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Abstract

Antibody responses are important in the control of viral respiratory infection in the human host.

What is not clear for SARS-CoV-2 is how rapidly this response occurs, or when antibodies

with protective capability evolve. Hence, defining the events of SARS-CoV-2 seroconversion

and the time frame for the development of antibodies with protective potential may help to

explain the different clinical presentations of COVID-19. Furthermore, accurate descriptions of

seroconversion are needed to inform the best use of serological assays for diagnostic testing

and serosurveillance studies. Here, we describe the humoral responses in a cohort of hospital-

ised COVID-19 patients (n = 19) shortly following the onset of symptoms. Commercial and ‘in-

house’ serological assays were used to measure IgG antibodies against different SARS-CoV-

2 structural antigens–Spike (S) S1 sub-unit and Nucleocapsid protein (NP)–and to assess the

potential for virus neutralisation mediated specifically by inhibition of binding between the viral

attachment protein (S protein) and cognate receptor (ACE-2). Antibody response kinetics var-

ied amongst the cohort, with patients seroconverting within 1 week, between 1–2 weeks, or

after 2 weeks, following symptom onset. Anti-NP IgG responses were generally detected ear-

lier, but reached maximum levels slower, than anti-S1 IgG responses. The earliest IgG anti-

bodies produced by all patients included those that recognised the S protein receptor-binding

domain (RBD) and were capable of inhibiting binding to ACE-2. These data revealed events

and patterns of SARS-CoV-2 seroconversion that may be important predictors of the outcome

of infection and guide the delivery of clinical services in the COVID-19 response.

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China,

in late 2019, followed by rapid global spread with coronavirus-disease-2019 (COVID-19)

declared a pandemic on 11th March 2020 [1, 2]. As of 30th October 2020, 44,592,789

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245382 January 26, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Murrell I, Forde D, Zelek W, Tyson L,

Chichester L, Palmer N, et al. (2021) Temporal

development and neutralising potential of

antibodies against SARS-CoV-2 in hospitalised

COVID-19 patients: An observational cohort study.

PLoS ONE 16(1): e0245382. https://doi.org/

10.1371/journal.pone.0245382

Editor: Theerapong Krajaejun, Ramathibodi

Hospital, Mahidol University, THAILAND

Received: August 20, 2020

Accepted: December 29, 2020

Published: January 26, 2021

Copyright: © 2021 Murrell et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This study was conducted as a clinical

service development exercise and funded by the

Welsh Assembly Government (WAG) COVID

response funds.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5601-766X
https://doi.org/10.1371/journal.pone.0245382
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245382&domain=pdf&date_stamp=2021-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245382&domain=pdf&date_stamp=2021-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245382&domain=pdf&date_stamp=2021-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245382&domain=pdf&date_stamp=2021-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245382&domain=pdf&date_stamp=2021-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245382&domain=pdf&date_stamp=2021-01-26
https://doi.org/10.1371/journal.pone.0245382
https://doi.org/10.1371/journal.pone.0245382
http://creativecommons.org/licenses/by/4.0/


laboratory-confirmed cases and 1,175,533 deaths globally have been reported to WHO [3].

Due to the recent emergence of this virus, there exist substantial gaps in knowledge of the

interactions between SARS-CoV-2 and the human host. In particular, greater understanding

of immune responses to SARS-CoV-2 is required to reveal predictors to the clinical outcome

of infection, and to inform strategies for the management of patients and prevention of

onward transmission. Importantly, correlates of immune control will also guide the develop-

ment and assessment of candidate vaccines.

SARS-CoV-2 belongs to the Coronaviridae family of single-stranded, positive-sensed RNA

viruses, and is the seventh member that causes infection in humans [2, 4]. Four human coro-

naviruses (hCoVs)—hCoV-229E, hCoV-OC3, hCoV-NL63, and hCoV-HKU1—circulate

globally and are associated with seasonal mild respiratory infection [5–7]. Two coronaviruses

are associated with more severe infection; MERS-CoV that remains largely a zoonotic infec-

tion associated primarily with exposure to camels, and SARS-CoV that emerged in 2002,

though was eliminated in 2003 following concerted global efforts [8–10]. The clinical presenta-

tions of SARS-CoV-2 range in severity, from mild or even asymptomatic, to severe disease that

can include pneumonia, bronchitis, and acute respiratory distress syndrome (ARDS) [11].

Compared to SARS-CoV and MERS-CoV, SARS-CoV-2 has a lower case-fatality rate, yet

more efficient person-to-person transmission.

