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Abstract

In many decision-making situations, sub-optimal choices are increased by uncertainty. However, when wrong choices could
lead to social punishment, such as blame, people might try to improve their performance by minimizing sub-optimal choices,
which could be achieved by increasing the subjective cost of errors, thereby globally reducing decision noise or reducing an
uncertainty-induced component of decision noise. In this functional magnetic resonance imaging (fMRI) study, 46 partici-
pants performed a choice task in which the probability of a correct choice with a given cue and the conditional probability of
blame feedback (by making an incorrect choice) changed continuously. By comparing computational models of behaviour,
we found that participants optimized their performance by preferentially reducing a component of decision noise associated
with uncertainty. Simultaneously, expecting blame significantly deteriorated participants’ mood. Model-based fMRI analyses
and dynamic causal modelling indicate that the optimization mechanism based on the expectation of being blamed would
be controlled by a neural circuit centred on the right medial prefrontal cortex. These results show novel behavioural and
neural mechanisms regarding how humans optimize uncertain decisions under the expectation of being blamed.
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Introduction this kind of stressful situation that might enhance decision
performance at that moment but would make us feel bad.

The motivation to avoid negative outcomes might enhance
task performance through several mechanisms, including
increasing attention to the task (Engelmann, Damaraju,
Padmala, & Pessoa, 2009) and enhancing working memory
function (Krawczyk and D’esposito, 2013). Furthermore, the
performance-enhancing effect by punishment has been thought
to involve an increase in catecholamine level (Frankenhaeuser

In our workplace, we make many decisions between options
with uncertain values. If we fail to make a good decision,
we might face a socially undesirable situation—such as being
blamed by a boss. Therefore, although it could be hard to make
a good decision because of uncertainty, we may become more
deliberate and expend more effort to enhance the probability
of optimal choice in this situation. We occasionally encounter
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and Rissler, 1970). However, the behavioural and neural mech-
anisms that an agent uses to optimize an uncertain decision-
making process to avoid a highly probable social punishment
such as blame if their decision is wrong and how these kinds of
socially stressful situation influences out mood have not been
investigated.

A candidate mechanism of behaviour under uncertainty
that could be controlled under threat to optimize behaviour is
by reducing uncertainty-driven error in their action, and an
unnecessary exploration could be a kind of that error. Explo-
ration is the choice of an option that does not have maximum
value among all options in the current state (Daw et al., 2006;
Payzan-LeNestour & Bossaerts, 2011), which could be either
‘directed’ to more uncertain options or ‘random’ (Gershman,
2018). Gershman and colleagues derived trial-by-trial uncertain-
ties according to a Bayesian model of decision-making, and they
showed that humans use both kinds of uncertainty-induced
exploration (Gershman, 2018). Especially, they suggested that a
total uncertainty induces a decision noise (uncertainty-induced
decision noise [UDN]), which subsequently causes a random
exploration (Gershman, 2018). Because both exploration strate-
gies help an individual obtain information about the environ-
ment, it might also benefit a long-term cumulative reward in
some situations (Agrawal and Goyal, 2012). However, if the
uncertainties of every option are the same and an agent knows
the outcomes of both selected and unselected options, explo-
ration would be unnecessary because it does not maximize
information gain or the reward; thus, choosing the option with
the maximum value would be an optimal choice. We confined
the situation regarding uncertain decisions to this type of sit-
uation to simplify our question about optimizing an uncertain
decision under threat. In this situation, because uncertainties
among options are the same, an uncertainty-directed explo-
ration would not exist. However, an increase in total uncertainty
would increase the decision noise, causing an unnecessary ran-
dom exploration, which is an error in this case that might
decrease the accuracy of the choice. Therefore, we hypothesized
that controlling the sub-optimal choice (error) driven by UDN
might help an agent make a more accurate choice when the
wrong choice is likely to result in undesirable blame. Further-
more, we expected that blame in this situation would influence
not only behaviour control under uncertainty but also people’s
negative mood.

To test this hypothesis, we designed a task with a choice
between two options whose uncertainty changes during the task
and both the outcomes of selected and unselected options are
fully knowable (Figure 1A). Importantly, participants received
blame with high or low probabilities when they made a wrong
choice, and this conditional probability changed between blocks
of trials. Note that, we used blame as an aversive stimulus
that motivates one to avoid it which is similar to physical pain
but encounters more frequently in our social life. However, our
aim was not to compare both kinds of painful stimuli in this
study. We predicted that participants would infer how likely
they would be blamed by making a wrong choice and would
control UDN to make a more accurate choice when blame was
highly likely while their mood is negatively influenced. Note
that the term ‘uncertainty’ used in our study indicates an ‘esti-
mation uncertainty’ or ‘information uncertainty’ resulting from
an insufficient estimation of the value (Payzan-LeNestour &
Bossaerts, 2011). In our case, uncertainty is derived from an
imperfect estimation of the probabilistic association between
a cue and a ‘correct’ outcome (De Berker et al., 2016). These
hypothesis were tested by modelling participants’ behaviour
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and mood during the task using the novel hierarchal Bayesian
reinforcement learning model. In this model, an agent infers
both about (i) which option is likely to be correct and how such
belief is uncertain and (ii) how it is likely to be blamed if one
makes the wrong decision and these two kinds of inferences
jointly influences the decision.

