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Abstract.—Genome sequencing projects routinely generate haploid consensus sequences from diploid genomes, which are
effectively chimeric sequences with the phase at heterozygous sites resolved at random. The impact of phasing errors on
phylogenomic analyses under the multispecies coalescent (MSC) model is largely unknown. Here, we conduct a computer
simulation to evaluate the performance of four phase-resolution strategies (the true phase resolution, the diploid analytical
integration algorithm which averages over all phase resolutions, computational phase resolution using the program PHASE,
and random resolution) on estimation of the species tree and evolutionary parameters in analysis of multilocus genomic
data under the MSC model. We found that species tree estimation is robust to phasing errors when species divergences were
much older than average coalescent times but may be affected by phasing errors when the species tree is shallow. Estimation
of parameters under the MSC model with and without introgression is affected by phasing errors. In particular, random
phase resolution causes serious overestimation of population sizes for modern species and biased estimation of cross-
species introgression probability. In general, the impact of phasing errors is greater when the mutation rate is higher, the
data include more samples per species, and the species tree is shallower with recent divergences. Use of phased sequences
inferred by the PHASE program produced small biases in parameter estimates. We analyze two real data sets, one of
East Asian brown frogs and another of Rocky Mountains chipmunks, to demonstrate that heterozygote phase-resolution
strategies have similar impacts on practical data analyses. We suggest that genome sequencing projects should produce
unphased diploid genotype sequences if fully phased data are too challenging to generate, and avoid haploid consensus
sequences, which have heterozygous sites phased at random. In case the analytical integration algorithm is computationally
unfeasible, computational phasing prior to population genomic analyses is an acceptable alternative. [BPP; introgression;
multispecies coalescent; phase; species tree.]

INTRODUCTION

Next-generation sequencing technologies have
revolutionized population genetics and phylogenetics
by making it affordable to sequence whole genomes
or large portions of the genome, even for nonmodel
organisms. Many phylogenomic studies use the
approach of reduced representation library to maximize
their DNA sequencing efforts on a small subset of the
genome. These strategies can generate thousands of
genomic segments (called loci in this article irrespective
of whether they are protein-coding) with high coverage,
and target sequences can be assembled with confidence.
Examples include restriction site-associated DNA
sequencing (RADseq), which is used frequently to
identify single nucleotide polymorphisms (SNPs)
for population genetic and phylogeographic studies
(Andrews et al. 2016; Leaché and Oaks 2017), although,
it has also been applied to address phylogenetic
questions at deeper timescales (Eaton et al. 2017). A
more common approach for phylogenomic studies
is targeted sequence capture, generating so-called
reduced-representation data sets, with typically longer
sequences for distantly related species than with
RADseq data. Examples include exome sequencing,
ultraconserved elements (UCEs, Faircloth et al. 2012),

anchored hybrid enrichment (AHE, Lemmon et al.
2012), conserved nonexonic elements (CNEEs, Edwards
et al. 2017), or rapidly evolving long exon capture
(RELEC, Karin et al. 2020).

Typical sequencing technologies produce short
fragments of sequenced DNA called “reads” that are
either de novo assembled or mapped to a pre-existing
reference genome. This leads to chromosomal positions
being sequenced a variable number of times across the
genome (usually referred to as the sequencing depth).
A common practice in genome sequencing projects
has been to produce the so-called “haploid consensus
sequence" for a diploid individual, which uses the
most common nucleotide at any heterozygous site to
produce one genomic sequence. Assemblers like Velvet
(Zerbino and Birney 2008), ABySS (Simpson et al. 2009),
and Trinity (Grabherr et al. 2011), pick up only one
of the two nucleotide bases at any heterozygous site
and essentially resolve the phase of heterozygous sites
at random, producing chimeric sequence that may
not exist in nature. Suppose a diploid individual is
heterozygous at two sites in a genomic region, so that
the diploid genotype may be represented Y...R, with two
heterozygous sites Y (for T/C) and R (for A/G) (Fig. 1).
Suppose the reads are 14×T and 6×C at the first site,
and 7×A, 10×G, and 1×T at the second (with the single
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FIGURE 1. Example of heterozygote phase resolution. a) A
hypothetical diploid chromosome with two heterozygous sites (T/C
and A/G). The true haploid genotypes are T...A and C...G. b) Sequence
reads around the two heterozygous sites, assuming that they are far
apart on the chromosome so that they are not present on any single read
(in which case phase would be determined) while they are close enough
to be on one locus. In this case, genome assemblers should produce
the unphased genotype sequence (c), using the IUPAC ambiguity
codes to represent heterozygote sites, but instead they produce the so-
called “haploid consensus sequence” (d), picking up the most common
nucleotide at each heterozygote site (T...G since T and G are by chance
the most common sequence reads at the two sites), which may not
match either of the true haploid sequences. e) Analytical integration
of phase resolution takes the unphased genotype sequences as data
and averages over all possible phase resolutions, weighting each one
appropriately according to their relative likelihood based on the whole
sequence alignment at the locus.

T to be most likely a sequencing error). The haploid
consensus sequence is constructed as T...G. In effect a
heterozygote site with high quality scores for the two
nucleotides is represented as one consensus nucleotide
with a low quality score. Because it is largely pure chance
which of the two nucleotides at a heterozygous site has
the greater number of reads, this strategy is equivalent to
resolving the phase at random and using only one of the
constructed sequences. The resulting haploid consensus
sequence may not be a real biological sequence and
may not represent the biology of the diploid individual.
Besides loss of information, a more serious problem
is that the artifactual phased haploid sequence may
be unusually divergent from other sequences in the
sample, potentially introducing systematic biases in

downstream inference. Currently, constructing true
diploid de novo assemblies is expensive. A sequencing
platform has been developed in combination with
bioinformatic algorithms to determine the true diploid
genome sequence but the strategy still involves high
cost (Weisenfeld et al. 2017). If a read is long and fully
covers a locus, multiple heterozygous sites in the same
locus will be naturally phased. However, if the reads
are short, and the two heterozygous sites do not occur
in the same read, their genotypic phase resolution will
become an issue.

How the heterozygote phase is resolved may have
a significant impact on population genomic and
phylogenomic inference using genomic sequence data.
Phase information is well-known to be important for
relating genotype to phenotype in human disease
mapping (Tewhey et al. 2011). Similarly, Gronau et al.
(2011) found that use of an analytical integration method
(which averages over all possible phase resolutions)
leads to nearly identical performance as the use
of true phase resolutions for estimating population
parameters, and that random phase resolution produced
unreliable estimates. Andermann et al. (2019) developed
a bioinformatics pipeline to recover allelic sequences
from sequence capture data and found it to produce
more accurate estimation of species divergence times
under the MSC model (Rannala and Yang 2003) than
other strategies such as use of consensus haploid
sequences, random phasing, or ambiguity encoding.
Overall little is known about the effects of heterozygote
phase resolution on many inference problems using
multilocus genomic sequence data under the MSC
model, including species tree estimation, estimation
of population sizes and species divergence times, and
inference of cross-species introgression/hybridization.

We have implemented in BPP (Flouri et al. 2018) an
analytical integration algorithm to handle unphased
diploid sequences, developed by Gronau et al. (2011)
in their G-PhoCS program, which is an orthogonal
extension of an earlier version of BPP (Rannala and Yang
2003; Burgess and Yang 2008). Previously, Kuhner and
Felsenstein (2000) implemented an Markov chain Monte
Carlo (MCMC) algorithm to average over different
phase resolutions in the likelihood calculation for
estimating � under the single-population coalescent.
The algorithm was found to mix slowly even for small
data sets. The analytical integration algorithm uses a
data-augmentation strategy, in which the unknown fully
resolved haploid sequences constitute the complete data
or latent variables and enumerates and averages over all
possible phase resolutions, weighting them according
to their likelihoods based on the whole sequence
alignment. For example, if a diploid sequence has two
heterozygous sites, Y...R, the approach will average over
both phased genotypic resolutions: (i) T...A and C...G
versus (ii) T...G and C...A (Fig. 1). Note that there may
be rich information about the phase resolution of any
unphased sequence in an alignment of many sequences,
either from the same species or from different but
closely related species. Consider for example the phase
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resolutions for a human diploid sequence Y...R (Fig. 1). If
we observe in the chimpanzee fully resolved sequences
T...A and C...G (e.g., in an individual homozygous at
both sites, with genotypes T/T...A/A) and never observe
sequences T...G and C...A, then very likely the human
diploid sequence has the haploid genotypes T...A and
C...G, because we assume no recombination within each
locus. Our implementation of the algorithm works with
all four analyses under the MSC model in BPP (Yang 2015;
Flouri et al. 2018; Flouri et al. 2020b), including species
tree estimation (Yang and Rannala 2014; Rannala and
Yang 2017) and species delimitation through Bayesian
model selection (Yang and Rannala 2010; Yang and
Rannala 2014; Leaché et al. 2019). We also implemented
the algorithm under the multispecies-coalescent-with-
introgression (MSci) model (Flouri et al. 2020a).

