinal anatomy. This technique allows the 
quantification of parameter such as gastric juice 
diffusion to the meal [77]. Moroever, it allows the 
validation of computer simulation of gastric flow 
and mixing [78], and study of the encapsulated 
particle behavior [79]. PET employed tracers 
which could be used to investigate the molecular 
functions. Glucose absorption could be investigated 
using absorbable tracers (fluorodeoxyglucose) [80], 
while fluid distribution in the gastrointestinal tract 
could be analyzed using non-absorbable tracer 
(Deoxyfluoropolyethyleneglycol) [81].

3. Application of in-vitro digestion model in 
fish

3.1. Current in-vitro digestion studies on fish

The applications of in-vitro digestibility assay for 
fish were first reviewed by Moyano et al. [20] in 
2015. Since then, less than 20 new studies have 
been published (Table 2). Most studies have pri-
marily focused on rainbow trout (Onchorychuss 
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mykiss), about 30% of the total studies using in- 
vitro digestion for fish), followed by several other 
species such as bream (Sparus aurata), tuna, tila-
pia, Atlantic salmon, and carp (Table 3). Trout is 
indeed one of the most economically important 
fish, second only to carp [82]. Other high- 
economic species are tilapia and catfish species. 
However, a significantly less amount of study has 
been done on other economically important spe-
cies such as carp and tilapia. One reason for the 
high in-vitro digestibility study on rainbow trout 
compared to carp and tilapia is that rainbow 
trout, is a carnivorous fish. Carnivorous fish 
require food with higher protein content com-
pared to herbivorous fish. Because protein is the 
most expensive and difficult ingredient to be 
replaced, research on developing fish meal repla-
cement, using the in-vitro method, primarily tar-
geted for carnivorous fish. Several other fish 
species have also been studied based on their 
local economic importance [7,16,83–85].

Several protein ingredients have also been eval-
uated using an in-vitro fish digestion model. Fish 
meal stands at the top ingredient as it is the cur-
rent protein source for fish feed to be used as the 
control despite several studies have used casein as 
the standard (Table 4.). It is sure enough that 
soybean is the second protein ingredient studied 

most by in-vitro digestion, given its global recog-
nition as high protein feed material. By using an 
in-vitro digestion model, several studies have eval-
uated the effect of inhibitors and phytic acid on 
the digestibility of soybean to be utilized as a fish 
meal substitute [86–88]. Substitution of fish meal 
with soybean formulated as a fish feed had been 
studied on several different levels ranging from 
none to total replacement [83,84].

The use of the in-vitro digestibility method to eval-
uate the novel ingredient for fish meal replacement is 
limited; only five studies had evaluated algae and 
other single-cell proteins (Table 4). To the authors’ 
knowledge, no study has been conducted using a fish 
in-vitro digestion model to evaluate the protein digest-
ibility of an insect meal. Given the wide range of 
species for insects, algae, bacteria, yeast, or edible 
filamentous fungi, together with the combination of 
different cultivation techniques, and the ingredients 
post-processing, the in-vitro digestibility method 
offers peculiar advantages in screening numerous 
variables before a lengthy in-vivo experiment is 
conducted.

Only two studies have assessed the in-vitro 
digestibility of lipids [89,90] and carbohydrates 
[91] of fish feed. Protein indeed is the main cost 
of a fish feed ingredient. However, lipid require-
ment is crucial in fish survival, particularly phos-
pholipid during the larval stage [92,93]. The small 
size of fish larvae is a particular challenge for in- 
vivo assessment of nutrient digestibility; thus, in- 
vitro approaches offer a prospective alternative to 
develop fish larvae feed.

3.2. Fish In-vitro Gastrointestinal Model

The fish gastrointestinal tract is commonly parti-
tioned and termed as the headgut, foregut, midgut, 
and hindgut. The headgut includes the mouth and 
pharynx. The foregut includes the esophagus and 
stomach; midgut and hindgut refer to the small and 
large intestine compared to humans. Between the 
stomach and midgut, there is an anatomical feature 
called pyloric ceca, where the pancreatic enzymes are 
secreted.

The main difference in the in-vitro digestion 
study on fish and humans is the source of 
enzymes. Since there are no commercial fish diges-
tive enzymes, it is required to extract the digestive 

Table 3. In-vitro digestibility assay on different species of fish. 
Coded references are listed in Supplementary references.