In order to identify a neural mechanism of such behavioural
optimization under threat, model-based functional magnetic
resonance imaging (fMRI) analyses and dynamic causal mod-
elling (DCM) analysis (Friston et al., 2003) were performed. A
recent study suggested the medial prefrontal cortex (mPFC) as
a candidate region for controlling strategic avoidance behaviour
under threat (Mobbs et al., 2007; Qi et al., 2018). Furthermore,
the mPFC implements slower, more controlled and deliberate
decision-making during difficult choices (Cavanagh et al., 2011)
and drives strategy shifts (Schuck et al., 2015). Therefore, we
hypothesized that the neural circuit involving the mPFC would
control the behavioural optimization process under the expec-
tation of being blamed. Especially, we expected that such a
neural circuit would also involve the rostrolateral prefrontal cor-
tex (rlPFC), which is related to an uncertainty-driven exploration
in the previous literature (Badre et al., 2012).

Materials and Methods
Participants

Forty-six participants (32 males and 14 females, mean age
of 22.6143.61 years) from the Korea Advanced Institute for
Science and Technology (KAIST) volunteered for this experi-
ment. Details of participants’ information can be found in the
Supplementary data.

Ethics statement

All participants provided written informed consent to partici-
pate in the experiment based on sufficient explanation about the
study (including blame). The study was approved by the KAIST
Institutional Review Board in accordance with the Declaration
of Helsinki.

Experimental task

Every participant completed 240 trials of a choice task in which
the goal was to acquire the ‘correct’ outcome as many times
as possible. In every trial, two Tibetan character cues were pre-
sented, and participants were asked to choose one (Figure 1A).
Cues were probabilistically associated with either a ‘correct’ out-
come or a ‘wrong’ outcome, and this correct probability was
reciprocal such that

Correct probability of cue 1 = 1 — Correct probability of cue 2,

which was explicitly conveyed to participants to make the
uncertainties about the correct probabilities for both cues to
be equal, thus minimizing directed exploration. This probabil-
ity was changed every 10-50 trials between 20/30% and 80/70%
to change the participants’ estimation of the uncertainty of
association probability between the cue and the correct choice
(Figure 1B). They failed to make a good choice (designed to have
a higher probability of correct) right after probability reversal.
However, their good choice probability increased through learn-
ing (Supplementary Figure S1). Independent with this correct
probability, participants had to think about whether they might
face a socially undesirable situation if they fail to make the right
decision in the current trial. Particularly, if they made a wrong
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Fig. 1. (A) Experimental paradigm. Two Tibetan character cues were presented, and cues were associated with a ‘correct’ outcome with the probability of P and
1—P each. This probability P changes between blocks of trials. If participants made a wrong choice, a blame composed of an angry face and swear words appeared
probabilistically. (B) Probability structure of the task. Left: correct probability (Correct prob) and the conditional probability of blame given wrong choice (Blame prob)
were changed between blocks of trials to change the participants’ estimation of uncertainty. Furthermore, there were high-blame blocks (grey-shaded area) and low-
blame blocks. Right figure shows an example of belief trajectory regarding p(correct|cue) and p(blame|w) estimated from the CUDN model in one participant. The
plot shows the similarity between the estimated belief trajectory and the designed probabilistic schedule. (C) A trajectory of good choice proportion for 20 trials after
probability reversal. In both high- and low-blame blocks, good choice proportion kept increasing after the reversal. Furthermore, good choice probability was higher in
the high-blame blocks than in the low-blame blocks early after reversals (about 10 trials after reversal). (D) Good choice proportion, accuracy and RT difference between
high- and low-blame blocks. We compared the mean good choice proportion (left), accuracy (middle) and RT (right) between high-blame and low-blame blocks using
a paired t-test. Good choice proportion was compared only in early trials after correct probability reversal. Participants showed increased good choice proportion,
accuracy and RT within the high-blame blocks. The face used in this figure is different from the one that was used in the experiment to avoid using real human image
in the figure (the face in this figure was generated by FaceGen Modeller (http://www.facegen.com/)).