Here, we use computer simulation to evaluate
different phase-resolution strategies in terms of their
precision and accuracy in Bayesian species tree
estimation under the MSC and in parameter estimation
under both the MSC and MSci models. In addition
to using the true phase resolution, which is generated
during the simulation and is known with certainty,
we also include analytical phase integration (Gronau
et al. 2011; Flouri et al. 2018), phase resolution using
the program PHASE (Stephens et al. 2001; Stephens and
Donnelly 2003), and random resolution. The strategy
of random resolution is largely equivalent to the
common method of using haploid consensus sequences.
The PHASE program was developed for population
data from the same species, but is here applied to
unphased sequences from both within and between
species. We note that a number of computational phasing
algorithms are available (Andres et al. 2007; Browning
and Browning 2011), such as Haplotyper (Niu et al.
2002) and fastPHASE (Scheet and Stephens 2006). These
are mostly developed to improve the computational
efficiency and to handle long sequences (Choi et al. 2018),
and are expected to produce similar results to PHASE in
analysis of short sequences.

MATERIALS AND METHODS

Simulation to Estimate Species Trees
We use the program MCcoal in BPP3.4 (Yang 2015)

or the simulate switch of BPP4.3 (Flouri et al.
2020b) to simulate gene trees and multilocus sequence
data using four fixed species trees for eight species
(Fig. 2a,a′,b,b′). The trees have very short branches,
mimicking challenging species trees generated during
radiative speciation events. In the two deep trees, species
divergences are much older than average coalescent
times (�/2). In the two shallow trees, species divergences
are very recent relative to coalescent times, mimicking
different populations of the same species. Note that in
this study, we make no distinction between species and
populations. The MSC model has two sets of parameters:
the species divergence times (�s) and the population
size parameters (�s). Both are measured by the expected

number of mutations/substitutions per site. For each
species/population, �=4N�, where N is the effective
population size and � is the mutation rate per site per
generation. We consider two mutation rates, with � =
0.001 (low rate) or 0.01 (high rate), respectively, for all
populations on the tree. The species divergence times
(�s) are given as multiples of �. We consider 10, 20, 50,
or 100 loci, with each locus having 500 sites. On average
there should be 0.5 and 5 heterozygous sites between
the two sequences of any individual at the low and
high rates, respectively. We sample S=2 or 4 haploid
sequences (or 1 or 2 diploid individuals) per species at
each locus. Gene trees with branch lengths (coalescent
times) are generated independently among loci using
the MSC density given the species tree and parameters
(Rannala and Yang 2003). The JC model (Jukes and
Cantor 1969) is then used to “evolve” the sequences along
the gene tree to generate the sequence alignments at the
tips of the tree. Analysis of this full data set by BPP is
strategy “F.”

To simulate unphased diploid sequences, two
sequences from the same species are combined into
one diploid sequence, using the International Union
of Pure and Applied Chemistry (IUPAC) ambiguity
characters to represent heterozygous sites (for example,
Y means a T/C heterozygote) (Fig. 1c). The data of
unphased diploid sequences are analyzed using the
diploid or phase option of the BPP program (strategy
“D”), which analytically averages over all possible phase
resolutions (Gronau et al. 2011). With strategy “P,”
we use the program PHASE (Stephens et al. 2001) to
resolve the phase and then analyze the phased sequences
using BPP (with 16 or 32 sequences in the alignment
per locus for S=2 and 4, respectively). Lastly, we use
random phase resolution, referred to as strategy “R.”
The simulation program automatically generates the
sequence alignments for strategies F, D, and R. For
strategy P, we ran PHASE 2.1 (Stephens et al. 2001) to
reconstruct the phased sequences for each locus, and
used the PERL program SeqPhase (Flot 2010) to convert
files.

The number of replicate data sets is 100. With four
trees, two mutation rates (�=0.001 or 0.01), two sampling
configurations (S=2 or 4), four numbers of loci (L=
10,20,50,100), we generated in total 4×2×2×4×100=
6400 data sets, each of which is analyzed using the
four strategies. The BPP program (Flouri et al. 2018) was
used in the analysis. Inverse-gamma priors are assigned
on parameters under the MSC model, with the shape
parameter 3 so that the priors are diffuse and with
the mean to be close to the true value. We use � ∼
IG(3, 0.02) with mean 0.01 and �0 ∼ IG(3, 0.08) with
mean 0.04 for the age of the root of the species tree
for data simulated with the high rate (� = 0.01). For
data of the low rate (� = 0.001), the priors are � ∼
IG(3, 0.002) with mean 0.001 and �0 ∼ IG(3, 0.008) with
mean 0.004. The prior means for �0 are close to the
true values for the deep trees but are larger than the
true values for the shallow trees, although the priors
are diffuse. For species tree estimation, we integrate out
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FIGURE 2. (a and a′) Deep and shallow balanced species trees and b and b′) deep and shallow unbalanced species trees for eight species used
for simulating data under the MSC model. c and c′) Deep and shallow species trees with introgression used to simulate data under the MSci
model. The ages of internal nodes (�s) are shown next to the nodes, with � = 0.01 (high rate) or 0.001 (low rate). The blue indexes at internal
nodes of the tree are used to identify the parameters associated with the ancestral species (e.g., �9 is the age of the root and �9 is the population
size for the root population in a and b).

�s analytically through the use of the conjugate inverse-
gamma priors. We conducted pilot runs to determine the
chain lengths needed for convergence. The final settings
for the MCMC are 20,000 iterations for burn-in, then
taking 2×105 samples, sampling every two iterations.

Strategy P requires running the Bayesian MCMC
program PHASE L times if there are L loci in the data
set, to generate the fully resolved sequence alignments
at the loci. This is somewhat expensive if there is a large
number of loci and the mutation rate is high resulting
in many heterozygous sites at each locus. After the data
sets are generated, the BPP analysis of each data set by
strategies F, P, and R involves about the same amount
of computation. Strategy D is more expensive as the
method averages over all possible phase resolutions,
which may involve likelihood calculation for many site
patterns, especially if there are many sequences per locus
with many heterozygous sites.

For species tree estimation (A01 analysis in Yang 2015),
we calculated the proportion (among the 100 replicates)
with which each node on the true species tree is found

in the maximum a posteriori (MAP) species tree in the
BPP analysis. This is a measure of accuracy since the
MAP tree is the best “point estimate” of the species tree
(Rannala and Yang 1996). We examined the size and
coverage probability of the 95% credibility set of species
trees. The coverage probability is the proportion among
the 100 replicate data sets in which the credibility set
includes the true species tree. The size of the set indicates
the precision or power of the method, but the method
is considered reliable only if the coverage probability
exceeds the nominal 95%.

Simulation to Estimate Parameters under the MSC Model
The same data simulated under the MSC model for

species tree estimation are analyzed using the four
phase-resolution strategies to estimate parameters in the
MSC model (�s and �s), with the species tree fixed.
This is the A00 analysis in Yang (2015). We calculated
the posterior means and the 95% HPD CI intervals for
each parameter and examine the relative root mean
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square error (rRMSE), using the posterior means as point
estimates. This is defined as

rRMSE= 1
ω

⎡
⎣ 1

R

R∑
i=1

(ω̂i −ω)2

⎤
⎦

1
2

, (1)

where ω is the true value of any parameter, and ω̂i its
estimate (posterior mean) in the ith replicate data set,
with i=1,...,R over the R=100 replicates. For example,
rRMSE = 0.1 means that the mean square error is 10%
of the true value. The rRMSE is a combined measure of
bias and variance.

Simulation to Estimate Parameters under the MSci Model
The MSci models for three species of Figure 2c and

c′ are assumed to generate gene trees and sequence
alignments using the simulate option of BPP4.3 (Flouri
et al. 2020a). The three species have the phylogeny
(A,(C,B)), but there was introgression from A to C
at the time �H =�S, with the introgression probability
ϕ= 0.1 and 0.3. Other settings are the same as above
for the simulation under the MSC model. We consider
two mutation rates (with � = 0.001 and 0.01) and four
datasizes (with L=10,20,50, and 100 loci), with each
locus having 500 sites. We sample either S=2 or 4
sequences per species per locus. The JC model is used
both to simulate and to analyze the data.