Immune responses to coronaviruses include the generation of antibodies against viral struc-

tural proteins, with nucleocapsid protein (NP) and spike glycoprotein (S) being the dominant

antigens and principal targets for SARS-CoV-2 serological assays [12, 13]. Importantly, the S

glycoprotein has a dual role as a viral attachment protein (VAP) and fusion protein, facilitating

virus binding and entry via the angiotensin-converting enzyme 2 (ACE-2) found on epithelial

cells lining the upper respiratory tract, lungs and gastric system [14–19]. Interactions with

ACE-2 are mediated by the receptor-binding domain (RBD) located in the S1 sub-unit of the S

protein, and antibodies specific for epitopes within the RBD contribute to the neutralisation of

SARS-CoV-2 [20–23]. The robust neutralising effect of these antibodies impedes virus replica-

tion and plays a vital role in reducing viral loads and subsequent clearance of infection [24].

The timescale between the onset of symptoms and production of anti-SARS-CoV-2 anti-

bodies (seroconversion) has been described to vary from person-to-person, likely influenced

by original inoculation dose and disease severity [24–27]. Prior to the production of protective

antibodies, however, virus replication may occur unchallenged, with onward transmission

more likely to occur [28, 29]. Hence, clearly defining the timescale for the development of anti-

bodies with protective potential will be critical to inform strategies for successful intervention.

We describe the humoral immune responses to SARS-CoV-2 seroconversion amongst a

cohort of hospitalised COVID-19 patients from whom serial sera had been collected early fol-

lowing diagnosis. This was achieved using a combination of commercial and ‘in-house’ sero-

logical assays targeting NP and S protein S1 sub-unit, and specifically the RBD of S protein. To

assess the RBD:ACE-2 binding inhibition potency of the detected antibodies we used a novel

commercial assay utilising a soluble RBD that binds to ACE-2 coated on plates [30]. Data from

this work was used to inform the best use of serological testing in the management of patients,

and to determine the utility of serology in the broader clinical and health protection services

for the COVID-19 response in Wales.

Materials and methods

Ethics statement

The work described was undertaken as part of an evaluation/verification of serological assays

that detect anti-SARS-CoV-2 antibodies for routine service delivery, and as such, was defined
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by the Cardiff and Vale (CAV) Health board ethics committee as ‘service development’. Ethical

approval and patient consent were not required. The authors did not participate in the collec-

tion of the serum samples. After gathering basic information, including gender, age, known

comorbidities, reported date of onset and outcome, samples were anonymised as part of a sin-

gle panel to test across multiple assays. All testing was conducted retrospectively, and the

results from this study were not used to guide the management of the study cohort patients.

COVID-19+ patient serum samples

Residual serum samples collected from laboratory confirmed (RT-PCR) COVID-19 inpatients

(March to May 2020) were obtained from the Blood Sciences department at the University

Hospital of Wales (UHW), Cardiff, prior to discard.

RBD ELISA and sVNT assay sensitivity and specificity panels

The sensitivity and specificity panels used during optimisation of the SARS-CoV-2 S protein

receptor-binding domain (RBD) ELISA included residual sera previously shown to be positive

(n = 29) or negative (n = 30) for anti-S1 IgG by the EuroImmun assay.

The specificity panel used for the surrogate virus neutralisation test (sVNT) included resid-

ual serum samples previously shown to be anti-S1 IgG negative (n = 19). To demonstrate the

lack of cross-reactivity with antibodies specific to other coronaviruses, this panel included sera

from patients with recent seasonal-hCoV infection (n = 10); these were collected at least 14

days following RT-PCR confirmation of seasonal hCoV infection. All four seasonal coronavi-

ruses were represented (NL63 n = 3, HKU1 n = 2, OC43 n = 4, 229E n = 1). In all cases, SARS-

CoV-2 was ruled out by RT-PCR.

Serological testing for IgG specific for the major SARS-CoV-2 antigens

Detection of IgG antibodies against the major SARS-CoV-2 structural protein antigens was

performed using CE-marked assays verified as suitable for diagnostic testing as part of the rou-

tine serological services offered at Wales Specialist Virology Centre (WSVC) [31].

SARS-CoV-2 nucleocapsid protein (NP) CMIA. Antibodies against the SARS-CoV-2

nucleocapsid protein (NP) were detected by the Abbott IgG chemiluminescent micro-particle

immunoassay (CMIA) on the fully automated, random-access, Abbott Architect platform

(Abbott, Maidenhead, UK). This assay displayed 90.24% sensitivity (95% CI: 75.20–97.06) and

100% specificity (95% CI: 95.20–100) during verification at WSVC.

SARS-CoV-2 spike (S) protein S1 sub-unit ELISA. Antibodies against the SARS-CoV-2

spike (S) protein S1 sub-unit were detected by the EuroImmun IgG ELISA (EuroImmun AG,

Lubeck, Germany) using the DS2 plate auto-analyser (Dynex Technologies Ltd, Worthing,

UK). This assay displayed 87.8% sensitivity (95% CI: 73.80–95.92) and 100% specificity (95%

CI: 88.43–100) during verification at WSVC.