choice, they were probabilistically being blamed with an angry boss or superior (e.g. ‘Please try to imagine as vividly as pos-
face and swear words. We called this type of feedback blame, sible that your boss yells at you because you made a wrong
and we instructed participants to regard this feedback as blame choice’). Participants sufficiently practised imagining this situ-
in the context of social situation, such as a blame given by their ation before starting the experiment (Figure 1A). Importantly,
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we varied the conditional probability of the appearance of the
blame feedback when participants made an incorrect choice
block by block with a range from 20 to 40 trials. Thus, during
some blocks of the task, the conditional probability of blame
feedback was very high when the choice was wrong (80% or 90%;
we designated these blocks ‘high-blame’ blocks, grey-shaded
area of Figure 1B), while in the other blocks, this conditional
probability was low (10% or 20%; we designated these blocks
‘low-blame’ blocks). Additionally, to assess the mood of each
trial, participants were instructed to rate their mood on a Likert
scale ranging from —3 to 3 every eight trials after receiving sec-
ondary feedback. A total of 30 ratings were acquired from each
participant. We expected that participants would implicitly or
explicitly calculate the conditional probability of being blamed
by making a wrong choice (we represent this subjective condi-
tional probability of being blamed for a wrong choice of each par-
ticipant as ‘p(blame|w)’), and this calculation would influence
participants’ decision-making, such as encouraging participants
to make more deliberate and careful choices and mood, which
was revealed in the results of the post-experimental survey
(Supplementary Table S1).

Behaviour analyses

Testing effect of blame expectation on making a better
choice under uncertainty

We first examined whether people made better choices in the
trials that a wrong choice is highly likely to result blame. To
define a better choice, we defined a ‘good choice’ and ‘accu-
rate choice’. In each block, there was a cue that was designed
to have a higher correct probability than other cue and choosing
this better cue was defined as a ‘good’ choice of that block. For
example, if a cuel was designed to have 70% correct probability
in one block (thus cue2 has 30% correct probability), that cue is
the good choice of that block. An ‘accurate’ choice was defined
as a choice thatresulted in actual ‘Correct’ feedback at each trial.
Because ‘Correct’ feedback was probabilistic given the choice,
people might not get ‘Correct’ feedback even if they made a good
choice. We compared a good choice proportion and mean accu-
racy between the high-blame blocks and low-blame blocks using
the paired t-tests. Furthermore, because we hypothesized that
an effect of blame expectation would depend on uncertainty
(decreasing UDN), we also compared the good choice propor-
tion in trials expected to have high uncertainty. Considering that
uncertainty is known to be maximized after probability rever-
sal and reduced until the next reversal because of the learning
(De Berker et al., 2016), we only used the first 10 trials after
a reversal of the correct probability in this test. Additional
behaviour analysis can be found in the Supplementary data.

Computational modelling of an effect of blame belief on
sub-optimal decision

After showing that participants made better decision under
uncertainty when a wrong choice is highly likely to result a
blame, we designed explicit computational models that can
explain the internal process of computing beliefs regarding con-
ditional probability of the blame (p(blame|w)), and this belief
subsequently influences participants’ decision. We hypothe-
sized that uncertainty would increase the decision noise that
increases a chance of sub-optimal choice and p(blame|w) would
decrease this UDN, meaning an interaction effect between
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p(blame|w) and uncertainty on decision noise. Note that sub-
optimal choice here was defined with respect to an internal
belief (choosing an option that is believed to have lower correct
probability than other options), making it different from a bad
choice. A computational model explains this process, which was
named as control of uncertainty-induced decision noise (CUDN)
model (Figure 2A). In this model, the parameter v determined the
degree of suppression of UDN as p(blame|w) increases. There-
fore, if v is large for some participants, those participants greatly
suppress UDN when p(blame|w) is high compared with when
p(blame|w) is low and vice versa (Supplementary Figure S3).
We fitted the CUDN model to the participants’ responses and
compared this model with 15 other models (Supplementary
Table S4) with random-effect Bayesian model selection (RFX-
BMS) (Stephan et al., 2009; Daunizeau et al., 2014). A summary
of the 16 models is provided in Supplementary Table S4. Other
details of the computational modelling can be found in the
Supplementary data.

Model-based fMRI analysis

We performed a model-based fMRI analysis based on the CUDN
model to investigate the neural substrate of suppression of UDN
under p(blame|w). We performed parametric modulation anal-
yses using the trial-by-trial trajectories of model variables of
interest for each subject as parametric modulators of a first-level
general linear model (GLM) in Statistical Parametric Mapping 12
(SPM12) (Penny et al., 2011). Variables of interest at the onset of
the cue included trial-by-trial p(blame|w) and uncertainty that
influenced decision noise in the CUDN model. Moreover, we
included the trial-by-trial subjective value of the sub-optimal
option (that is, subjective correct probability (p(correct|cue)) of
the sub-optimal option), which induces an error (sub-optimal
choice). Blame prediction error (BPE) regressor was also added
as a parametric modulator at the onset of secondary feed-
back. Details of the methods regarding fMRI acquisition, pre-
processing and parametric modulation analyses can be found
in the Supplementary data.