For data simulated at the high rate (� = 0.01), the priors
are � ∼ IG(3, 0.02) and �0 ∼ IG(3, 0.06) for the root age.
At the low rate (� = 0.001), the priors are � ∼ IG(3, 0.002)
and �0 ∼ IG(3, 0.006). A U(0,1) prior is used for the
introgression probability ϕ.

Analyses of Two Real Data Sets
We applied different phase-resolution strategies (D, P,

and R) to analyze two previously published data sets,
one of East Asian brown frogs (Zhou et al. 2012) and
another of Rocky Mountains chipmunks (Sarver et al.
2021), to demonstrate that the effects discovered in the
simulations apply to real data analysis. With real data,
the option of true phase resolution (F) is unavailable,
and the analytical phase resolution (D) is expected to
perform the best. In addition, we include an approach of
treating heterozygote sites in the alignment as ambiguity
characters in the likelihood calculation, and refer to it
as strategy “A” (for ambiguity). As heterozygotes (with,
e.g., Y meaning both T and C) are not ambiguities (with
Y meaning either T or C), this is a mistaken approach
of handling the data, and has the obvious effect of
underestimating the heterozygosity or � parameters. It
was thus not included in our simulation, but we use it in
the real data analysis to illustrate its effects.

We reanalyzed a data set of five nuclear loci from
the East Asia brown frogs in the Rana chensinensis
species complex (Zhou et al. 2012) to infer the species
tree (the A01 analysis) and to estimate the parameters

under the MSC on the MAP tree (the A00 analysis).
There are three morphologically recognized species or
four populations: R. chensinensis (clades C and L), R.
kukunoris (K) and R. huanrensis (H) (Fig. 3a). The data
set was previously analyzed by Yang (2015), treating
heterozygotes as ambiguities (strategy A). Each locus has
20–30 sequences, with sequence lengths to be 285–498
sites. We assign inverse-gamma priors on parameters:
� ∼ IG(3, 0.002) with mean 0.001 and �0 ∼ IG(3, 0.004)
with mean 0.002 for the root age. We used a burnin of
8000 iterations, then taking 105 samples, sampling every
two iterations. The same analysis was run at least twice
to confirm consistency between runs. This is a small data
set and the MCMC algorithm mixes well.

The second data set consist of nuclear loci from
six species of Rocky Mountains chipmunks in the
Tamias quadrivittatus group: Tamias canipes (C), Tamias
cinereicollis (I), Tamias dorsalis (D), Tamias quadrivittatus
(Q), Tamias rufus (R), and Tamias umbrinus (U) (Fig. 3b).
Sarver et al. (2021) used a targeted sequence-capture
approach to sequence 51 Rocky Mountains chipmunks
from those six species. As a reference genome assembly
was lacking, reads were assembled iteratively into
contigs using an approach called “assembly by reduced
complexity.” A data set of 1060 nuclear loci was compiled
for molecular phylogenomic and introgression analyses,
including three individuals from an outgroup species,
Tamias striatus. Each locus consists of 54 sequences, with
the sequence length ranging from 14 to 1026 sites. High-
quality heterozygotes, judged by mapping quality and
read depth, are represented in the alignments using
the IUPAC ambiguity codes. The filters applied by the
authors suggest that the loci may be mostly coding exons
or conserved parts of the genome. The majority of loci
have ≤5 variable sites (including the outgroup). We used
the first 500 loci in our analyses to infer the species tree
and to estimate parameters under the MSC model. We
assigned inverse-gamma priors on parameters: � ∼ IG(3,
0.002) with mean 0.001 and �0 ∼ IG(3, 0.01) with mean
0.005 for the root age. In the A01 analysis (species tree
estimation), we used a burnin of 16,000 iterations, then
taking 2×105 samples, sampling every two iterations.
The A00 analysis (parameter estimation on the MAP tree)
used the same settings except that only 105 samples were
collected. The same analysis was run at least twice to
confirm consistency between runs.

RESULTS

Species Tree Estimation under the MSC Model
Bayesian analysis of each replicate data set using

each of the four strategies produced a sample
from the posterior distribution of the species trees,
which we summarized to identify the maximum a
posteriori probability (MAP) tree, and construct the
95% credibility set of species trees. The proportion,
among the 100 replicates, with which the clades
represented by those short branches were recovered
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FIGURE 3. Inferred species trees (a) for East Asian brown frogs and (b) for Rocky Mountains chipmunks. Branch lengths reflect the posterior
means of divergence times, with branch bars representing the 95% HPD intervals, obtained under the MSC using the analytical phase integration
algorithm (strategy D). Estimates of other parameters are in Table 6.

in the MAP tree are shown in Table 1 and
Supplementary Tables S1–S3 available on Dryad
at https://doi.org/10.5061/dryad.vmcvdncrd. Other
clades on the trees, represented by longer branches, were
recovered with probability near 100%, even for the low
mutation rate and 10 loci. We also plotted the posterior
probabilities for the true tree for the different phasing
strategies in Figure 4, Supplementary Figures S1–S3
available on Dryad. Strategy F, the analysis of the fully
resolved haploid data, is expected to have the best
performance and is thus the gold standard, against
which the other strategies are compared.

In data simulated using the two deep trees (Deep
B and Deep U) (Fig. 2a,b), the four phase-resolution
strategies produced similar probabilities for recovering
the true clades, with the differences among methods not
being larger than the random sampling errors due to the
limited number of replicates (Supplementary Tables S1
and S3 available on Dryad). The different strategies
most often produced the same MAP tree, although the
posterior probability attached to the MAP tree varies
somewhat among methods, but the differences are
comparable to MCMC sampling errors. This can be seen

in Supplementary Figures S1 and S3 available on Dryad,
where the posterior for the true tree is plotted. Even
random resolution (R) produced very similar results
to the use of the fully resolved data (F). Note that in
data simulated at the high rate, there are very likely
to be two or more heterozygote sites in the diploid
genotype of each individual at any locus, and the switch
error rate for random phase resolution, which is the
average proportion of heterozygous sites misassigned
relative to the previous heterozygous site (Stephens and
Donnelly 2003; Andres et al. 2007), is 50%. Even the
PHASE program generates substantial errors of phase
resolution at the high mutation rate (Table 2). Species
tree estimation is thus robust to considerable phasing
errors when species divergences are much older than
average coalescent times.

For the two shallow trees (Fig. 2a′,b′), large differences
were found among the four strategies (Table 1 and
Supplementary Table S2 available on Dryad, Fig. 4
and Supplementary Fig. S2 available on Dryad). While
strategy D produced results very similar to use of the full
data (F), both strategies P and R had poorer performance,
especially at the high rate, when strategy R produced

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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TABLE 1. (MSC A01, shallow, S=4) Probabilities of recovering true clades and the size and coverage of the 95% credibility set of species
trees when the true species tree is Shallow B and Shallow U (Fig. 2a′,b′) and S=4 sequences are sampled per species

Key
Species tree B Species tree U

CI CI CI CI
C10 C12 C13 C15 tree cover size C10 C11 C15 tree cover size

Low mutation rate
F, 10L 0.34 0.25 0.27 0.22 0.00 0.66 233.8 0.49 0.47 0.63 0.12 0.96 84.4
D, 10L 0.35 0.25 0.25 0.22 0.00 0.66 233.4 0.47 0.44 0.61 0.09 0.96 82.7
P, 10L 0.34 0.25 0.25 0.20 0.00 0.68 235.5 0.47 0.47 0.61 0.12 0.96 82.9
R, 10L 0.36 0.24 0.26 0.24 0.01 0.66 225.7 0.47 0.46 0.61 0.13 0.94 81.8

F, 20L 0.46 0.29 0.34 0.26 0.00 0.73 178.3 0.52 0.53 0.74 0.22 0.97 33.5
D, 20L 0.45 0.29 0.34 0.22 0.01 0.73 175.4 0.54 0.52 0.72 0.23 0.97 33.8
P, 20L 0.46 0.27 0.38 0.26 0.01 0.73 178.2 0.55 0.53 0.76 0.26 0.97 33.1
R, 20L 0.47 0.26 0.31 0.26 0.02 0.70 168.8 0.53 0.50 0.74 0.22 0.97 32.6

F, 50L 0.56 0.44 0.56 0.46 0.07 0.90 86.3 0.60 0.65 0.95 0.40 0.97 11.4
D, 50L 0.56 0.45 0.53 0.47 0.06 0.90 83.3 0.59 0.61 0.95 0.40 0.95 11.5
P, 50L 0.61 0.45 0.52 0.48 0.08 0.87 89.0 0.59 0.61 0.93 0.40 0.98 11.7
R, 50L 0.52 0.37 0.57 0.46 0.06 0.86 80.8 0.65 0.63 0.91 0.41 0.96 11.6