SARS-CoV-2 S protein receptor-binding domain (RBD) ELISA

Antibodies against the SARS-CoV-2 S protein RBD were detected by an ‘in-house’ direct

ELISA based on a published method [32, 33]. Maxisorp (Nunc, Loughborough, UK) 96-well

plates were coated with RBD protein (2 μg/mL) in bicarbonate buffer (pH 9.6) at 4˚C over-

night. On the day of assay, wells were blocked with 3% (w/v) non-fat dried milk powder

(Sigma Aldrich, # 70166-500G) in phosphate-buffered saline containing 0.1% Tween 20

(PBS-T) for 1 hour (hr) at room temperature (RT). Dilutions of patient sera (1 in 50 in 1%

Milk PBS-T) were added to wells and incubated for antibody:RBD binding to occur (2 hr, RT).
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After washing with PBS-T, bound antibody was detected with secondary antibody (donkey

anti-human IgG F(ab’)2-horseradish peroxidase (HRP); #709-036-149, Jackson ImmunoRe-

search, Ely, UK; 1 hr RT), with reactions developed using O-phenylenediamine dihydrochlor-

ide (OPD, SIGMAFASTTM; Sigma-Aldrich, # P9187-50SET). Absorbance (OD 492 nm) was

measured in each well. Then mean background signal from two ‘blank’ wells was subtracted

from the sample signals reported. A cut-off of 0.7 OD was applied to distinguish negative/posi-

tive seroreactivity reported by the RBD ELISA.

SARS-CoV-2 RBD:ACE-2 binding inhibition

The RBD:ACE-2 binding inhibition potency of serum samples was investigated by a plate-

based SARS-CoV-2 surrogate virus neutralising test (sVNT) (GenScript, New Jersey, USA). In

brief, serum samples were mixed with soluble SARS-CoV-2 RBD-horse-radish peroxidase con-

jugates (sRBD-HRP) and incubated for antibody:sRBD-HRP binding to occur. Mixtures were

then added to wells coated with ACE-2, and plates were further incubated for sRBD-HRP:

ACE-2 binding to occur. Unbound sRBD-HRP was washed from the wells, and reactions

were developed with 3,3’,5,5’-tetramtheylnezdinehttps://en.wikipedia.org/wiki/3,3%27,5,5%

27-Tetramethylbenzidine (TMB). Absorbance (OD 450 nm) was measured in each well. The

percent (%) sRBD-HRP:ACE-2 binding inhibition was calculated as:

1 �
Sample OD

negative control OD

� �� �

X 100

An ‘in-house’ determined cut-off of 25% RBD:ACE-2 binding inhibition was applied to

sVNT assays.

Statistical analysis

Statistical analyses were performed in Prism v7 (Graphpad). Best-fit curve interpolation analy-

sis was performed by sigmoidal 4PL regression, with 95% CI determined from the mean sig-

nals. Seroconversion detection rates were analysed by Kaplan-Meier plots. For correlation

analyses, data were first checked for Gaussian distribution by D’Agostino and Pearson’s nor-

mality test, before performance of either Pearson’s parametric or Spearmans’s non-parametric

correlation test. The significance of any observed correlation was reported by two-tailed p test.

Results

Study cohort

Patients were recruited to the study cohort in a random, non-biased approach, based solely

on the availability of sequential sera spanning days 7–14 after laboratory confirmation (by

RT-PCR) of SARS-CoV-2. Initially, 21 patients were identified. Symptom onset dates (set as

day 0) were used to construct infection course timelines for each patient. However, these

details were not available for two patients who were subsequently excluded.

Demographic characteristics of the patient cohort are described in Table 1. Eleven (58%) of

the 19 of the patients were female, eight (42%) were male, and mean age was 70 years. The

majority of patients (84%) had clinically relevant co-morbidities (described in S1 Table). The

mean duration of inpatient stay was 29�5 days, with seven (37%) patients requiring admission

to the critical care unit (CCU); four of which were male (50% of all male patients) compared to

three female (~27% of all female patients). Three patients died (two males, one female) giving

an overall mortality rate of 16% amongst the patient cohort.
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Temporal development of anti-S protein S1 sub-unit and anti-nucleocapsid

protein (NP) IgG antibodies following the onset of COVID-19 symptoms

Both commercial assays used to explore anti-S1 IgG and anti-NP IgG are described as semi-

quantitative. Thus, whilst no titres are reported, antibody levels could be inferred by the degree

of reactivity observed (reported as ratios of sample/calibrator read-outs). This was exploited to

determine the temporal development of antibody responses against the respective antigens.

Anti-S1 IgG seroconversion was observed for 17/19 patients, though occurring with notice-

ably variable kinetics (Fig 1A). For four patients, measurable anti-S1 IgG developed within 7

days post symptom onset (pso), whilst for seven patients it clearly occurred between 7–14

days. Strikingly, the anti-S1 IgG response in patient #1 that became measurable between days

7–14 pso did not progress in the same way as seen for all other patients. For patient #15, mea-

surable anti-S1 IgG developed between days 6–10 pso. It was impossible to determine when

this seroconversion occurred in five of the patients, due to sera being collected later relative to

symptom onset dates and seroreactivity in the very first samples. No anti-S1 IgG response was

observed for patients #7 or #19. Best-fit curves (Fig 1B) and heat-maps (Fig 1C) illustrate the

different anti-S1 IgG evolution kinetics amongst the cohort.