DCM

In the parametric modulation analysis, we found that the bilat-
eral mPFC was robustly activated by p(blame|w), which is consis-
tent with our hypothesis. We expected that the mPFC would be
a region that controls the UDN according to the p(blame|w), and
this control process would be implemented by a dynamic change
of interaction between the mPFC and the region processing sub-
optimal option such as the rIPFC. To test this hypothesis, we first
confirmed that their connection varies by the p(blame|w) using
the psychophysiological interaction (PPI) (Friston et al., 1997) and
investigated more detailed dynamics and their relationship with
UDN control process using the DCM analysis (Friston et al., 2003).
Details of the methods regarding PPI and DCM analyses can be
found in the Supplementary data.

Results
Behaviour analyses

Expectation of being blamed facilitates better performance by
deliberation. Overall, people successfully followed our sophis-
ticated probabilistic design (68.2% of good choice proportion,
significantly better than chance (50%): t[45.00] = 15.78, P <0.001),
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Fig. 2. (A) Graphic description of the computational model of behavioural optimization under the expectation of being blamed. The CUDN model was composed of
the following parts: the perceptual model and response model. The perceptual model is composed of two parallel learning systems—learning p(correct|cue) by the
three-level hierarchical Gaussian filter (HGF) model (blue) and learning p(blame|w) by the Rescorla-Wagner (RW) model (red dashed circle). Importantly, in the response
model, y(k) represents a choice at trial k, and the 3, which is the inverse temperature of the Softmax function, is a function of an estimation uncertainty (62(k)) and
p(blame\w)(k) such that &z(k) induces decision noise and p(blame\w)(“) suppresses UDN. In this graphic representation, a deterministic node and relationship are
represented as dashed circles and dashed lines, respectively, while solid circles and lines represent a stochastic node and relationship. (B) Parameters of the CUDN
model. In the function 3 (&z(k)’ p(blame|w)® ) , parameter ¢ determines the participants’ degree of UDN, and v determines the participants’ degree of suppression on
UDN as p(blame|w) increases. (C) Bayesian model selection results. The results of the RFX-BMS show that the CUDN model fits the participants’ behaviour better than
other models (PEP = 0.831). (D) Correlation between v and good choice/accuracy enhancement. The results of correlation analysis showed that the participants with

large v showed enhanced good choice proportion (left) and accuracy (right) in high-blame blocks. Note that these significant correlations also existed after removing
points with values outside of 2 s.d. (rightmost 2 points) from the mean (all P <0.05).



this performance was similar but slightly lower to the perfor-
mance of ideal Bayesian learner (70.1%, Supplementary data).
They made more good choice in the high-blame blocks only with
a marginal significance (mean good choice proportion =0.692 vs
0.673, t[45]=1.76, P=0.085, confidence intervals [CIs]: 0.00 to
0.04, d=0.3; two-tailed paired t-test; Figure 1D, left). However,
when compared using only uncertain trials, increment of par-
ticipants’ good choice proportion was small, but significant in
the high-blame blocks (0.652 vs 0.614, t[45] =2.02, P =0.049, CIs:
0.000 to 0.077, d =0.298, paired t-test), suggesting that an effect
of blame expectation on promoting good choices might depend
on the uncertainty level. Participants also choice with 57.3%
accuracy (significantly better than chance, [45] = 11.45, P<0.001)
and they also more accurate choice in the high-blame blocks
compared with the low-blame blocks (mean accuracy =0.591 vs
0.555, t[45]=4.09, P<0.001, CIs: 0.02 to 0.05, d=0.6; Figure 1D,
middle). Moreover, the mean response times (RTs) of the
high-blame blocks were significantly longer than those of the
low-blame blocks (mean RT=598 ms vs 583 ms, Z=3.95,
P<0.001, Wilcoxon signed-rank test; Figure 1D, right). Based
on these results, we expected that participants made better
decisions under uncertainty via deliberation when p(blame|w)
was high.

Computational modelling: expecting blame optimizes deci-
sion under uncertainty while negatively influences mood. The
CUDN model was selected with a protected exceedance prob-
ability (PEP) of 0.831 among 16 candidate models, suggesting
that participants were able to control the influence of sub-
jective uncertainty on their decision depending on the belief
of how they are likely to be blamed if they make an incor-
rect choice (Figure 2C). Furthermore, the degree of suppres-
sion on UDN under high p(blame|w), which was parameterized
by v had significant positive correlation with both increase
in the good choice proportion (Spearman’s p=0.384, P=0.008,
Figure 2D) and accuracy (Spearman’s p=0.306, P=0.016, Fig-
ure 2E) in high-blame blocks, meaning that participants were
able to make better decision under social threat by suppress-
ing UDN. Although p(blame|w) enabled a flexible control of the
UDN, this kind of belief significantly decreased the mood of
participants (Supplementary data). Although v well explained
individual differences of an effect of p(blame|w) on control-
ling UDN, the group average of the v was not significantly
different from the 0 (t=0.93, P=0.357). Finally, because the

Regions activated by p(blame|w)
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computational modelling results can be susceptible to the
prior parameter setting, we performed the susceptibility anal-
yses on the prior parameter setting of the v. In all set-
tings, the PEP of the CUDN model was greater than other
models. However, this analysis showed that the PEP of the
CUDN model changed according to the prior parameter set-
tings and in some settings it was not sufficiently large enough
(Daunizeau etal., 2014) (e.g. PEP=0.531 in setting of prior
mean =0, prior variance = 1, Supplementary data), which could
be the limitation of our computational modelling.