F, 100L 0.72 0.75 0.81 0.74 0.33 0.99 25.5 0.75 0.77 0.99 0.60 0.99 7.0
D, 100L 0.75 0.74 0.81 0.76 0.34 0.98 25.7 0.75 0.76 1.00 0.59 0.99 6.8
P, 100L 0.74 0.71 0.80 0.75 0.34 0.97 26.4 0.74 0.78 1.00 0.59 0.98 7.1
R, 100L 0.73 0.66 0.75 0.72 0.26 0.96 27.4 0.75 0.74 0.98 0.57 0.99 7.9

High mutation rate
F, 10L 0.68 0.58 0.68 0.49 0.19 0.92 91.5 0.70 0.76 0.96 0.53 1.00 11.2
D, 10L 0.70 0.58 0.66 0.50 0.18 0.92 95.3 0.72 0.75 0.94 0.52 1.00 11.8
P, 10L 0.66 0.58 0.63 0.48 0.14 0.91 94.6 0.68 0.76 0.92 0.53 0.98 12.5
R, 10L 0.53 0.54 0.64 0.45 0.12 0.89 108.4 0.71 0.77 0.78 0.44 0.97 13.3

F, 20L 0.91 0.74 0.90 0.72 0.43 0.99 22.2 0.80 0.85 1.00 0.72 1.00 5.7
D, 20L 0.92 0.75 0.88 0.72 0.43 1.00 23.3 0.81 0.85 1.00 0.72 1.00 6.0
P, 20L 0.91 0.70 0.89 0.72 0.41 1.00 27.2 0.77 0.86 0.97 0.68 1.00 6.6
R, 20L 0.86 0.71 0.79 0.66 0.31 0.98 30.1 0.79 0.84 0.93 0.64 0.99 7.3

F, 50L 1.00 0.97 1.00 0.94 0.91 1.00 4.1 0.90 0.97 1.00 0.87 1.00 2.6
D, 50L 1.00 0.97 1.00 0.94 0.91 1.00 4.1 0.90 0.97 1.00 0.87 1.00 2.6
P, 50L 1.00 0.94 1.00 0.92 0.86 1.00 4.3 0.91 0.97 1.00 0.88 1.00 2.7
R, 50L 0.98 0.91 0.94 0.90 0.76 1.00 5.6 0.92 0.97 1.00 0.89 0.99 2.9

F, 100L 1.00 0.99 1.00 1.00 0.99 1.00 1.6 1.00 0.98 1.00 0.98 1.00 1.7
D, 100L 1.00 0.99 1.00 1.00 0.99 1.00 1.6 1.00 0.98 1.00 0.98 1.00 1.6
P, 100L 1.00 0.99 1.00 0.99 0.98 1.00 1.6 0.99 0.98 1.00 0.97 1.00 1.7
R, 100L 1.00 0.98 1.00 0.99 0.97 1.00 2.0 1.00 0.98 1.00 0.98 1.00 1.7

Note: The two mutation rates are low (� = 0.001) and high (� = 0.01), while 10L, 20L, 50L, 100L are the number of loci. C10, C12, etc. are probabilities
of recovering the true clades on the species trees, while “tree” is the probability of recovering the whole tree. “CI size” is the number of species
trees in the 95% credibility set and and “CI cover” is the probability that the set contains the true species tree. Results for other simulation
settings are in Supplementary Tables S1–S3 available on Dryad.

larger CI sets, with lower coverage than strategies
F and D.

Thus phasing errors have different effects on species
tree estimation depending on whether the species tree is
deep or shallow. We suggest that this may be explained
by the probability that the sequences from the same
species coalesce before they reach the time of species
divergence, when one traces the genealogical history
at each locus backwards in time. For example, the
probability that S=2 sequences from species A coalesce
before reaching the common ancestor of A and B is
P{tmrca <�AB} = 1−e−4 ≈ 0.982 in the two deep trees
and 1−e−0.4 ≈ 0.330 in the two shallow trees, while the
corresponding probabilities for S=4 sequences are 0.967
and 0.077 for the deep and shallow trees, respectively

(Supplementary Fig. S4 available on Dryad). In the deep
trees, there is a high chance for all sequences from
the same species to coalesce before reaching species
divergence, and then the problem will be similar to
using the ancestral sequence for each species (which is
mostly determined by the most common nucleotides at
the individual sites; Yang et al. 1995) for species tree
estimation, a process that is not expected to be sensitive
to phasing errors. In the shallow species trees, there
are high chances that sequences from the same species
may not have coalesced before reaching the time of
species divergence, and sequences with phasing errors
will enter ancestral populations, interfering with species
tree estimation.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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FIGURE 4. (A01 under MSC, shallow tree, S=4) Posterior probability for the true species tree for phase-resolution strategies D (diploid), P
(PHASE), and R (random) plotted against the probability for strategy F (full data). The data are simulated under the MSC models with species
trees Shallow B and Shallow U (Fig. 2a′,b′), with S=4 sequences sampled per species. Each plot has 100 scatter points, for the 100 replicate data
sets, with the x-axis to be the posterior probability for strategy F while the y-axis is for strategies D, P, or R. “Low” (�=0.001) and “high” (�=0.01)
refer to the mutation rate, and L (= 10, 20, 50, 100) is the number of loci. Results for other simulation settings are in Supplementary Figures S1–S3
available on Dryad.

TABLE 2. Average switch error rate for data sets simulated under the MSC and MSci models in this study

PHASE (P) Random (R)
low high low high

Model S=2 S=4 S=2 S=4 S=2 S=4 S=2 S=4

MSC, Deep B 0.485 0.327 0.499 0.371 0.505 0.504 0.499 0.501
MSC, Deep U 0.489 0.332 0.501 0.370 0.488 0.488 0.498 0.499
MSC, Shallow B 0.448 0.370 0.459 0.349 0.488 0.495 0.498 0.498
MSC, Shallow U 0.390 0.304 0.430 0.331 0.489 0.505 0.501 0.502

MSci, Deep (ϕ=0.1) 0.480 0.317 0.492 0.363 0.500 0.492 0.500 0.502
MSci, Deep (ϕ=0.3) 0.482 0.311 0.494 0.360 0.520 0.490 0.501 0.499
MSci, Shallow (ϕ=0.1) 0.402 0.342 0.461 0.346 0.496 0.489 0.492 0.498
MSci, Shallow (ϕ=0.3) 0.402 0.331 0.454 0.337 0.498 0.502 0.502 0.501

Note: Data of L=100 loci are used in the calculation although the error rate does not depend on the number of loci. The same data generated
under the MSC model are used in the A01 (species tree estimation) and A00 (parameter estimation) analyses. Note that the error rate for random
phase resolution (R) is expected to be 0.5.

While our main objective in this study is to evaluate
the impacts of different phasing strategies, it is worth
noting the effects of other major factors on species tree
estimation that are obvious from our results (Fig. 4,
Supplementary Figs. S1–S3 available on Dryad and
Table 1, Supplementary Tables S1–S3 available on
Dryad). By design species tree B is harder to recover
than tree U because tree B has four short branches (for
clades C10, C12, C13, and C15) while tree U has only
three (for clades C10, C11, and C15) (Fig. 2). Thus tree
B is recovered with much lower probability than tree
U by all methods in all parameter settings. We note
that the individual clades in tree B are recovered with
lower probabilities than those in tree U (Table 1 and
Supplementary Tables S1–S3 available on Dryad). We
speculate that this may be due to the fact that the four
short branches in tree B are close together (so that 945
trees around them are nearly equally good) while the

three short branches in tree U are far apart (so that only
3×15=45 trees around them are nearly equally good).
Because of the symmetry in tree B, the probabilities of
recovering clades C10 and C13 should be equal, as are
those for C12 and C15. Differences within each pair reflect
the random sampling errors due to our use of only 100
replicates. (Note that clades C11 and C14 were always
recovered in the simulation.)