Table 1. Baseline characteristics of the cohort patients.

Gender

(M/Fa)

Age

(years)

Co-morbid

(Y/N b)

Inpatient duration

(days)

CCUc admission

(Y/N b)

Mortality

(Y/N b)

Patient 1 M 78 Y 50 N N

Patient 2 M 72 Y 17 N N

Patient 3 M 68 Y 20 Y Y

Patient 4 F 65 Y 30 Y N

Patient 5 M 65 Y 41 N N

Patient 6 F 62 Y 19 Y N

Patient 7 F 86 Y 65 N N

Patient 8 M 59 Y 26 Y Y

Patient 9 M 32 N 25 Y N

Patient 10 F 52 Y 35 Y Y

Patient 11 M 34 Y 17 Y N

Patient 12 F 78 Y 36 N N

Patient 13 F 86 N 27 N N

Patient 14 F 91 Y 25 N N

Patient 15 F 88 Y 57 N N

Patient 16 F 75 Y 20 N N

Patient 17 F 93 Y 16 N N

Patient 18 M 78 Y 24 N N

Patient 19 F 72 Y 11 N N

Summary
n(%)d mean(med)e n(%)d mean(mede) n(%)d n(%)d

8(42)/11(58) 70(72) 3(16)/16(84) 29.5 (25) 7(37)/12(63) 3(16)/16(84)

aM = male, F = female
bY = yes, N = no
cCCU = critical care unit
dn(%) = number(percentage)
emed = median

https://doi.org/10.1371/journal.pone.0245382.t001
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Fig 1. Temporal emergence of anti-S1 and anti-NP IgG amongst the cohort members. Serum samples collected

from the cohort members over time were analysed for IgG against the major SARS-CoV-2 antigens. (A) Individual

time course data for anti-S1 IgG emergence, and (B) best-fit curves for anti-S1 IgG responses occurring after< 7 days

or between 7–14 days pso. Cut-offs for negative (ratio 0.8) and positive (ratio 1.1) seroreactivity in the EuroImmun

assay are depicted by solid red line and dashed red line, respectively. (C) Data from A presented as a heat-map. (D—F)

As in A-C, but for anti-NP IgG emergence. The cut-off (ratio 1.4) for negative/positive seroreactivity in the Abbott

assay depicted in solid red line. Patient #1 was considered an outlier and was therefore excluded from all best-fit curve

analyses. In B and E—dashed trend lines indicate 95% CI ranges; and r2 values describe tightness of fit. In C and E—‘?’

indicates undetermined seroconversion time frame. Kaplan-Meier curves comparing the seroconversion detection by

the EuroImmun and Abbott assays amongst (G) the seroconverted, (H) those where seroconversion was observed, and

(I) all cohort members combined.

https://doi.org/10.1371/journal.pone.0245382.g001
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Similar patterns were observed for anti-NP IgG seroconversion (Fig 1D). Patients with

rapid anti-S1 IgG responses each developed measurable anti-NP IgG within 7 days pso. Patient

#1 also seroconverted to anti-NP IgG within 7 days (earlier than anti-S1 IgG), but this response

too demonstrated stunted progression. The majority of the remaining patients with later anti-

S IgG responses also produced anti-NP IgG slightly earlier, yet still first detectable after 7 days.

In contrast, anti-NP IgG was detected later compared to anti-S IgG for patient #13. Interest-

ingly, in seven patients, including all four rapid seroconverts, anti-NP IgG levels decreased as

infection time courses progressed. Of note, whilst no anti-S1 IgG response was seen for patient

#7, anti-NP IgG was detected late into the infection time course. No anti-NP IgG seroconver-

sion was observed for patient #19. Best-fit curves (Fig 1E) and heat-maps (Fig 1F) illustrate the

different anti-NP IgG kinetics.

In patients with earlier antibody responses, maximum anti-S1 IgG assay signals were

achieved on average by day 10 pso (Fig 1B), whilst maximum anti-NP IgG signals were

achieved by day 16 (Fig E). In patients with delayed responses, anti-S1 IgG became detectable

on average around day 11 pso with maximum signals after day 21 (Fig 1B), whilst anti-NP IgG

became detectable around day 10 with maximal signals after day 20 (Fig 1E). Overall, serocon-

version occurred more rapidly to NP than S1, and this was most apparent in the patients with

delayed responses (Fig 1G–1I).