Species Reference Count

Trout 5 6 9 16 21 22 23 24 30 32 33 38 40 41 47 
55

16

Larvae 8 11 12 14 28 5
Bream 26 31 34 36 48 5
Salmo salar 10 19 25 20 39 5
Tuna 7 35 42 43 4
Tilapia 3 18 37 41 4
Carp 1 2 32 56 4
Catfish 44 57 2
Flatfish 4 13 2
Other cichilid 54 1
Pacu 53 1
Barramundi 51 1
Siberian 

Sturgeon
50 1

Snook 49 1
Totoaba 46 1
Snapper 45 1
Cobia 41 1
Meagre 37 1
European bass 37 1
Cod 27 1
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enzymes from the fish itself. Several studies com-
pared the crude extract of fish digestive enzymes 
with mammalian enzymes, showing proteases 
from fish crude extract have higher degree of 
hydrolysis compared to mammalian enzyme 
[20,94,95]. However, some studies showed contra-
dictory results [84,85,96]. There are several rea-
sons for the inconsistency as pointed out by 
Moyano et al. [20], including substrates affinity, 
enzyme kinetics, optimum temperature and sensi-
tivity to inhibitors. Mammalian digestive enzymes 
are more susceptible to product inhibition com-
pared to fish [97]. It has been regarded by several 
authors that performing an in-vitro digestibility 
assay species specific digestive enzyme extracts 
allows a better representative with in-vivo condi-
tion [20,97,98].

In the total of 57 studies on in-vitro fish digestion, 
about 80% of the studies of fish were done in a static 
in-vitro model, and the rest were done in 
a membrane bioreactor model with continuous 
nutrient absorption. Half of the total studies 
employed a pH-stat method to control the digestion 
pH and measured the degree of hydrolysis of the 
protein ingredient. Based on the species and devel-
opmental stage of the fish being studied, the in-vitro 

gastrointestinal model could be a one-stage or two- 
stage digestion process. Some herbivorous fish are 
stomachless, thus skipping the acid digestion phase 
in the in-vitro model is omitted. Carnivorous fishes 
possess a functional stomach. However, a third of the 
study on carnivorous fish have skipped the gastric 
phase in the static digestion model [19] despite its 
several significant roles, such as increasing protein 
and mineral solubility [56,67,78], pre-digesting the 
proteins, and deactivating the antinutrient factor 
[79]. Understanding the targeted fish species gastro-
intestinal physiology is critical before conducting an 
in-vitro digestion study. Fish larvae have yet to 
develop a functional stomach; thus, it is best to 
simulate the intestinal digestion process in fish larvae 
in a one-step digestion model using the enzymes 
extracted from the whole larvae.

Numerous studies used a membrane reactor to 
simulate the nutrient absorption process by the 
fish intestines [91,99–101]. The membrane reactor 
was based on the initial design of Savoie and 
Gauthier [102]. This membrane bioreactor has 
two chambers, an inner reaction chamber, and an 
outer chamber, separated by a dialysis membrane 
with a molecular weight cutoff of 1000–3500 Da 
[20,102].

Table 4. In-vitro digestibility assay on different protein ingredient. Coded references are listed in Supplementary 
references.

Feed Reference Count

Fish meal 2 5 6 9 10 11 13 16 18 19 20 23 25 27 28 30 33 34 35 36 38 41 42 43 45 50 54 57 28
Soybean meal 2 5 9 13 16 18 19 27 28 32 34 36 38 41 42 44 45 46 49 50 54 56 57 23
Mixed diet 7 11 12 14 15 17 20 26 29 31 37 39 40 48 53 55 16
Casein 2 9 11 13 16 24 28 34 36 45 54 11
Poultry (byproduct) meal 9 21 27 41 43 45 49 50 51 54 10
Corn gluten 5 9 13 27 34 41 45 49 50 54 10
Wheat gluten 9 16 27 28 41 45 49 50 54 9
Meat meal 16 18 19 34 45 50 54 7
Squid meal 11 13 28 45 54 57 6
Rapeseed meal 27 41 45 49 50 5
Other seeds* 2 18 19 27 41 5
High-starch meal* 5 9 18 41 54 5
Hydrolyzed feather meal 9 27 41 50 54 5
Blood meal 34 41 50 54 4
Krill meal 13 27 28 45 4
Algae 1 47 52 3
Single-cell protein 1 22 50 3
Shrimp meal 18 27 54 3
Peameal 13 27 32 3
Zooplankton 8 28 2
Haemogoblin 45 54 2
Dried whey 11 49 2
Mussel and crab meal 13 27 2
Lupin meal 27 34 2
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Currently, the concept of gradual secretion of 
gastric juice and gastric emptying is absent in the 
study of in-vitro digestibility for fish. The dynamic 
models developed for humans have potential to be 
adapted for fish, except the model that explicitly 
featured the human anatomical feature, such as the 
J-shaped stomach in DIVHS, GDS, and ESIN. 
A dynamic model such as DIDGI, TIM-1, 
SimuGIT, and membrane bioreactor model by 
[102,103] can be utilized to simulate the dynamic 
process of gastric digestion, including mixing, gra-
dual gastric juice secretion, and gastric emptying. 
The INFOGEST semi-dynamic in-vitro digestion 
model has a high potential not only as 
a standardized method for humans but also for 
fish due to its simplicity and replicability using 
standard laboratory equipment. An engineering 
approach has benefits in tackling the issue of 
adapting the humans model on fish as it can 
objectively quantify the required change of the in- 
vitro model developed for human application 
based on any fish species in-vivo condition.