Model-based fMRI analysis

The bilateral mPFC is recruited by an expectation of blame,
and the bilateral rIPFC is involved in processing of sub-
optimal option. In the parametric modulation analyses of the
p(blame|w), robust activation of a bilateral mPFC cluster extend-
ing to the lateral prefrontal cortex (IPFC) and dorsal ante-
rior cingulate cortex (dACC) and the bilateral temporal pole
cluster extending to the bilateral amygdala and hippocam-
pus was observed (cluster-level whole brain familywise-error
(FWE)-corrected P-value <0.001 in both clusters, cluster-defining
threshold [CDT] P=0.001, uncorrected, Figure 3 and Table 1).
Interestingly, in our additional conjunction analyses (Supple-
mentary data), there was an overlapping activation within
ventromedial prefrontal cortex (vmPFC) between p(blame|w)
and subjective value difference between chosen and uncho-
sen options (Palminteri et al., 2015)—where an increase of such
differences are related to an increase of optimal choice (cluster-
level whole brain FWE-corrected P <0.001, CDT P =0.001, uncor-
rected, Supplementary Figure S9A). Therefore, we suspected
that this overlap within vmPFC might support the role of
p(blame|w) in decreasing decision noise. Furthermore, both
p(blame|w) and the variables related to the cognitive control
load (decrease of absolute value difference or RT, Supplementary
data) activated dACC (cluster-level whole brain FWE-corrected
P=0.008, CDT P=0.001, uncorrected, Supplementary Figure
S9B) and IPFC (cluster-level whole brain FWE-corrected P = 0.005,
CDT P=0.001, uncorrected, Supplementary Figure S9C) in the
conjunction analyses. Note that both regions are previously
known as a part of cognitive control network (Shenhav et al.,
2013), and thus, we suspect that this might be related to an
increase of deliberation according the level of p(blame|w). Next,
a parametric modulator regarding the value (subjective correct

- r f~ '
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B *
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T-value -
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.

Fig. 3. Results of the parametric modulation analysis by p(blame|w). MPFC, PCC (centre) and hippocampus (left), were activated by p(blame|w) (cluster-level whole
brain FWE-corrected P-value <0.001, CDT = 0.001). The blue dashed circle denotes the right mPFC used in the DCM as a region of interest (ROI).
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Table 1. Regions activated by p(blame|w)

Cluster
Cluster P-value (whole MNI Voxel
(CDT P=0.001, brain FWE No. of coordinates Z-value (uncorrected
uncorrected) corrected) voxels Region name (AAL) %y 2) P-value)
Frontal_Sup_Medial L —8, 62,28 6.65
mPFC <0.001 4556 (<0.001)
Frontal_Sup_Medial R 6, 60, 32 5.27
(<0.001)
Temporal_Pole_Mid_R —4, —46, 35 5.51
Right <0.001 1156 (<0.001)
TP/hippocampus/ Hippocampus_R 20, 4, 18 4.93
amygdala (<0.001)
Left TP/hippocampus/ <0.001 1368 Temporal Pole_Sup_L  —44, 16, —40 4.95
amygdala (<0.001)
Cingulate_Mid_L —4, —46, 34 461
PCC <0.001 407 (<0.001)
Cingulate_Post_L —12, —46, 30 4.50
(<0.001)
Right MTG/STG <0.001 1120 Temporal Mid_R 52, —-18, —10 5.47
(<0.001)
Left MTG/STG <0.001 814 Temporal Mid_L —56, —28, —6 5.13
(<0.001)
Left MTG 0.003 210 Temporal_Mid_L —42, —60, 20 4.05
(<0.001)
dACC/MCC 0.007 178 Cingulate_Mid_L —2,-18,34 4.35
(<0.001)
Cerebellum <0.001 817 Cerebelum_Crus2_R 24, —86, —36 5.31
(<0.001)
Cerebellum 0.009 166 Cerebelum_Crus1_L —42, —68, —24 4.76
(<0.001)
Cerebellum 0.012 157 Cerebelum_Crus2_L —22, —86, —34 4.66
(<0.001)

AAL, automated anatomical labeling; TP, temporal pole; MTG, middle temporal gyrus; STG, superior temporal gyrus.

probability) of the sub-optimal option co-varied with the blood-
oxygen-level-dependent signal of the bilateral rIPFC (cluster-
level whole brain FWE-corrected P<0.001, CDT P =0.001, uncor-
rected, Figure 4A, Supplementary Figure S6 and Table S7), which
regions were engaged in uncertainty-driven exploration in a
previous study (Badre et al., 2012). More detailed results of para-
metric modulation analysis are provided in the Supplementary
data.