Evolution of anti-RBD IgG following the onset of COVID-19 symptoms

Preliminary optimisation work to determine a suitable cut-off for the RBD ELISA assay

involved exploring the signals reported for sera shown to be negative (n = 30) or positive

(n = 29) for anti-S1 IgG; this was performed over two independent runs. An appropriate cut-

off was initially determined as the mean signal from the S1 IgG negative samples + 3SD, calcu-

lated as 0.5–0.6 OD units over the repeat runs. This cut-off was further adjusted to 0.7 OD

units in favour of assay specificity (100%) over sensitivity (96.55–100%) (Fig 2A).

Under these optimised assay parameters, the anti-RBD IgG responses amongst the cohort

closely matched the previously seen anti-S1 IgG responses (Fig 2B). The patients who devel-

oped measurable anti-S1 IgG within 7 days pso demonstrated equally rapid anti-RBD IgG

kinetics, whilst for the majority of patients with anti-S1 IgG first measurable after day 7, this

was also mirrored by equally delayed anti-RBD IgG kinetics. Noteworthy, anti-RBD IgG was

detectable earlier (<7 days pso) in patients #1 and #15 compared to anti-S1 IgG (> 7 days).

Furthermore, the anti-RBD-IgG response in patient #1 evolved slowly, similarly to anti-S1 IgG

and anti-NP IgG. Patient #18 also had an earlier anti-RBD IgG response compared to anti-S1

IgG, though still detectable only after 7 days. Only patient #19 developed no measurable anti-

RBD IgG, concordant with their anti-S1 IgG response.

Best-fit curve analysis (Fig 2C) and heat-maps (Fig 2D) revealed a good concordance

between anti-RBD development and the previously observed S1-IgG kinetics.

RBD:ACE-2 binding inhibition capacity of antibodies produced during

SARS-CoV-2 seroconversion

Verification of the commercial surrogate virus neutralisation test (sVNT) specificity was based

on an assessment of the background RBD:ACE-2 inhibition potency of samples previously

shown to be negative for anti-S1 IgG (n = 19). Under the manufacturer’s suggested assay cut-

off of 20% RBD:ACE-2 binding inhibition, no positive results were produced for any pan-

hCoV seronegative sample (n = 9) produced, nor nine sera from seasonal hCoV positive

patients (n = 10) (Fig 3A). However, low-level positivity was seen for one seasonal hCoV

serum sample, and specificity of the sVNT was therefore estimated at 94.74%. An ‘in-house’
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Fig 2. Temporal emergence of anti-RBD IgG antibodies. Serum samples collected from the cohort members over

time were analysed for anti-RBD IgG by an ‘in-house’ ELISA. (A) The anti-RBD IgG ELISA was optimised by assaying

sera previously shown to be either positive (n = 29) or negative (n = 30) for anti-S1 IgG by the EuroImmun assay; each

serum was assayed in duplicate (means are depicted), and the optimisation was based on data from two separate runs.

The calculated sensitivity and specificity of the anti-RBD IgG ELISA are described in the table. (B) Individual time-

course data and (C) best-fit curves for the emergence of RBD-binding IgG occurring after< 7 days or between 7–14

days pso. In solid red line is the cut-off (0.7) for negative/positive seroreactivity. Patients #1 and #15 were considered

outliers and were therefore excluded from best-fit curve analyses. In C–dashed lines indicate 95% CI ranges; r2 values

describe tightness of fit. (D) Data from B presented as a heat-map. ‘?’ indicates undetermined seroconversion time

frame.

https://doi.org/10.1371/journal.pone.0245382.g002
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Fig 3. RBD:ACE-2 binding inhibition potency of antibodies produced over seroconversion. Serum samples

collected from the cohort members following the onset of symptoms were analysed for RBD:ACE-2 binding inhibition

potency by the GenScript surrogate Virus Neutralisation Test (sVNT). (A) An assessment of the assay specificity was

conducted using hCoV seronegative sera (n = 9) and seasonal hCoV sera (n = 10). The calculated sensitivity and

specificity of the anti-RBD IgG ELISA are described in the table. (B) Individual time-course data and (C) best-fit

curves for RBD:ACE-2 inhibition evolving after< 7 days or between 7–14 days pso. In B+C–the manufacturer’s

suggested sVNT assay cut-off (20% sRBD:ACE-2 binding inhibition relative to the negative control) is indicated by

broken red line, and the ‘in-house’ applied cut-off (25%) is indicated by solid red line. Patients #1 and #18 were

considered outliers and were therefore excluded from best-fit curve analyses. In C–dashed lines indicate 95% CI

ranges; r2 values describe tightness of fit. (D) Data from B presented as a heat-map. ‘?’ indicates undetermined

seroconversion time frame.

https://doi.org/10.1371/journal.pone.0245382.g003
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applied cut-off was determined from the mean control signal +3SD and calculated at 24.83%,

and an adjusted cut-off of 25% was applied during testing of the cohort samples in favour of

greater assay specificity (100%). Positive controls supplied with the kit demonstrated >97%

sRBD:ACE-2 binding inhibition over all runs.