Obtaining the in-vivo relevant data such as 
chyme viscosity and particle size distribution for 
human is costly and challenging [50]. Therefore, 
study on humans relies on the usage of a pig as the 
model. However, acquiring in-vivo relevant data in 
fish is more accessible compared to mammals and 
humans. Sacrificial fish is cheaper for fish com-
pared to mammals. In fact, several studies have 
used the radiography technique for the in-vivo 
study on gastric emptying of fish [104–106].

Numerous studies have highlighted the impor-
tance of gut microbiota on fish health as an immu-
nostimulant. Prebiotics, mainly as the non-digestible 
polysaccharide, directly affect the fish gut microbiota 
[107–110]. Current microbiota studies on fish rely 
on the genomic and metagenomic analysis of the 
fecal sample; however, this method is costly, both 
from financial and temporal standpoints [111]. 
Application of an in-vitro model, such as SHIME 
and SIMGI has high potential to investigate the effect 
of fish feed on the gut microbiota.

3.3. Challenges in fish in-vitro digestion study

Conducting an in-vitro digestibility of a fish feed 
means mimicking the digestion processes along 
the gastrointestinal tract: enzymatic digestion in 

the fish stomach and intestine; in a laboratory. 
First, the required enzymes are extracted from 
fish digestive tissues (stomach and pyloric ceca). 
The fish feed, and the enzymes are then added to 
a gastrointestinal model. The amount the enzymes 
added should simulate the in-vivo condition in the 
fish; hence, it is crucial to have the information on 
the enzymatic activity of the enzymes successfully 
extracted. The digested sample is then measured 
using several analytical techniques. For the valida-
tion of the in-vitro gastrointestinal model, the 
result is compared with the in-vivo study. Each 
step of the process possesses a unique challenge 
that the current in-vitro digestion model is facing.

3.3.1. Sources of Enzymes
One of the challenges in conducting an in-vitro 
digestion study for fish is sourcing the digestive 
enzymes. Fish secretes the same enzymes as in 
mammals or humans, including gastric pepsin, 
pancreatic trypsin, chymotrypsin, amylase, and 
lipase. However, there are two problems. First, 
fish species have different catalytic properties com-
pared to the mammalian analog. For example, 
turnover number (kcat) and Michealis constant 
(KM) of trypsin from rainbow trout are 1.7– 
3.28 s−1 and 54–77 µM, compared to 0.7–1.63 s−1 

and 342–455 µM on bovine trypsin at a tempera-
ture ranging from 10–20°C [112].

Second, the amount of digestive enzymes 
secreted by fish is highly dependent on the envir-
onmental and nutritional factors, as recently 
reviewed by Lallès [113], causing high variation 
between different studies. Water acidification 
(from pH 8 to 7.5) and rearing temperature 
(18°C to 2°C) could decrease the intestinal pro-
tease activity by 36% and 56%, respectively [113]. 
Water salinity and oxygen level could also signifi-
cantly affect the alkaline protease activity. The 
effect of fish rearing nutrition (protein and lipid 
source, carbohydrate, lipid source) on protease 
activity has been reported [113].

Nearly all of the in-vitro digestion studies on fish 
obtained the digestive enzyme from an in-house 
reared fish under controlled conditions. Fish was 
reared by feeding with a commercial diet until the 
age of interest to be modeled. Fish is then starved 
before being sacrificed. The stomach, pyloric ceca, 
and intestines were then dissected and extracted for 
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the digestive enzymes. This method ensuring 
a lower variability in the culture condition on affect-
ing the amount of digestive enzyme secreted, how-
ever, it takes a relatively same lengthy process to do 
an in-vivo study.

3.3.2. Enzyme Extraction
Fish digestive enzymes could be extracted by homo-
genizing the digestive tissue in a liquid media, fol-
lowed by centrifugation to remove the tissue debris. 
The gastric and intestinal protease extraction method 
from fish digestive tissues was recently reviewed and 
studied [114,115]. It is recommended to use distilled 
water acidified to pH 2 to extract pepsin from the fish 
stomach, yielding three times the enzyme activity 
compared to other media, such as distilled water, 
buffer solution, and 25 mM NaCl [115]. Whereas 
for intestinal protease from the pyloric ceca or intest-
inal enzymes, Tris buffer (pH 8) is recommended 
[114]. The volume of liquid media to tissue ratio 
ranges from 1:1 to 1:10 in a single-step extraction or 
multiple-step extractions of 1:3 w/v [98,115,116]. The 
centrifugation process is carried out to remove the 
insoluble solid debris. The supernatant, denoted as the 
crude extract, is then used as the digestive enzymes 
added into the gastrointestinal model for the in-vitro 
digestibility assay.