Blame expectation negatively modulates effective connectiv-
ity from the right rIPFC to the right mPFC to suppress the
UDN. In the PPI analysis, we found out that functional connec-
tivity between right mPFC and right rIPFC was negatively mod-
ulated by p(blame|w) (cluster-level whole brain FWE-corrected
P=0.039, CDT P=0.05, Figure 4A and Supplementary Table S8)
and the degree of negative modulation was significantly cor-
related with v (Spearman’s p =—0.34, P=0.029). To clarify the
specific neural dynamics and to identify how those dynamics
account for the control of UDN under blame expectation, we
performed DCM analysis between two regions. In the RFX-BMS
among 16 DCM models considering all possible interaction pat-
terns between 2 regions, model 7 (Figure 4B), which includes
a driving input to the right mPFC by p(blame|w), a bidirec-
tional fixed connection between two regions and modulation
of both connections by p(blame|w), was selected with a PEP of
0.999. We conducted a robust linear regression analysis using the
parameter v as a dependent variable and two effective connec-
tivities, one from the right mPFC to the right rIPFC and another

from the right rIPFC to the right mPFC in model 7, as inde-
pendent variables to identify which direction of modulation by
p(blame|w) was related to the suppression of UDN. Only the
effective connectivity from the right rIPFC to the right mPFC
negatively influenced v (beta=—0.46, t[29]= —3.09, P=0.004,
CIs: —0.75 to —0.17, d= —0.5), whereas the effective connectiv-
ity in the opposite direction did not (beta = —0.2, t[29] = —1.33,
P=0.193, CIs: —0.49 to 0.09, d = —0.2). Furthermore, because the
modulation from the baseline ‘fixed’ connectivity was related to
the modulation of UDN by p(blame|w), we suspected that the
fixed connection from the right rIPFC to the right mPFC might
be related to the UDN and the modulation of this connection is
related to the control of UDN. To test this hypothesis, we per-
formed a robust linear regression analysis using the parameter
¢, which is related to the UDN as the dependent variable and
the fixed connection from the right rlPFC to the right mPFC as
an independent variable, which showed a positive relationship
between two variables (beta=0.24, t[30]=2.08, P=0.047, CIs:
0.01 to 0.46, d = 0.4, Figure 4B). In summary, we showed that the
UDN is related to the fixed connection from the right rIPFC to
the right mPFC and that the modulation of this connection via
p(blame|w) is related to UDN suppression.

Discussion

Under the condition that a wrong decision leads to severe blame
by another, we must regulate ourselves to make better deci-
sions. In such situation, participants enhanced their ability to
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Fig. 4. (A) Modulation of connectivity between the right mPFC and other regions by a blame expectation. The results of the PPI analysis (upper figure) suggested
that functional connectivity between the right mPFC and right rIPFC was negatively modulated as p(blame|w) increased (red dashed circle, cluster-level whole brain
FWE-corrected P-value =0.039, CDT = 0.05). This rIPFC cluster had large overlap with the rIPFC clusters involved in the processing of the sub-optimal option (lower
figure, cluster-level whole brain FWE-corrected P-value <0.001, CDT = 0.001). (B) DCM models explaining dynamics between right mPFC and rlPFC. The winning model
showed the bidirectional fixed connections between the right mPFC (blue dashed circle in Figure 3) and rlPFC (red dashed circle in Figure 4A). Both connections were
modulated by p(blame|w) and p(blame|w) also acted as a driving input to the mPFC. The fixed connection from the right rIPFC to the mPFC (blue arrow) was related to
the degree of UDN. Moreover, p(blame|w) acted as a driving input to the right mPFC, and the effective connectivities from the right mPFC to the rIPFC as well as from
the right rIPFC to the mPFC were modulated by p(blame|w) (red dashed line). The modulation of effective connectivity from the right rIPFC to the mPFC was related to
the degree of UDN control via p(blame|w).
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make better choices under uncertainty through the suppres-
sion of UDN. This means that when one is already confident
about the best action, then an expectation of being blamed has
little effect—however, when one is unsure, then blame tends
to increase optimal choices by reducing random exploration.
However, expecting such blame with high probability impaired
participants’ mood. Furthermore, fMRI analyses, including
DCM analyses, revealed that a neural mechanism underly-
ing this behavioural tendency is related to the suppression of
connectivity from the right rIPFC to the mPFC as p(blame|w)
increases, where the right rlPFC was engaged in processing
the sub-optimal option and the right mPFC was activated by
p(blame|w).