Results from sVNT neutralisation assays broadly reflected the anti-RBD IgG responses

(Fig 3B). In most patients who developed detectable anti-RBD IgG within 7 days pso, this was

matched by rapid evolution of antibodies with >90% RBD:ACE-2 binding inhibition potency

within similar time. However, this same robust protective response was not seen for patient

#17 for whom RBD:ACE-2 inhibition potency peaked at ~80%, before a sharp decline

throughout the remaining sample series. The stunted anti-RBD IgG development seen for

patient #1 was matched by slowly evolving RBD:ACE-2 binding inhibition potency that did

not exceed ~85%. For patient #15 who had also demonstrated rapid anti-RBD IgG kinetics,

there was a delay in in the detection of RBD:ACE-2 inhibition. The patients with anti-RBD

IgG response first detected after >7 days pso also displayed delayed RBD:ACE-2 binding inhi-

bition evolution. Interestingly, this inhibition was detected in patients #5, #7 and #18 earlier

than anti-S1 IgG or anti-RBD IgG. Also noteworthy, the samples collected from patient #12

commenced with high blocking ability (>90%), yet this reduced rapidly in sera collected from

day 25 onwards.

On average, sRBD:ACE-2 inhibition potency in those with rapid immune responses

reached maximum measurable levels between day 9–10 pso, whilst for those with delayed

responses, RBD:ACE-2 inhibition evolved from around day 10 and reached maximal levels at

around day 19 (Fig 3C and 3D).

Correlation between the humoral response and RBD:ACE-2 binding

blocking capacity

The different seroconversion markers investigated in this study could each be significantly cor-

related with RBD:ACE-2 inhibition potency in the majority of individual patients (S1, S2 and

S3 Figs). Following exclusion of patients #12 and #17 that each displayed dramatic loss of

RBD:ACE-2 binding inhibition potency as their respective infection time-courses progressed,

the strongest association across the remaining cohort members was seen for anti-RBD IgG,

followed by anti-NP IgG and then anti-S1 IgG (Fig 4A–4C).

To explore any difference in these correlations according to response kinetics, the cohort

patients were assigned to groups based on conclusive evidence of early seroconversion (posi-

tivity for each of anti-S1 IgG, anti-NP IgG, anti-RBD IgG and RBD:ACE-2 inhibition prior to

day 7) (Fig 4D–4F), or delayed seroconversion (positivity in the same assays clearly developing

after 7 days) (Fig 4G–4I). In both the ‘early’ and ‘delayed’ humoral response groups, anti-S1

IgG was best correlated with RBD:ACE-2 inhibition. However, in the ‘early’ responder group,

anti-NP IgG levels were correlated with RBD:ACE-2 binding inhibition potency more signifi-

cantly than anti-RBD IgG levels, yet in the delayed responder group, anti-RBD IgG levels were

correlated more significantly than anti-NP IgG levels.

Discussion

COVID-19 reached pandemic level soon after the emergence of SARS-CoV-2, and currently

remains the priority healthcare challenge globally. Although incidence has reduced since the

implementation of social restrictions, future waves of infection are anticipated as these mea-

sures are inevitably eased [34]. Hence, there is an urgent need to understand immune

responses to SARS-CoV-2. The findings we describe contribute to the growing data regarding
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humoral responses to SARS-CoV-2 and provide novel insights into the protective potential of

antibodies produced during seroconversion.

The cohort patients in our study appeared to fall within distinct temporal humoral

responder categories, with very early responses seen in some, through to very late responses

Fig 4. Correlates of RBD:ACE-2 binding inhibition potency. The relationship between anti-S1 IgG, anti-NP IgG or anti-RBD IgG levels and sRBD:

ACE-2 inhibition potency was investigated by Pearson’s correlation test (when data displayed Gaussian distribution) or by Spearman’s nonparametric

correlation test (when data were not normally distributed), with the significance of any correlation reported by two-tailed p test. (A-C) Correlation

between anti-S1 IgG, anti-NP IgG and anti-RBD IgG to RBD:ACE-2 binding inhibition potency across the cohort (excluding patients 12 and 17). (D-E

and F-H) As in A-C, though describing correlates specifically for cohort members that seroconverted with 7 days pso, or after 7 days pso, respectively.

Abbreviations/symbols: r describes correlate coefficients; r2 describes the coefficient of determination (for Pearson’s correlation test only); ����

p� 0.0001.

https://doi.org/10.1371/journal.pone.0245382.g004
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seen in others. However, major limitations in this categorisation are that the different serocon-

version time frames could simply reflect inaccuracies in reported dates of symptom onset, or

differences in incubation period for each infection (estimated on average 5 days, but anywhere

between 2–14 days) [35]. Nonetheless, similar variation in COVID-19 humoral response kinet-

ics have been described elsewhere [25–27, 36]. There exist few reports describing humoral-

response kinetics during seroconversion to seasonal coronaviruses. One study, based on the

challenge of individuals with hCoV-229E, described antibody emergence on average around

day 8 post exposure and peaking at day 14 [37]. For SARS-CoV and MERS-CoV infection, IgG

seroconversion is reported anywhere between one to several weeks after symptom onset [38–

42]; similar to what was observed in our cohort.