The amount of crude extract added to the diges-
tion process depends on the crude extract enzy-
matic activity, keeping the same enzymatic activity 
throughout the study. Since the crude extract is 
highly diluted, the difference in the volume of 
crude extract added to maintain constant enzy-
matic activity causes significant dilution in the 
digestion system, resulting in a slower digestion 
rate as enzymatic catalysis is highly dependent on 
the substrate concentration [99]. Only a few stu-
dies processed further the crude extract. One 
author had concentrated the enzymes by freeze- 
drying without any purification [117,118]. Three 
studies purified the crude extract using Brij 35 
extraction, ammonium sulfate precipitation, and 
chromatography separation (gel and affinity chro-
matography) [98,116,119]. However, it must be 
noted that if the crude extract needs to be further 
purified, distilled water should be used as extrac-
tion media instead of HCl or buffer as the con-
centration will increase the acid and buffer 

concentration which could have an adverse effect 
on the protease.

Storage of the extracted enzymes is one of the 
critical factors that has been neglected. Protease 
(pepsin, trypsin, and chymotrypsin) activities in 
a crude extract decreased over time even stored 
at −20°C had shown to affect the enzyme activity 
over time [120,121]. Freezing of enzymes could 
cause the reduction of pancreatic enzyme activity 
by half in one thawing cycle [121]. Only one study 
reported the stability of enzymatic activity 
throughout the storage period [116].

Several improvements can be made on sourcing 
and extracting the fish digestive enzymes. The 
extracted enzymes can be either concentrated or 
purified further, limiting dilution when adjusting 
the required enzymatic activity. In this way, the 
enzyme secretion variability due to the rearing 
condition can be resolved. Fish gutting waste 
from industry or local market can be used instead 
of in-house fish rearing, following the commercial 
production of porcine/bovine pepsin, trypsin, or 
pancreatin from slaughterhouse by-product. 
Several studies have elaborated the downstream 
processing for the fish gutting waste enzymes 
recovery with commercial purpose instead of uti-
lization for in-vitro digestion study [122,123].

3.3.3. Determination of Enzymatic Activity
The amount of crude extract added to the in-vitro 
gastrointestinal model need to represent the in- 
vivo condition. Therefore, it is necessary to mea-
sure the enzymatic activity of the crude extract. 
Several methods to determine the fish pepsin 
activity were reviewed in detail by Nolasco-Soria 
et al. [115]. The method to measure protease activ-
ity was proposed by Anson in 1938 [124], using 
hemoglobin as the protein substrate and folin- 
ciocalteu reagent for the spectrophotometric 
assay of hydrolyzed products. Since then, several 
modifications have been made to improve the 
original method. However, it is still the most- 
cited method for quantification of acid pepsin in 
fish [115]. Moreover, a recent standardized proto-
col on in-vitro digestion for humans quantifies the 
pepsin activity based on Anson’s hemoglobin sub-
strate method with modification of using UV- 
spectrophotometric measurement at λ = 280 nm 
instead of using a folin reagent [24].
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For the quantification of intestinal protease in fish, 
the most cited method is developed by Walter [125], 
using casein as the substrate and measurement using 
UV-spectrophotometer at λ = 280 nm [114]. A recent 
review and investigation by Nolasco-Soria [114] sug-
gested using casein as substrate, followed by o-pheny-
lenediamine spectrophotometric assay. Intestinal 
protease consists of trypsin, chymotrypsin, elastase, 
and carboxypeptidase. Instead of quantifying all 
intestinal protease activity, individual intestinal 
enzyme activity present in alkaline proteases, such as 
trypsin or chymotrypsin, could be determined using 
synthetic chromogenic substrates. Several substrates 
such as BAPNA (benzoyl dl-arginine p-nitroanilide 
hydrochloride) and TAME (p-toluene-sulfonyl 
-L-arginine methyl ester) could be used for determin-
ing trypsin activity. BAEE (N-benzoyl-L-tyrosine 
ethyl ester) has been utilized to quantify chymotrypsin 
activity [126]. In fact, TAME was used in the standar-
dized in-vitro method on humans to quantify pan-
creatin enzymatic activity [24].

3.3.4. Operating Condition
The protein digestibility of an ingredient is affected by 
two factors: intrinsic and external factors. An in-vitro 
method is developed as a cheaper and faster alterna-
tive in assessing those factors to the in-vivo method. 
However, in the context of in-vitro digestibility, 
another factor that affects protein digestibility is the 
method itself, either the digestion model or the oper-
ating parameter. Several operating parameters affect-
ing the in-vitro digestibility include digestion 
temperature, gastric and intestinal phase pH, gastric 
and intestinal phase duration, the enzyme-to- 
substrate ratio (ES ratio) [127].