Our study improves our understanding of the behavioural
and neural mechanisms of optimal decision-making strategies
to avoid aversive outcomes expected for incorrect decisions in
a social context and how such kind of stressor influences our
mood. From a behavioural perspective, when punishment or
loss is expected with lower performance, participants enhance
their performance by enhancing working memory function
(Krawczyk and D’esposito, 2013) or inhibitory control mecha-
nisms (Simoes-Franklin et al., 2010). However, to the best of
our knowledge, few studies have proposed the computational
mechanisms that are involved in optimizing uncertain deci-
sions under punishment expectations based on explicit com-
putational models of behaviour. In the present study, using
the CUDN model, we successfully showed that participants
increased good and accurate choices when a conditional prob-
ability of blame given a wrong choice was high through the
flexible control of UDN.

In many cases, random exploration might be beneficial for
maximizing a long-term expected reward because it helps the
individual obtain information about uncertain options (Agrawal
and Goyal, 2012; Payzan-LeNestour & Bossaerts, 2011). How-
ever, in situations such as our task, where there is no more
information gain by choosing one option over another, random
exploration would become a choice that might decrease the
accuracy of the choice. We modelled this effect of expectation of
being blamed on uncertainty-driven sub-optimal choices using
a CUDN model in which an uncertainty increases decision noise
and p(blame|w) controls this UDN; this model explained par-
ticipants’ behaviours better than other models. An interesting
point regarding models where p(blame|w) had a negative value is
that p(blame|w) naturally decreased the decision noise, regard-
less of the amount of uncertainty, which is different from the
CUDN model in which only UDN is influenced by p(blame|w).
Therefore, another point recognized from the Bayesian model
selection results is that p(blame|w) likely controls the decision
noise in a manner proportional to a degree of uncertainty but
not in an uncertainty-independent manner. Because the deci-
sion noise increases with uncertainty, the requirement for the
suppression of UDN to make an optimal choice is higher when
high uncertainty exists. Furthermore, based on the results of
the post-experimental survey, we recognized that participants
made more deliberate, effort-driven decisions under threat,
resulting in the suppression of (uncertainty-driven) decision
noise. Thus, we surmise that the suppression of decision noise
might require a mental effort that is costly to exert (Botvinick
and Braver, 2015; Shenhav et al., 2017). Therefore, we speculated
that a balance between the cost of deliberation and the need to
suppress decision noise to make an optimal choice under uncer-
tainty might increase the efficiency of the suppression of UDN,
particularly in a volatile environment in which an uncertainty
level continuously changes, such as in our task.

After confirming that p(blame|w) controlled the UDN, we
revealed that the suppression of UDN enabled the partici-
pant to make a better choice by showing a positive correlation
between increased good choice proportion and accuracy in the
high-blame blocks and the model parameter v. Therefore, our
behavioural results suggest that when a wrong choice is likely
to result in an aversive outcome under the uncertain decision-
making situation used in our task, an agent tries to make a better
choice by suppressing UDN to some degree. However, although
v well explained individual differences regarding the effect of
p(blame|w) on controlling UDN, it seems that this parameter
alone is insufficient to explain this effect. Considering that group
average of v was not significantly different from the 0 despite
increased good/accurate choice in high-blame blocks, we spec-
ulate that this effect could be implemented by a whole CUDN
model including interactions between v other parameters. For
example, because an increase of optimal choice depends on
decreasing UDN, an effect of p(blame|w) on controlling UDN
would be affected also by the . Note that ¢ determines the
degree of decision noise induced by an uncertainty. This point
is a limitation of our study and should be investigated in future
studies. Additionally, we also have shown that an inference
regarding a conditional probability of the blame significantly
impaired participants’ mood. People suffer from abusive super-
vision are at high risk of affective disorder (Tepper et al., 2007).
We speculate that people who are frequently exposed to abusive
supervision similar to our task such that their supervisor forces
them to make good decision under uncertainty with social pun-
ishment would be more likely to evolve an affective disorder by
an accumulation of a daily negative mood induced by an aversive
outcome expectation by their wrong decision.

We then identified the neural mechanism underlying the
expectation of blame and the suppression of the UDN by
p(blame|w). The regions involved in processing p(blame|w)
included the mPFC, hippocampus and posterior cingulate cortex
(PCC), which are similar to the regions involved in the ‘cognitive
fear circuitry’ (Qi et al.,, 2018). The suggested role for this cir-
cuit was strategic avoidance of a threat (Qi et al., 2018), and the
authors mentioned that the mPFC is likely involved in select-
ing defensive response strategies (Qi et al., 2018). This region
contains ‘strategy-selective’ cells that protect against threats, as
reported in an animal study (Halladay and Blair, 2015). Moreover,
the mPFC is related to internally driven strategy shifts (Schuck
et al.,, 2015). Consistent with these studies, subsequent DCM
analyses revealed the involvement of the mPFC in the control
of UDN. Especially, neural dynamics involving the right mPFC
and rlPFC were related to the control of UDN via p(blame|w).
Two regions had bilateral fixed connections, and these connec-
tions were negatively modulated according to the p(blame|w).
Importantly, among these two directional connections, only the
connection from the right rIPFC to the right mPFC was relevant
to the control of UDN, such that the UDN itself was related to
the fixed connection from the right rIPFC to the right mPFC, and
the control of the UDN was related to the modulation of this
connection via p(blame|w).