The mutation rate had a dramatic impact on the
precision and accuracy of species tree estimation. At the
higher rate (with � = 0.01 vs. 0.001), the credibility set
was smaller, its coverage was higher, and the MAP tree
matched the true species tree with higher probability.
In our species trees, species divergence times (�) are
proportional to �. This allows us to compare the two
values of �, mimicking the use of conserved or variable
regions of the genome for species tree estimation. Our
study focuses on closely related species with highly

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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TABLE 3. Mean and standard deviation (×10−3) of estimates of � for a single population (true value is 0.01) from a sample of S sequences
using BPP with different strategies of phase resolution and two summary methods

Method S=2 S=4 S=8 S=16 S=32

BPP (F) 10.06 ± 1.02 10.06 ± 0.61 10.03 ± 0.52 9.96 ± 0.36 10.03 ± 0.34
BPP (D) 10.06 ± 1.02 10.05 ± 0.62 10.17 ± 0.53 10.50 ± 0.43 11.19 ± 0.47
BPP (P) 10.06 ± 1.02 9.80 ± 0.61 9.84 ± 0.51 9.94 ± 0.37 10.05 ± 0.34
BPP (R) 10.06 ± 1.02 12.86 ± 0.91 18.13± 1.32 26.43 ± 1.65 41.27 ± 3.22

Watterson (�̂S) 9.94 ± 1.01 9.92 ± 0.61 9.85 ± 0.55 9.76 ± 0.40 9.82 ± 0.36
Pairwise distance (�̂�) 9.94 ± 1.01 9.94 ± 0.63 9.87 ± 0.63 9.78 ± 0.50 9.93 ± 0.55
Pairwise distance(�̂′

�) 10.01 ± 1.03 10.01 ± 0.64 9.94 ± 0.64 9.84 ± 0.50 9.99 ± 0.56

Note: Watterson’s estimate (�̂S) and the average pairwise distance (�̂�) do not depend on phase resolutions. JC correction is applied in calculation
of �̂′

�.

similar sequences, and data simulated at the high rate
contain more variable sites and more phylogenetic
information.

The number of loci similarly had a huge impact on
species tree estimation. With more loci, inference became
more precise (with smaller credibility set) and more
accurate (with the MAP tree matching the true tree with
greater probability). Increasing the number of loci by 10
fold improves performance for all strategies more than
increasing the mutation rate by the same factor.

The number of sequences sampled per species
had consistent but relatively small effects on species
tree estimation. Changing S=2 to 4 improved the
probabilities of recovering the true clades in the true
species tree, reduced the CI set size, and improved the
coverage of the CI set, but the improvements are in
general small.

It is noteworthy that the coverage of the 95% CI set
was below the nominal 95% in small or uninformative
data sets while above 95% in large and informative data
sets. In the case of 10 loci at the low rate for tree Deep B,
coverage was even below 50% (Supplementary Table S1
available on Dryad). Even though the set included nearly
500 trees, more than a half of the CI sets failed to include
the true tree. In contrast, at the high mutation rate and
with 50 or 100 loci, CI coverage was often 100%. The
method is overconfident in small and uninformative data
sets and conservative in large and informative ones.
The same pattern was noted in a previous simulation
examining the information content in phylogenomic
data sets (Huang et al. 2020, Table 3). Note that in our
simulation, the replicate data sets are generated under
a fixed model (species tree) and fixed parameter values,
so that we are evaluating the Frequentist properties of
Bayesian model selection, and a match is not expected
(Huelsenbeck and Rannala 2004; Yang and Rannala
2005). Yet the large discrepancies are striking.

Estimation of Divergence Times and Population Sizes under
the MSC Model

The Impact of the Phasing Strategies.—The same data sets
simulated for species tree estimation were analyzed to
estimate the parameters in the MSC model (�s and �s)

with the species tree fixed (Fig. 2a,a′,b,b′). The posterior
means and 95% HPD CI for the 100 replicates are plotted
in Figure 5, and Supplementary Figures S5–S11 available
on Dryad, while the relative root mean square errors
(rRMSE) are presented in Supplementary Tables S4–S11
available on Dryad. Whereas the rRMSE reflects both
biases and variances in parameter estimation, the data
sets generated by the four phase-resolution strategies
have about the same size in terms of the number of
loci, the number of sequences per locus, and the number
of sites per sequence, so that the sampling errors or
variances are similar among methods and the differences
in rRMSE mainly reflect differences in bias. Furthermore,
we may use the symmetry of species tree B to gauge the
magnitude of random sampling errors due to our use of
100 replicates: for instance, rRMSE should be equal for
�A,�B,�E, and �F, and for �10 and �13, on the balanced
trees.

The four phase-resolution strategies (F, D, P, and R)
performed similarly for the Deep trees at the lower
rate and when only S=2 sequences (or one individual)
are sampled per species. We note that with S=2 and
at the low mutation rate (with heterozygosity at �=
0.001), there will be on average 0.5 heterozygous sites
at the same locus, and the probability of having two or
more heterozygous sites is 1−0.999500− 500×0.999499 ×
0.001=0.0901. Then phase resolution will not be a serious
issue, and all four strategies examined in the study will
be nearly equivalent.

At the high mutation rate (�=0.01) for the Shallow
trees, differences were noted among the strategies even
for S=2 sequences (Supplementary Fig. S6 available on
Dryad and Supplementary Tables S5 and S7 available on
Dryad). The PHASE program produced underestimates
for the youngest species divergence times (�11 and �14
on Shallow B and �15 on Shallow U) (Fig. 2a′,b′). The
biases became more pronounced when S=4 sequences
per species are in the sample (Fig. 5 and Supplementary
Tables S9–S11 available on Dryad). At the high rate,
there are on average five heterozygotes per locus in the
individual and the probability of having two or more
heterozygotes at the locus is 96%. Two factors may be
responsible for the bias. First the PHASE program may
have inferred heterozygote phase incorrectly (indeed
the error rate is comparable to that of random phasing

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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FIGURE 5. (MSC, high rate, shallow, S=4) The 95% HPD CIs for parameters for four phase-resolution strategies: F (the full data), D (diploid),
P (PHASE), and R (random) in 100 replicate data sets simulated under MSC model trees Shallow B and Shallow U (Fig. 2a′,b′), at the high
mutation rate (�=0.01) and S=4 sequences per species. The horizontal black lines indicate the true values. Results for other simulation settings
are in Supplementary Figures S5–S11 available on Dryad.
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FIGURE 6. The 95% HPD CIs for parameter � in the single-population
coalescent model in 100 replicate datasets using four phase-resolution
strategies: F (the full data), D (diploid), P (PHASE), and R (random).
There are 100 independent loci in each data set, and at each locus
there are S sequences of 500 sites (or S/2 diploid individuals), with
S=2,4,8,16, and 32. The true parameter value is 0.01.

with S=2). Second PHASE is an MCMC program
generating a posterior distribution of different phase
resolutions but we used only the optimal resolution.
As the optimal resolution may involve the least amount
of divergence, this approach is expected to lead to
underestimation of sequence divergences or of the � and
� parameters.

At the high rate and for shallow trees, random phasing
(R) also created serious biases, but the biases are in
the opposite direction. Random phasing overestimated
the youngest species divergence times (�11 and �14 on
Shallow B and �15 on Shallow U), and overestimated �
for all modern species. The overestimation of modern �
is most striking, and occurred for both deep and shallow
species trees at the high rate and is more dramatic with
more sequences (S=4 rather than 2) or more loci.

We examined the number of distinct site patterns
in the alignment at each locus for the high-rate data
(Supplementary Fig. S12 available on Dryad). Site
patterns are compressed for the JC model, so that one site
pattern is constant while the others are variable (Yang
2006, p. 144), and the number is thus an indication of the
level of sequence divergence. At almost every locus, the
PHASE program (P) produced alignments with fewer
distinct site patterns than the true phase resolution (e.g.,
with the mean to be 36.07 compared with the true value
38.51 on tree B), apparently because we used the optimal
phase resolution inferred by the program and ignored
the less likely ones. Random resolution produced about
the same number of site patterns as the true number
(average 38.36 vs. 38.51 for tree Deep B). The number
of site patterns is thus not the reason for the poor
performance of random phasing.

Note that calculation of the heterozygosity for each
diploid individual, which is simply the proportion of
heterozygous sites in the two sequences at the locus,
does not rely on phase resolution. If we calculate the
heterozygosity for each diploid individual and then
average over individuals of the same species, we will get
a reasonably good estimate of � for that species. However,
in the gene-tree based analysis conducted in BPP, each
randomly phased haploid sequence is compared not
only with the other sequence from the same individual
but also with sequences from other individuals through
the use of a gene tree relating all phased haploid
sequences at the locus. While the true haploid sequences
may all be closely related, random phase resolution may
generate chimeric sequences that are very different from
naturally occurring fully resolved sequences, inflating
apparent coalescent times and genetic diversity in the
population. This effect is expected to be more serious
when more individuals are included in the sample.