Ideally, those factors follow the in-vivo condi-
tion present in the fish digestive system. Gastric 
and intestinal pH can be measured by inserting 
a pH probe into freshly dissected fish digestive 
tissues. Temperature is determined based on the 
rearing temperature of the fish. Digestion duration 
is reflected by the duration of food in the gastro-
intestinal tract, termed as ‘gut transit time,’ which 
could be calculated based on the fecal analysis 
[23,128] or by direct measurement of the gut con-
tent of the fish fed by dyed marker [117]. The ES 
ratio is calculated based on the measured total 
enzymatic activity in fish digestive tissue, and the 
fish feed ingested [99].

However, those variables vary for different fish 
species, growing stages, etc. The stomach and 
intestinal pH were shown to fluctuate along with 
the duration of the day [129]. Rearing temperature 
is highly affected by the season and geography. In 
addition, the number of secreted enzymes varies 
highly by numerous factors, as pointed out in the 
previous section. Digestion duration is affected by 
the feeding frequency [128], rearing temperature 
[105,130], and the structure and particle size of the 
feed [131,132]. For those reasons, the selection of 
operating conditions for in-vitro study based on 
the in-vivo condition is highly variable between 
studies, even for single species, such as Rainbow 
trout, as shown in Figure 3.

A good in-vitro method should be robust and 
provide a consistent conclusion when replicated by 
other laboratories with minor variation. Therefore, it 
is important to identify the possible variations of the 
method, which could significantly affect the result 
[133]. Factorial design experiments could be 
employed to assess this issue. Factorial design was 
conducted to study the interaction between the afore-
mentioned operating variables showed that, there are 
interactions between ES ratio with pH and digestion 
duration [23,127]. Tibbetts et al. [116] reported an 
optimal ES ratio between 7 and 30 BAPNA units per 
milligram substrate protein on the in-vitro digestion 
study for Atlantic cod. However, a similar study has 
not been performed for other fish species.

Since fish encompasses a vast number of spe-
cies, it is extremely difficult to follow the human 
approach to standardize the operating condition 
by an international consensus. An alternative 
approach is proposed by selecting operating con-
ditions, such as optimum pH and ES ratio, based 
on their optimum value. However, the optimum 
temperature of fish (rainbow trout) trypsin could 
reach up to 60°C [112] and does not represent the 
in-vivo condition. Therefore, the selection of oper-
ating temperature could be based on the fish rear-
ing temperature. The protein digestibility is 
preferably reported in a time profile of the diges-
tion process until reaching the steady- 
state; however, this imposes an extra experimental 
cost in the number of analyzed samples.

There are still several factors that have not been 
included in the study of in-vitro digestion of fish, 
such as the effect of bile, electrolytes, and particle 
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size. Bile affects lipid digestion, and it is known 
that lipid could interact with protein hydrophobic 
molecules or as a lipoprotein. Only one study 
incorporated the bile salt in the study [91], show-
ing a two-fold increase of protein digestibility with 
it. Electrolytes are known to affect protein solubi-
lity but have not been systematically studied for in- 
vitro digestion on fish. The electrolyte concentra-
tion in the fish gastrointestinal tract could be mea-
sured as the procedure elaborated in Becker et al. 
[134] and recreated using inorganic salts.

3.3.5. Analytical Method
The in-vitro protein digestibility of soybean and fish 
meal are averaged at 50% and 85%, respectively, 
from the 57 reviewed articles, but they are highly 
dependent on the measurement method (Figure 4). 
The selection of the analytical method is crucial to 
obtain a reliable conclusion on protein digestibility. 
Several analytical methods widely used to assess pro-
tein digestibility include the pH-stat method, free 
amino group measurement, TCA-soluble protein, 
and peptide distribution by either SDS-PAGE or 
size-exclusion chromatography.

3.2.5.1 pH-stat Method. The pH-stat measure-
ment is a classical approach to monitor the enzy-
matic digestion process by titrating acid/base to 
maintain constant pH. The degree of hydrolysis 
(DH) can be calculated based on the volume of 
acid/base added by:

V is the volume of titrant (mL); N is the normality 
of titrant; m is the protein mass (g); htot is the number 
of peptide bonds per gram of proteins. αCOOH and 
αNH2 are the degree of dissociation of carboxylic and 
amino groups produced, estimated from the pKa of 
the carboxylic and amino groups [135].