One potential explanation for the apparent ‘early’ and ‘late’ responses in this study may be

that the assays used target IgG, whilst Long and co-workers previously described alternative

SARS-CoV-2 seroconversion dominated by IgM [26]. It is therefore feasible that ‘early’ and

‘late’ immune responses described here reflect IgG and IgM dominant seroconversion, respec-

tively. The assays that we utilised appeared mostly un-affected by cross-reactive antibodies

from seasonal hCoV infection, albeit based on a relatively small panel. Many published investi-

gations have reported only little cross-reactivity for antibodies against NP, and negligible-to-

zero cross-reactivity for the spike protein S1 sub-unit and RBD [43, 44]. However, one study

does report cross-reactivity of antibodies recognising assembled S protein trimers, though the

presence of the S protein S2 sub-unit that is more conserved amongst different coronaviruses

compared to the S1 sub-unit is thought to be responsible [45]. In light of this, it seems most

plausible that any cross-reactive antibodies may have impacted anti-NP IgG assays, but not

anti-S1 IgG, anti-RBD IgG, or RBD:ACE-2 inhibition assays. The low-level RBD:ACE-2 inhi-

bition displayed by hCoV-NL63+ serum in the sVNT is curious in this regard. However, this

serum was from a patient with acute lymphoblastic leukaemia (ALL), and it is possible that

non-specific reactivity detected was due to deranged haematological features of the donor.

Earlier detection of anti-NP IgG implies this may be the most suitable seroconversion

marker for diagnostic and serosurveillance purposes, and mirrors observations reported for

SARS-CoV-2, and also SARS-CoV [36, 46]. Aside from different analytical sensitivities of the

assays used [28], one possibility for later anti-S1 IgG detection is that the extensive glycosyla-

tion of S1 antigen may impede antibody responses. This may also explain the more sensitive

detection of anti-RBD IgG compared to anti-S1 IgG, since the RBD is less densely glycosylated

[47]. Furthermore, S1 sub-unit exists in ‘up/open’ and ‘down/closed’ conformations in the S

protein trimer incorporated into virions [48–50], and antibodies recognising epitopes in alter-

native confirmations are described [51]. Thus, the conformation of S1 sub-unit used in the

EuroImmun assay may also restrict accessibility to epitopes targeted during natural infection.

Still, the concurrent detection of anti-RBD IgG that may be protective role is a clear benefit of

anti-S1 IgG assay. Furthermore, anti-S1 IgG levels appeared more stable than anti-NP IgG,

and thus may have a broader window for detection.

The different seroconversion markers assayed could be correlated with RBD:ACE-2 inhibi-

tion potency, implying that each has potential utility as prognostic markers as our understand-

ing of SARS-CoV-2 immune control increases. Most curious is the correlation with anti-NP

IgG levels. The potent humoral antigenicity of SARS-CoV NP has previously been hypothe-

sised, with NP peptides predicted to be available for B cell activation following release from

infected cells during cellular immune responses [52]. However, the functional role of anti-NP

IgG is unclear, with any contribution to neutralisation unlikely, given that NP is contained

internally within virions. Instead, roles for anti-NP IgG by Fc-mediated mechanisms have

been speculated. Hence, correlations between anti-NP IgG and RBD:ACE-2 binding inhibition

likely reflects an indirect relationship between different humoral response elements developing
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in parallel. With this in mind, it is intriguing that the two patients in whom RBD:ACE-2 bind-

ing inhibition potency decreased also had concomitant decreases in anti-NP IgG levels. Corre-

lations between RBD:ACE-2 inhibition and anti-S1 IgG or anti-RBD IgG levels are perhaps

easier to consider, since anti-S1 IgG encompass anti-RBD IgG, a subset of which inhibit bind-

ing to ACE-2. Investigations exploring concordance between the EuroImmun IgG assay, anti-

RBD IgG ELISA, and the sVNT assay have previously been reported [53, 54]. Bond et al

reported broadly equivalent sensitivity between the EuroImmun assay (93.8%) and sVNT

(91.4%) using sera collected >14 days pso, whilst McGregor et al reported perfect concordance

with anti-RBD ELISA and sVNT positivity using sera collected > 7 days pso. Direct compari-

son to our findings is difficult, since the exact time points pso at which samples used in these

works were acquired are not available. Nevertheless, high concordance between these assays is

reported here, and any discordance observed in our studies was confined to the primary sam-

ples in any given series.