Based on these results, we propose a possible neural ‘gate’
model regarding the control of the UDN based on p(blame|w) that
fits with the structure of the CUDN model. In the CUDN model,
given a fixed value of the sub-optimal option, (i) uncertainty
increased the probability of choosing the sub-optimal option and
(ii) p(blame|w) decreased such effect of uncertainty (represented
by the decision noise modulation in the model). Similarly, in
the DCM analyses, (i) influence of uncertainty on decision tem-
perature (UDN) was related to the strength of fixed connectivity



from rlPFC to mPFC and (ii) p(blame|w) decreased the connec-
tivity from rlPFC to mPFC, which was related to a p(blame|w)’s
effect on decreasing UDN. (iii) p(blame|w) increased the mPFC
activity. From these information, we focused on how p(blame|w)
information can modulate the connectivity from rlPFC to mPFC
while activating the right mPFC. We suggest that (i) the UDN
information is encoded in the fixed connection from the right
rIPFC to the mPFC. (ii) If p(blame|w) increases, p(blame|w) infor-
mation is conveyed to the right mPFC and activates this region.
(iii) Using this p(blame|w) information, the mPFC regulates the
flow from the right rIPFC to the mPFC to control the UDN. This
gate model could explain the concurrent activation of the mPFC
and the negative modulation of the connection from the right
rIPFC and the mPFC based on p(blame|w). This gate model not
only corroborates our behavioural and fMRI analyses but also
is consistent with previous studies suggesting that the mPFC
controls strategic avoidance behaviour under threat (Qi et al.,
2018). Furthermore, a previous study suggested that the mPFC
controls the slower and deliberate decision-making associated
with difficult choices by modifying the decision threshold of the
drift-diffusion model via an interaction with the sub-thalamic
nucleus (Cavanagh et al., 2011). Especially, increasing of deci-
sion threshold increases the RT and reduces the choice noise
(Reddi et al., 2003), which is effect similar to that of an effect of
p(blame|w). Therefore, it could be possible that a ‘gate’ in the
mPFC controlled by p(blame|w) might correspond to an increase
of decision threshold.

One notable pointis that whether our result could be general-
izable to non-social punishment such as physical pain. Because
we did not perform a similar experiment using a non-social pun-
ishment (e.g. physical pain or monetary loss), it is difficult to
determine whether this effect is universal to all types of pun-
ishment or specific to blame. However, the results of this study
allow us to infer the similarity and dissimilarity of the blame
with other non-social stimuli. For example, if the expectation
of blame is similar to that of loss, we would expect that the
p(blame|w) would contribute as a negative value; however, this
result was not the case in the behavioural modelling section.
Furthermore, previous studies have shown that physical and
social pain are similar in both emotional response and saliency
as well as share a similar neural representation (Eisenberger,
2012). Moreover, we observed a similar between updating blame
expectation and updating of physical pain expectation, which
we discussed in the above section (Roy et al., 2014). Therefore,
we hypothesize that the effect of expecting blame might be more
similar to that of expecting physical pain than to that of expect-
ing a monetary loss. However, this hypothesis is only specula-
tive, and an experiment using non-social stimuli might help us
to identify both the similar and different neural and behaviour
mechanisms that underlie the optimization of behaviour under
social and non-social threats. Finally, one should note that one
limitation of our computational modelling was that the result
was susceptible to the selection of prior parameters, which could
be resulted from the complexity of the CUDN model.

In conclusion, we identified one strategy for optimizing
uncertain decision-making under a threat and the under-
lying neural mechanism. Because there was no benefit of
the sub-optimal choice in our task, the suppression of UDN
under the blame expectation helped participants to make bet-
ter decisions in those situations, and this phenomenon was
successfully modelled using the CUDN model. On the other
hand, an expectation of being blamed deteriorated partici-
pants’ mood. The implementation of this behavioural opti-
mization strategy was related to the suppression of effective
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connectivity from the right rIPFC to the right mPFC as p(blame|w)
increased. These results added one novel neural mechanism of
a brain region related to processing threat that actually inter-
acted with other decision-making-related regions to avoid a
threatening outcome.

Because we addressed only one optimization mechanism
under particular conditions, where directed exploration is
absent or minimal, an extension of our research to determine
how directed exploration is influenced in this situation would
be interesting. Based on recent findings that people became
more ‘myopic’ under the threat (Korn and Bach, 2019), we spec-
ulate that directed exploration would also be reduced by blame
expectation and it could explain reduced creativity under the
threat. Finally, from the perspective of computational psychia-
try, an investigation of the optimization behaviour of our task
in patients with psychiatric conditions, such as autism and psy-
chopathologies, would be interesting to quantify their lack of an
ability to expect social responses and utilize adaptive behaviours
(Sevgi et al., 2016).
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