Several studies tried to correlate the DH value 
with several other measurements, such as in-vivo 
protein digestibility as summarized in Table 5. It 
has been regarded as a valuable approach for con-
ducting an in-vitro digestion experiment, provid-
ing several undeniable advantages in real-time 
monitoring, easy to set up, and a nondestructive 
way to monitor and evaluate the kinetics of enzy-
matic hydrolysis of proteins ingredients. However, 
the pH-stat method seemed to be highly inconsis-
tent. Moreover, it was reported that the DH value 
of conducting in-vitro digestion using a single gas-
tric phase could be two times higher than the 
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Figure 3. Employed operating condition throughout 16 reviewed studies of in-vitro digestion for Onchorychus mykiss.
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combined gastric and intestinal phase for 
a particular protein ingredient [136], but the rea-
son was mainly not explained. A possible reason 
for the variation between studies is the assumption 
of α value, which is dependent on temperature and 
the protein ingredient (peptide chain length and 

terminal amino acid) [137]. Another reason is the 
buffering capacity of the feed ingredient, which 
has been reported to severely affect the pH-stat 
method [101]. Moreover, titration with NaOH 
during the intestinal phase also measures the 
lipid hydrolysis of the ingredient.

Figure 4. (a) Soybean (b) fish meal in-vitro protein digestibility using different analytical method.

Table 5. Correlation of pH-stat method with in-vivo protein digestibility.
Species Correlation Equation R2 Notes Reference

Rainbow trout y = 1.98 x + 39.4 0.64 Mammalian enzymes [98]
y = 1.67 x + 41.2 0.82 Trout enzymes

Gadoids y = 1.30x + 70.57 0.34 Recalculated from the provided data [119]
Catfish y = 1.33x + 29.28 0.930 Fish enzymes [84]

y = 1.05x + 56.21 0.853 Single enzyme
y = 1.07x + 33.56 0.895 Three enzyme mixture
y = 1.54x + −17.66 0.924 Four 4 enzyme mixture

Totaba magnodali y = 12.59x – 1.8018 0.792 Recalculated from the data [83]
Siberan Sturgeon y = 10.62x + 32.08 0.879 Animal based meal [168]

y = 6.627x + 43.531 0.967 Plant based meal
y = 1.30x + 70.57 0.34 Overall

Snook, Centropomus undecimalis Y = 1.8968 x + 88.52 0.73 Fish digestive enzyme for 11 ingredient [87]
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3.2.5.2 TCA-soluble peptide. The measurement of 
digested protein is based on the assumption that 
undigested proteins with high molecular mass are 
precipitated either by Trichloroacetic acid (TCA) or 
perchloric acid. Precipitated proteins are then 
removed by centrifugation, leaving only the digested 
peptides in the supernatant measured for the protein 
content. Measurement of protein content was 
reviewed in detail by Hayes [138]. The Kjeldahl 
method is considered the global standard method 
for protein measurement of food products, particu-
larly for a solid sample. The spectrophotometric 
method includes biuret methods (Lowry and BCA), 
Bradford assay, and UV spectroscopy are fast, easy, 
cheap, and able to measure small amounts of protein. 
However, it is only suitable for liquid samples [138]. 
The known golden standard (Recommended by 
FAO) of protein measurement is the direct amino 
acid measurement [138]. It is not only accurate but 
also provides information on the essential amino 
acids. The drawback of this method is that it is time- 
consuming and requires the installation of an expen-
sive instrument such as HPLC, UPLC, or LC-MS.

3.2.5.3 Primary Amino Group. Protein is hydro-
lyzed into peptides and amino acids, which possess 
a primary amino group at the end of a peptide. 
Several reagents could react specifically with only 
primary amino groups, including o-phenylenedia-
mine (OPA), ninhydrin, Trinitrobenzenesulfonic 
acid (TNBS), and fluorescamine. OPA method is 
the most widely used in the study of in-vitro diges-
tion compared to others. The OPA method was 
first introduced by Church et al. [139] to measure 
the degree of hydrolysis of milk proteins [140].

The measurement of primary amino groups 
could be either termed as both free amino acid 
measurement or degree of hydrolysis. The former 
is commonly termed in the study of in-vitro diges-
tion on fish, despite a single molecule of primary 
amine present in dipeptide, oligopeptide, or poly-
peptide. The term degree of hydrolysis is more 
appropriate as mentioned in the original method 
[137,139,141] and most of the in-vitro digestion 
study for humans. The value of the degree of 
hydrolysis by this method is used to calculate the 
pH-stat method α value [137].

3.2.5.4 Protein and Peptide Fractions. A protein 
ingredient commonly includes several different 
proteins. SDS-PAGE analysis provides valuable 
qualitative information on which proteins are 
digestible or resistant to enzymatic hydrolysis at 
each digestion phase. Sousa et al. [17] studied the 
in-vitro digestion of different plant protein 
sources, identifying several proteins resistant to 
either the gastric or intestinal digestion phase. 
Manditsera et al. [142] evaluated the effect of 
several cooking methods on the protein digest-
ibility of insects. They found that cooking by 
boiling increases the digestibility of high molecu-
lar weight protein by denaturation. Despite its 
widespread usage for mammals, only four studies 
have reported SDS-PAGE usage to visualize the 
digested protein molecular weight distribution in 
studying in-vitro digestion for fish [143–145]. 
The study by Duan et al. [143] on β- 
Conglycinin, a storage protein found in soybean, 
found that the alpha subunit is highly digestible 
while the beta subunit is resistant in the in-vitro 
digestion process of fish.