Estimation of � for a single species.—To explore this
interpretation, we conducted a small simulation
sampling independent loci from a single species to
estimate the only parameter � (Fig. 6, Table 3). With
S=2 sequences per locus (one diploid individual),
the four phase-resolution strategies are equivalent.
However, with the increase of S, the strategy of
random phase resolution becomes increasingly biased.
Previously Felsenstein (1992) examined the efficiency
of two summary methods based on the number of
segregating (variable) sites (�̂S; Watterson 1975) and the
average pairwise distance (�̂�; Tajima 1983), relative to
the maximum likelihood (ML) method based on gene
genealogies. He found that the summary methods (�̂S
and �̂�) were much less efficient than the ML estimate,
with orders-of-magnitude differences in the variance
in large samples (Felsenstein 1992, Tables 1 and 2),
indicating that there is much information about � in the
genealogical histories. The ML method should be very
similar to BPP here as both are full likelihood methods.
Here, we note that the number of segregating sites
does not depend on phase resolutions, and similarly the
average proportion of different sites, averaged over all
the S(S−1)/2 pairwise comparisons, depends on the site
configurations at each variable site (such as 10 Ts and 4
Cs) but not on the genotypic phase between different
heterozygous sites. Both Waterson’s estimator and the
average pairwise distance are thus unaffected by phasing
errors. It is also noteworthy that those two simple
methods are not affected by recombination within the
locus, while coalescent-based methods are (Felsenstein
2019). While it is not unexpected that a full likelihood
method may be more sensitive to certain errors in the
model or in the data than heuristic methods, in this
case it is striking that the systematic bias is so large
(with estimates to be several times larger than the true
value) when the coalescent-based method is applied to
randomly phased sequences.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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Felsenstein’s (1992) analysis, as mentioned above,
assumed knowledge of the true gene trees and coalescent
times (or equivalently infinitely long sequences at each
locus). Here, BPP is applied to sequence alignments
and accommodates uncertainties in the genealogical
trees. The different methods then have much more
similar performance (Table 3, �̂S, �̂�, and BPP strategy
F), suggesting that the uncertainties in the genealogical
trees due to mutational variations in the sequences
have eroded much of the information in the gene trees.
The summary methods (in particular, �̂�) have larger
variances than the BPP estimates, especially in large
samples of S=32 sequences, but the differences are
relatively small. We also note that analytical phase
integration (D) produced variances that are nearly
identical to those for the use of the full data (F).

Impacts of Other Factors on Parameter Estimation Under
the MSC Model.—We note that different parameters are
estimated with very different precision and accuracy,
reflecting the different amount of information in the
data. Population size parameters (�s) for modern species
are well estimated, as well as �9 for the root population,
but �s for other ancestral species, especially those
represented by very short branches (e.g., �10,�13,�12,�15
in tree B) have large errors (Fig. 5, Supplementary
Figs. S1–S3 available on Dryad). Species divergence
times are all well estimated, with rRMSE to be even much
smaller than those for population size parameters for
modern species (Supplementary Tables S4–S11 available
on Dryad).

Both the mutation rate and the number of loci had a
major impact on the estimation of the parameters. For
all phasing strategies increasing the number of loci by
10-fold improves performance more than increasing the
mutation rate by the same factor (Fig. 5, Supplementary
Figs. S1–S3, Tables S4–S11 available on Dryad).

Estimation of Introgression Probability under the MSci
Model

We used the MSci models of Figure 2c,c′ to simulate
sequence data and used BPP to analyze them to
estimate parameters in the MSci model. We are in
particular interested in whether the different strategies
of heterozygote phase resolution may lead to biases in
the estimation of the timing (�H) and strength of the
introgression (ϕ). The results are summarized in Figure 7
and Supplementary Figures S13–S19 available on Dryad
and Table 4 and Supplementary Tables S12–S18 available
on Dryad.

As before, the diploid strategy (D) produced results
almost indistinguishable from the use of the full data
(F) in all parameter settings. The performance of the
PHASE program (P) and random phasing (R) depends
on the mutation rate and, to an lesser extent, on
the number of sequences per species S. At the low
rate, and in particular with only S=2 sequences per

species, all four strategies have similar performance,
but large differences were found at the high mutation
rate. Strategy R overestimates the modern � and the
species divergence times (�) at the high rate, with the
bias being more serious for S=4 sequences than for S=2.
This is the same behavior as discussed earlier in the
simulation under the MSC model. Strategy R also tends
to overestimate ϕ, but the bias is small. Strategy P had the
opposite bias and produced underestimates of modern
� and species divergence times when the mutation
rate is high, with smaller biases than for strategy
R. Strategy P also underestimates the introgression
probability (ϕ).

An interesting question is whether each method
detects introgression. We calculated the proportion of
replicates in which the lower limit of the 95% HPD CI
for ϕ exceeds a small value, set somewhat arbitrarily at
0.001. If the CI excludes the small value, we may take
it as evidence that ϕ=0 is ruled out so that there is
significant evidence for introgression. By this measure
of power of the Bayesian “test,” strategies D and P had
nearly identical power as the use of the full data (F),
while random resolution (R) had reduced power at the
high mutation rate (Table 5, Supplementary Table S19
available on Dryad). Overall, power was very high even
with only 10–20 loci and at the low mutation rate. Having
more sequences is noted to boost the power of the test
for all phase-resolution strategies.

Running Time for Different Analyses
The running time for the A01 analysis under the MSC

model (species tree estimation) for the four phasing
strategies (F, D, P, and R), averaged over the 100
replicates, is plotted against the number of loci in
Supplementary Figure S20 available on Dryad. Running
time increases nearly linearly with the number of loci,
with the slope being steeper when S=4 sequences
are sampled per species than for S=2. The diploid
integration algorithm (D) has the longest running time.
Note that the number of parameters in the MSC
model, the number of loci, the number of sequences
etc. are identical for the four strategies, so that their
computational load is proportional to the number of site
patterns. As strategy D enumerates all possible phase
resolutions (including the true resolution), which may
result in many distinct site patterns, it is more expensive
than the other methods. The running time for each BPP
analysis on a single core ranged from ∼20 min for 10 loci
to ∼5 h for strategy D with data of 100 loci. Strategy P
involves running the Bayesian MCMC program PHASE
for each of the L loci. At the low mutation rate with
very few heterozygous sites per locus, this requires
minimal computation (Supplementary Fig. S21 available
on Dryad), but at the high rate and with S=4 sequences
per species, the running time can be comparable with
running the subsequent BPP analyses.

The running time for the A00 analysis (parameter
estimation) under the MSC and MSci models is shown in

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[15:24 28/1/2022 Sysbio-OP-SYSB210047.tex] Page: 346 334–352

346 SYSTEMATIC BIOLOGY VOL. 71

FIGURE 7. (MSci model, high rate, Shallow, S=4) The 95% HPD CIs for parameters under the MSci model of Figure 2c′ when S=4 sequences
are sampled per species. Results for S=2 are in Supplementary Figure S14 available on Dryad. See legend to Figure 5.

Supplementary Figures S22–S25 available on Dryad. The
A00 analysis under the MSC involves less computation
than the A01 analysis as there is no MCMC moves to
change the species tree. Overall, the same patterns are
observed as discussed above for the A01 analysis. Note
that the computer cluster used in this work consist of
computers with different processors, so there may be
random fluctuations in running time due to the different
jobs being assigned to different processors. For example
the differences in Supplementary Figures S21 and S23
available on Dryad reflect this random fluctuation as the
data were the same.

Overall, the data sets generated in the simulation
of this study are relatively small, and the running
time for the best method (strategy “D”) is comparable
with that for strategy “P,” in particular if one
considers the preprocessing overhead of computational
phasing.

Analysis of Two Real Data Sets
We analyzed two real data sets using four different

phase-resolution strategies: D (diploid), P (PHASE), R
(random), and A (ambiguity). With real data, the option
of true phase resolution (F) is unavailable, and the
analytical phase resolution (D) is expected to have the
best performance, against which we compare the other
strategies.