Our descriptions of SARS-CoV-2 seroconversion build on those of To and co-workers [25],

but reveal new insights into the temporal development of antibodies that could contribute to

neutralisation. The demonstration that anti-RBD IgG with neutralising potential develop early

after the onset of symptoms is encouraging, and suggests immune control may commence

soon following infection. Indeed, the early emergence of neutralising potency following symp-

tom onset has been described elsewhere [55]. However, whilst our investigations of neutralis-

ing potential focussed specifically on antibodies that inhibit RBD and ACE-2 binding, not all

neutralising antibodies will be revealed by this approach. A recently described mechanism of

SARS-CoV-2 neutralisation involves antibodies cross-linking epitopes of the S1 sub-unit

‘down/closed’ conformation, thereby locking the S-protein trimer in a prefusion state, and

ultimately preventing RBD:ACE-2 interactions [51]. The RBD fragments used in the sVNT

may be refractory to ‘prefusion locking’, hence there is obvious scope to underreport the neu-

tralisation potential of sera by the sVNT. Clearly, correlates of neutralisation in the context of

live virus will undoubtedly be more meaningful.

The focus on anti-SARS-CoV-2 neutralising antibodies (nAbs) is borne from understand-

ing of the mechanisms of immune control against other coronaviruses [56]. Two protective

activities of nAbs are suggested: i) the prevention of cell-entry to impede intra-host spread and

pathogenesis; and ii) interference in the cell-entry of shed virus to reduce inter-host transmis-

sion. Considering the protective role of nAbs, the decline in neutralising potency observed for

two of the cohort members raises concerns regarding the longevity of antibody-mediated

immunity to SARS-CoV-2. There are seemingly conflicting reports regarding the longevity of

anti-SARS-CoV-2 antibodies, with waning of IgG levels during the early convalescent phase

described for both symptomatic and asymptomatic individuals [57], compared to the preserva-

tion of neutralising antibodies for up to 3 months in mild/moderate COVID-19 patients [58].

Hence, there is a need to address this issue in longitudinal studies to predict whether SARS-

CoV-2 will become a recurring public health challenge going forward and in the post vaccine

era.

Supporting information

S1 Raw data.

(ZIP)

S1 Fig. Correlates of RBD:ACE-2 binding inhibition amongst cohort members demon-

strating rapid humoral responses (<7 days). The relationship between anti-S1 IgG, anti-NP

IgG or anti-RBD IgG development and sRBD:ACE-2 inhibition potency was investigated by

Pearson’s correlation test and two-tailed p test. All y-axis are % RBD:ACE-2 inhibition
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reported by the sVNT assay, whilst x-axis are ratios for EuroImmun assay and Abbott assay, or

OD readouts from the RBD IgG ELISA assay. r2 describes correlation coefficients. Abbrevia-

tions/symbols: ns = no significance; � = p� 0.05; �� = p� 0.01; ��� p� 0.001; ���� p� 0.0001.

(TIF)

S2 Fig. Correlates of RBD:ACE-2 binding inhibition amongst cohort members with

delayed humoral responses (between 7–14 days). Correlations between anti-S1 IgG, anti-NP

IgG or anti-RBD IgG development and sRBD:ACE-2 inhibition evolution was investigated by

Pearson’s correlation test and two-tailed p test. All y-axis are % RBD:ACE-2 blockage from the

sVNT assay, whilst x-axis are ratios for EuroImmun assay and Abbott assay, or OD readouts

from the RBD IgG ELISA assay. r2 describes correlation coefficients. Abbreviations/symbols:

ns = no significance; � = p� 0.05; �� = p� 0.01; ��� p� 0.001; ���� p� 0.0001.

(TIF)

S3 Fig. Correlates of RBD:ACE-2 inhibition amongst the remaining cohort members. The

relationship between anti-S1 IgG, anti-NP IgG or anti-RBD IgG development and sRBD:ACE-

2 inhibition potency was investigated by Pearson’s correlation test and two-tailed p test. All y-

axis are % RBD:ACE-2 blockage from the sVNT assay, whilst x-axis are ratios for EuroImmun

assay and Abbott assay, or OD readouts from the RBD IgG ELISA assay. r2 describes correla-

tion coefficients. Abbreviations/symbols: ns = no significance; � = p� 0.05; �� = p� 0.01; ���

p� 0.001; ���� p� 0.0001.

(TIF)

S1 Table. Documented comorbidities for the cohort members. DM—Diabetes Mellitus;

CVD—Cardiovascular Disease; PVD—Peripheral Vascular Disease; Ca–Cancer; COPD—

Chronic Obstructive Pulmonary Disease; AF—Atrial Fibrillation; HTN–Hypertension; MI—

Myocardial Infarct; HIV—Human Immunodeficiency Virus; CLL—Chronic Lymphoid Leu-

kaemia; IPF—Idiopathic Pulmonary Fibrosis; CKD—Chronic Kidney Disease. aY = yes,

N = no. bn(%)–number(percentage).

(PDF)
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