The SDS-PAGE result can be analyzed qualita-
tively via visualization of the protein bands or quan-
titatively by scanning the gel in a densitometer. The 
image is then analyzed by an image processing soft-
ware provided by the densitometer, or open-source 
software, such as ImageJ. Based on the optical den-
sity, the Coefficient of protein degradation could be 
calculated as described by Alarcon et al. [145].

Another method to measure protein fraction 
quantitatively is by size-exclusion chromatogra-
phy. This method employs HPLC columns that 
separate molecules based on the molecular weight. 
Only four studies had employed this analytical 
technique [146,147]. Using this technique, the 
author showed that in-vitro digestion of soybean 
minimally increases the low-molecular-weight 
peptides (<6.5 kDa) compared to fish meal, while 
similar molecular weight distribution between 
hydrolyzates of fish meal and poultry meal was 
observed [117,118,146,147] . In-vitro digestion of 
single-cell protein using rainbow trout digestive 
enzymes yielded two times higher of products 
with molecular weight between 250 and 4000 Da 
compared to products with molecular weight less 
than 250 Da.
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3.2.5.5 Microscopy. Microscopy technique is 
known to visualize the structure of the solids par-
ticle, protein aggregates, or lipid emulsion for in- 
vitro digestion study. This technique provides qua-
litative information on the effect of the micro-
structure of the food on enzymatic hydrolysis. 
For novel feed ingredients with recalcitrant cell- 
wall structure, the technique provides an analysis 
of cell wall integrity and the release of cellular 
components during the digestion process [148]. 
There are several different types of microscopy 
techniques to visualize food structure, including 
optical, fluorescence, and confocal microscopy. 
To observe the molecules of interest, several stains 
could be employed, for instance, Fluorescein iso-
thiocyanate [148], Commasie, Fast green [148], 
Evans’s blue for staining proteins [148], Sudan 
black for staining lipids, Lugol for carbohydrate, 
Toluidine blue for nucleic acids, Calcofluor white 
or cotton blue for cellulose or chitin present in the 
plant cell wall.

The microscopy techniques are widely used in 
in-vitro digestion for humans. Colosimo et al. 
[148] showed that the mycoprotein treated by 
ultrasonication increased the protein digestibility 
by increasing the porosity of the cell wall, enabling 
the digestion inside the cell despite the intact cell 
wall. Using confocal microscopy, the study of soy-
bean milk digestion showed that as the protein 
aggregates are partially hydrolyzed during the gas-
tric phase, the peptides on the protein surface 
exhibit surface-active agent properties, attracting 
the lipids and covering the protein aggregate 
[149]. The finding proves the crucial role of lipase 
in the in-vitro digestion protocol. Despite its com-
mon application for the study of in-vitro digestion 
for humans, the procedure is never used to study 
in-vitro digestion for fish. The knowledge on the 
microstructure could be beneficial for the research 
on the improvement of novel protein ingredients 
for fish meal replacement.

3.3.6. Comparison of in-vitro and in-vivo methods
The result of an in-vitro model must be validated 
with an in-vivo experiment. There are several 
methods to gather the in-vivo data of protein 
digestibility in fish. Apparent protein digestibility 
(APD) is the most measured variable by collecting 
the fish fecal sample. The term ‘apparent’ denotes 

the potential of both overestimation and under-
estimation from ‘true’ protein digestibility [150]. 
This method is the most common to validate the 
in-vitro experiment on fish; however, a systematic 
discrepancy will be observed as the current in-vitro 
method excludes the fermentation by microbial 
community in the distal intestine.

Another more detailed method to evaluate the in- 
vivo protein digestion collects the samples inside the 
fish gastrointestinal tract after a certain feeding per-
iod, as suggested by previous review [20]. The col-
lected samples could be analyzed for their protein 
content, peptide molecular-weight distribution, or 
other nutrient digestibility. This protocol was com-
monly used to validate the in-vitro digestion in 
humans using pigs as the model. However, this 
method requires some sacrificial fishes. 
Alternatively, a direct blood measurement was uti-
lized to measure the nutrient bioavailability in the 
fish [151,152].

4. Suggested Protocol for in-vitro digestion 
study in fish

As both humans and fish share a rather similar 
gastrointestinal tract, several developed protocols 
and gastrointestinal models applied for humans 
could be adapted for fish. Therefore, in-vitro diges-
tion protocols for fish are suggested. Based on the 
research aims – screening, in-depth analysis, or 
validation with an in-vivo experiment – the proto-
cols are differentiated as static and dynamic pro-
tocols. The protocol is summarized in Figure 5.