East Asia brown frogs.—We reanalyzed a data set of five
nuclear loci from the East Asia brown frogs in the Rana
chensinensis species complex (Zhou et al. 2012) (Fig. 3a).
This data set was previously analyzed by Yang (2015)
using strategy A. The number of site patterns at each
locus is 18–26 for strategy A, and 22–102 for strategy D.
Running time using one thread on our server was 3 min
for A, 7–8 min for P and R, and 12 min for D.
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TABLE 4. (MSci A00 S=4, high rate, shallow) Relative root mean square error (rRMSE) for parameter estimates under the Deep MSci model
(Fig. 2c′) with ϕ=0.1 or 0.3 at the high mutation rate and S=4

�A �B �C �R �S �T �H �R �S �T ϕ

Truth 1 1 1 1 1 1 1 3 1 2 0.1 0.3

ϕ = 0.1
F, 10L 0.28 0.24 0.34 0.24 0.45 0.36 0.25 0.15 0.45 0.17 0.42 -
D, 10L 0.31 0.25 0.36 0.24 0.48 0.36 0.22 0.16 0.46 0.18 0.41 -
P, 10L 0.27 0.22 0.28 0.27 0.50 0.51 0.27 0.15 0.45 0.22 0.43 -
R, 10L 0.99 0.86 1.49 0.31 0.37 0.25 0.23 0.36 1.12 0.46 0.47 -

F, 20L 0.24 0.21 0.28 0.18 0.40 0.35 0.28 0.10 0.41 0.13 0.46 -
D, 20L 0.26 0.22 0.31 0.18 0.43 0.33 0.26 0.11 0.43 0.14 0.45 -
P, 20L 0.24 0.20 0.26 0.26 0.39 0.49 0.38 0.11 0.46 0.17 0.54 -
R, 20L 1.09 0.73 1.75 0.27 0.32 0.25 0.22 0.30 1.04 0.41 0.53 -

F, 50L 0.17 0.12 0.18 0.13 0.24 0.27 0.39 0.07 0.33 0.08 0.53 -
D, 50L 0.18 0.13 0.20 0.13 0.27 0.27 0.32 0.07 0.38 0.09 0.51 -
P, 50L 0.31 0.13 0.34 0.22 0.21 0.41 0.29 0.09 0.60 0.14 0.68 -
R, 50L 1.18 0.63 1.50 0.22 0.23 0.26 0.24 0.26 0.90 0.38 0.64 -

F, 100L 0.12 0.08 0.13 0.09 0.18 0.23 0.32 0.04 0.27 0.06 0.59 -
D, 100L 0.14 0.08 0.16 0.09 0.19 0.24 0.30 0.04 0.33 0.06 0.57 -
P, 100L 0.39 0.11 0.42 0.21 0.15 0.42 0.23 0.09 0.72 0.14 0.74 -
R, 100L 1.27 0.59 1.60 0.19 0.20 0.21 0.23 0.23 0.73 0.35 0.73 -

ϕ = 0.3
F, 10L 0.30 0.27 0.31 0.21 0.35 0.35 0.30 0.15 0.34 0.16 - 0.48
D, 10L 0.31 0.29 0.41 0.22 0.40 0.35 0.28 0.16 0.35 0.17 - 0.49
P, 10L 0.27 0.24 0.27 0.22 0.48 0.55 0.35 0.15 0.48 0.21 - 0.44
R, 10L 1.03 0.93 1.83 0.32 0.37 0.28 0.24 0.36 1.11 0.49 - 0.57

F, 20L 0.24 0.18 0.26 0.18 0.35 0.28 0.37 0.09 0.30 0.12 - 0.39
D, 20L 0.28 0.20 0.33 0.19 0.33 0.27 0.33 0.10 0.33 0.13 - 0.40
P, 20L 0.26 0.17 0.29 0.21 0.45 0.47 0.42 0.10 0.52 0.18 - 0.37
R, 20L 1.04 0.69 1.69 0.30 0.30 0.26 0.24 0.31 1.08 0.44 - 0.51

F, 50L 0.18 0.12 0.16 0.11 0.22 0.28 0.48 0.05 0.21 0.10 - 0.27
D, 50L 0.20 0.12 0.19 0.11 0.21 0.29 0.49 0.06 0.25 0.10 - 0.30
P, 50L 0.28 0.13 0.34 0.20 0.26 0.53 0.56 0.09 0.60 0.17 - 0.33
R, 50L 0.97 0.61 1.56 0.24 0.21 0.24 0.25 0.29 1.07 0.41 - 0.38

F, 100L 0.11 0.09 0.11 0.08 0.15 0.20 0.42 0.04 0.15 0.08 - 0.20
D, 100L 0.12 0.10 0.14 0.08 0.14 0.20 0.49 0.04 0.19 0.08 - 0.21
P, 100L 0.34 0.12 0.41 0.20 0.19 0.47 0.37 0.09 0.66 0.15 - 0.34
R, 100L 0.87 0.59 1.50 0.22 0.18 0.17 0.30 0.27 1.06 0.39 - 0.32

Note: Truth represents the true parameter values used in the simulation; values for � and � are ×10−2. Results for other simulation settings are
in Supplementary Tables S12–S18 available on Dryad.

In the A01 analysis (species tree estimation), the four
strategies (D, P, R, and A) produced the same MAP tree
(Fig. 3a): (((H, L), C), K), with the posterior to be 0.29
for D, 0.36 for P, 0.35 for R, and 0.21 for A. The analysis
of Yang (2015) produced a different MAP tree, ((H, L),
(C, K)). The difference is due to the use of different
priors: Yang (2015) used BPP3.1, with gamma priors on
the parameters (�s for all populations and � for the root),
whereas here inverse gamma priors are used in BPP4.3.
Note that the species trees have low support in both
analyses.

In the A00 analysis (parameter estimation under MSC
with the MAP species tree fixed), the posterior means
and 95% HPD intervals are shown in Table 6a. Strategy P
(PHASE) produced similar results to strategy D. Strategy
R (random) produced overestimates of �s for modern
species, while strategy A (ambiguity) produced serious
underestimates of �s for modern species and divergence

times. The results are consistent with our findings from
the simulation.

Rocky Mountains Chipmunks.—In the A01 analysis
(species tree inference) of the 500 nuclear loci for Rocky
Mountains chipmunks, strategies D, P, and R produced
the same MAP tree, shown in Figure 3b, with the
posterior for every node ∼1.0. This is also the species
tree inferred by Sarver et al. (2021) using summary
methods, although the authors obtained lower support
values even with all 1060 loci used. The difference may
be due to the higher power of the BPP analysis, which
uses the full data of multilocus sequence alignments
rather than data summaries (e.g., Shi and Yang 2018;
Kim and Degnan 2020; Zhu and Yang 2021). Strategy A
(ambiguity) produced a different MAP species tree from
the other strategies (Fig. 3b), with the relationship (C,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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TABLE 5. (MSci test, shallow) Power of the Bayesian test for
introgression (measured by the proportion of replicates in which the
lower limit of the 95% HPD CI for ϕ is >0.001) when the true model is
the Shallow MSci tree

low high

10L 20L 50L 100L 10L 20L 50L 100L

ϕ = 0.1
S=2 seqs per species
F 0.42 0.41 0.42 0.49 0.48 0.52 0.64 0.89
D 0.48 0.40 0.45 0.46 0.38 0.35 0.61 0.80
P 0.49 0.45 0.49 0.49 0.55 0.60 0.83 0.99
R 0.51 0.44 0.47 0.48 0.27 0.25 0.40 0.57

S=4 seqs per species
F 0.58 0.47 0.55 0.58 0.59 0.71 0.98 0.99
D 0.56 0.44 0.54 0.60 0.56 0.66 0.94 0.99
P 0.57 0.43 0.44 0.49 0.60 0.65 0.94 1.00
R 0.56 0.45 0.50 0.57 0.44 0.46 0.71 0.81

ϕ=0.3
S=2 seqs per species
F 0.68 0.74 0.87 0.94 0.86 0.97 1.00 1.00
D 0.64 0.81 0.89 0.93 0.84 0.91 1.00 1.00
P 0.68 0.78 0.85 0.89 0.86 0.94 0.99 1.00
R 0.66 0.72 0.87 0.92 0.74 0.82 0.96 0.99

S=4 seqs per species
F 0.79 0.88 0.97 1.00 0.95 1.00 1.00 1.00
D 0.83 0.86 0.95 1.00 0.92 0.99 1.00 1.00
P 0.84 0.84 0.95 1.00 0.94 0.97 1.00 1.00
R 0.84 0.82 0.94 0.99 0.75 0.89 1.00 1.00

Note: Results for the Deep MSci model are in Supplementary Table S19
available on Dryad.

(D, (IQR))) instead of (D, (C, (IQR))), with the posterior
at 0.94. The running time for the A01 analysis, using
eight cores on a server with Intel Xeon Gold 6154 3.0GHz
processors, was 9 hours for strategy A, and 16–17 h for
strategies D, P, and R, with strategy D having slightly
longer running time. The number of site patterns at
the 1060 loci for strategy D is shown in Supplementary
Fig. S26 available on Dryad. Strategy P also needed the
additional time for running the PHASE program, which
was 33 min to phase all 1060 loci using one thread on the
server.

In the A00 analysis (parameter estimation), strategy P
(PHASE) produced nearly identical results to strategy D
(diploid) (Table 6). Compared with strategy D, strategy
R (random) produced overestimates of �s for modern
species, while divergence times for recent nodes were
also overestimated very slightly. Strategy A (ambiguity)
produced serious underestimates of �s for modern
species, with divergence times, especially of recent
nodes, to be underestimated as well. Those results
mimic our findings about the relative performance of
the different strategies in the simulated data. Running
time for the A00 analysis was 2.5 h for strategy A, and
5–6 h for strategies D, P, and R. Note that in the A00
analysis the chain is only half as long as in the A01
analysis.