First, the fish digestive enzymes are extracted 
from either in-house reared fish or fish gutting 
waste. Distilled water is used as the extraction 
media is employed to extract both the pepsin and 
intestinal protease, with the tissue-to-media ratio 
is 1:10 w/v. Then, emulsified lipid in the crude 
extract is removed by chloroform extraction, fol-
lowed by enzyme concentration by freeze-drying, 
yielding the enzyme concentrate. The pepsin and 
trypsin activities of the enzyme concentrate are 
measured as in the INFOGEST protocol using 
hemoglobin and TAME as the substrate, 
respectively.

The static digestion protocol is adapted from 
the INFOGEST protocol, with the exclusion of 
the oral phase. For the fish species with 

3056 R. WANG ET AL.



a functional stomach, gastric digestion is con-
ducted by adding 1 gram of the sample into 
a test tube and mixed with acidified water, acid-
ified to pH ranging from 1 to 3 using HCl, and 
stomach enzyme concentrate for the duration of 
up to 6 hours. The amount of water and gastric 
enzyme concentrate required is based on the mea-
sured enzymatic activity, ranging from 1 to 200 U/ 
mg protein, to reach the gastric-phase volume of 
4 mL. After the gastric phase, the pH is adjusted to 
7–9 with NaOH, then the intestinal enzymes con-
centrate, ranging from 1 to 200 U/mg protein, and 
water is added to reach the final intestinal-phase 
volume of 8 mL. The intestinal-phase digestion 
duration could be up to 6 hours. The reaction 
vessel and the total volume of each digestion 
phase could be scaled with the amount of sample 
added depending on the enzymes and sample 
availability.

Prior to the primary experiment, several preli-
minary experiments are required to determine the 
exact operating condition. The gastric and intest-
inal phases pH are determined based on the pro-
teases optimal pH by varying the pH of enzymatic 
activity measurement, using hemoglobin and 
TAME as substrate, respectively. The optimal 
amount of enzyme is decided based on the optimal 
ES ratio by varying the amount of enzyme con-
centrate added during gastric and intestinal 
phases, measuring the DH either by pH-stat, TCA- 

soluble peptides, or OPA primary amino group. 
The duration of each phase is chosen based on the 
time required to reach a steady state.

Since there is currently no dynamic in-vitro 
gastrointestinal model for fish that could simulate 
the dynamics of the gastric phase and continuous 
nutrient removal, There is a potential to develop 
a dynamic model specifically for fish. Otherwise, 
the dynamic protocol could be based on the devel-
oped gastrointestinal model for humans. One of 
the promising models, which could be adopted for 
fish, is the INFOGEST semi-dynamic model, using 
a pH-stat set-up and a paddle agitator for the 
gastric phase, while periodically transfer the gastric 
digesta to several batches of intestinal phase.

Several analytical methods employed in the in- 
vitro digestion study for humans can be adopted to 
study fish. Current SDS-PAGE usage is still mini-
mal on fish despite the extensive usage in the study 
on humans. Microscopy is also an advantageous 
technique that can be utilized, particularly for 
novel protein ingredients. These analytical meth-
ods could be either employed both on the in-vitro 
study and during in-vivo validation. Analysis of 
the digesta biochemical, physical properties, and 
the blood plasma nutrient concentration, the 
mechanism of the digestion and absorption pro-
cess can in-vitro be validated. The limitation of 
this protocol is only suitable to assess nutrients 
digestibility in the upper gastrointestinal tract 

Figure 5. Suggested protocol for in-vitro digestion study for fish. *the total volume and amount of digestive fluid added could be 
scaled with the amount of sample. **the digestive fluid contains the amount of enzymes determined during the preliminary study.
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(stomach and small intestines), while the assess-
ment of the impact of the feed sample on gut 
microbial community is not included.

5. Conclusion

Digestive systems in human, animals, and fish are 
biological reactors and membranes to digest food 
and extract nutrients. This in-vitro approach offers 
a faster and cheaper way to assess nutrient digest-
ibility. In-vitro digestion models for humans have 
been developed to a great extent, including stan-
dardization of static models and several bioreac-
tors-based dynamic models. On the other hand, 
the in-vitro digestion model for fish is significantly 
less developed. Given that both human and fish 
shares a monogastric gastrointestinal tract, engi-
neering analysis is one of the approach to adapt 
the model for human to fish. The main differences 
of digestion physiology between human and fish 
are the enzymes biocatalytic properties, causing 
one of the challenges in the sourcing the enzymes. 
Other challenges include the determination of 
enzymatic activity, selection of operating condi-
tion, analytical methods, and validation with in- 
vivo experiment. To improve the current in-vitro 
digestion protocol for fish, a protocol based on the 
in-vitro digestion study for human is suggested.
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