DISCUSSION

The Impact of Phasing Errors Depends on the Inference
Problem

We have used simulation to examine the performance
of four different strategies for handling heterozygote
phase in genomic sequence data: F (full phased data),
D (diploid analytical phase integration), P (PHASE),
and R (random). Inference problems examined have
included species tree estimation under the MSC model
and parameter estimation under the MSC and MSci
models. We found that the different strategies, including
random phase resolution (or equivalently the use of
haploid consensus sequences), did not affect species
tree estimation when the species divergences are much
older than the coalescent times. The different phasing
strategies may be expected to have even less impact
on inference of deep phylogenies, where within-species
polymorphism is much lower than between-species
divergence. However, species tree estimation is affected
by phasing errors if the species tree is shallow and
between-species divergence is similar to within-species
polymorphism, if the mutation rate is high so that there
are many heterozygote sites in the sequence, and if
many sequences are sampled from each species. Phasing
errors are clearly important when genomic data are
used to infer the divergence history of populations
of the same species. Previously, Kates et al. (2018)
used several summary methods (including astral and
concatenation/maximum likelihood) to analyze a data
set of breadfruit, jackfruit, and relatives (333 loci
from 23 species of the genus Artocarpus) to infer the
species phylogeny, evaluating several phase-resolution
strategies such as haploid consensus sequences,
ambiguity encoding, and a bioinformatics procedure
to incorporate read information to phase alleles. The
authors found that heterozygote phase resolution had
minimal impact on phylogeny reconstruction. The
results are consistent with our simulation, which also
found that phasing errors do not influence estimation of
deep species phylogenies. However, our simulation also
suggests that the authors’ conclusion based on the deep
species tree of Artocarpus, with an estimated age of 40
Myr for the crown age of the ingroup, may not apply
to inference of shallow phylogenies, in which species
divergence times are similar to average coalescent
times.

We found that estimation of parameters in the MSC
and MSci models is more sensitive to phasing errors
than is species tree estimation. In particular, population
sizes for modern species are seriously overestimated
under the MSC and MSci models when random phasing
or haploid consensus sequences are used. Our analysis
of the simple case of estimating � under the single-
population coalescent suggests that the bias is caused
mainly by the unusual sequences generated by random
phase resolution (Fig. 6 and Table 3). Estimates of the
introgression probability and introgression time under
the MSci model may also be biased by errors in random
phasing. The biases are more serious when the mutation

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab047#supplementary-data
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TABLE 6. Posterior means and 95% HPD CIs for parameters under the MSC model for the east Asian brown frogs and for the chipmunks

Diploid (D) PHASE (P) Random (R) Ambiguity coding (A)

(a) East Asian brown frogs (Fig. 3a)
�K 4.94 (2.62,7.65) 6.35 (3.32,9.80) 6.81 (3.64,10.48) 2.78 (1.06,4.99)
�C 20.57 (11.78,30.66) 22.84 (12.98,34.29) 32.00 (18.11,48.37) 5.65 (2.41,9.71)
�L 10.82 (6.32,15.94) 10.12 (5.98,14.76) 12.33 (7.45,17.79) 6.73 (2.37,12.29)
�H 3.73 (1.42,6.73) 3.35 (1.29,5.96) 5.39 (1.83,10.16) 1.18 (0.29,2.51)

�5 5.13 (2.20,8.43) 5.49 (2.54,8.82) 4.41 (1.50,7.49) 4.56 (1.74,7.84)
�6 2.21 (0.21,6.53) 2.00 (0.20,5.76) 2.65 (0.22,7.87) 1.85 (0.21,5.32)
�7 1.72 (0.20,4.61) 1.43 (0.21,3.62) 1.54 (0.23,3.94) 1.28 (0.19,3.15)

�5 2.14 (1.57,2.73) 2.00 (1.50,2.53) 2.49 (1.89,3.17) 1.37 (0.86,1.93)
�6 2.03 (1.53,2.54) 1.91 (1.45,2.38) 2.30 (1.79,2.83) 1.23 (0.78,1.70)
�7 1.85 (1.28,2.44) 1.77 (1.27,2.27) 2.15 (1.60,2.72) 1.11 (0.65,1.61)

(b) Rocky Mountains chipmunks (Fig. 3b)
�Q 0.81 (0.70,0.93) 0.83 (0.72,0.94) 0.93 (0.81,1.05) 0.39 (0.31,0.47)
�I 0.78 (0.67,0.89) 0.81 (0.69,0.91) 0.94 (0.81,1.07) 0.26 (0.21,0.32)
�R 0.36 (0.30,0.41) 0.36 (0.30,0.41) 0.37 (0.31,0.42) 0.32 (0.25,0.39)
�C 0.47 (0.38,0.55) 0.47 (0.39,0.55) 0.50 (0.42,0.58) 0.48 (0.39,0.56)
�D 1.79 (1.61,1.98) 1.79 (1.60,1.97) 2.05 (1.84,2.26) 0.67 (0.57,0.77)
�U 1.04 (0.93,1.15) 1.04 (0.93,1.15) 1.06 (0.95,1.17) 0.83 (0.73,0.94)
�S 0.79 (0.67,0.90) 0.79 (0.67,0.90) 0.84 (0.71,0.96) 0.34 (0.25,0.43)

�8 9.94 (8.31,11.54) 10.03 (8.61,11.45) 9.95 (8.32,11.55) 10.05 (8.62,11.43)
�9 1.24 (1.02,1.47) 1.24 (1.02,1.45) 1.24 (1.01,1.46) 1.24 (1.01,1.46)
�10 1.01 (0.65,1.39) 1.06 (0.68,1.44) 0.99 (0.64,1.34) 1.06 (0.63,1.50)
�11 4.33 (0.33,9.43) 5.13 (0.77,10.38) 2.87 (0.35,5.87) 2.08 (0.20,5.90)
�12 2.43 (0.50,4.62) 1.84 (0.34,3.68) 2.16 (0.57,3.74) 2.45 (0.69,4.38)
�13 0.51 (0.21,0.86) 0.54 (0.19,0.91) 0.49 (0.21,0.80) 0.90 (0.34,1.54)

�8 3.83 (3.30,4.50) 3.80 (3.30,4.24) 3.85 (3.30,4.48) 3.70 (3.19,4.23)
�9 1.04 (0.95,1.14) 1.04 (0.95,1.13) 1.04 (0.95,1.13) 0.92 (0.82,1.01)
�10 0.74 (0.67,0.81) 0.72 (0.65,0.79) 0.75 (0.68,0.81) 0.59 (0.52,0.67)
�11 0.58 (0.45,0.71) 0.52 (0.42,0.63) 0.60 (0.49,0.71) 0.55 (0.44,0.64)
�12 0.41 (0.35,0.46) 0.41 (0.35,0.46) 0.43 (0.38,0.49) 0.34 (0.26,0.43)
�13 0.33 (0.29,0.38) 0.34 (0.29,0.37) 0.37 (0.33,0.41) 0.21 (0.16,0.26)

Note: All values are multiplied by 1000.

rate is high so that there are multiple heterozygote
sites at each locus and when multiple sequences are
sampled per species. Those results are consistent with
Gronau et al. (2011), who also found that random
phase resolution affected parameter estimation in their
analysis of genomic sequence data from different human
populations.

Limitations of our Simulation and Implications to Practical
Data Analysis

Here, we note a few limitations of our study. First,
we have examined only one inference method, the
Bayesian method implemented in the BPP program. Our
results may be expected to apply to other full likelihood
implementations such as StarBeast (Ogilvie et al. 2017;
Zhang et al. 2018). or PhyloNet-Seq (Wen and Nakhleh 2018),
but may not apply to summary methods. Similarly, we
considered only a few inference problems under the
MSC and MSci models using genomic sequence data.
We have not examined the impact of phasing errors
on inference of population demographic changes or
on inference of migration/introgression histories (our

simulation under the MSci model assumed a fixed
introgression event).

Given those caveats, we discuss the implications of
our simulation results to practical data analysis. First,
our simulation as well as those of Gronau et al. (2011)
and Andermann et al. (2019) suggest that random phase
resolution or the use of haploid consensus sequences
should be avoided. Strategy R never performed
better than computational phasing (strategy P) in our
simulations. Similarly strategy A (ambiguity) should not
be recommended. Virtually all phylogenetic likelihood
programs accommodate ambiguities in a sequence
alignment representing undetermined nucleotides
using a data-augmentation algorithm in the likelihood
calculation (Felsenstein 2004, pp. 255–6; Yang 2014, pp.
110–112). As this approach misinterprets heterozygotes
as ambiguities, it leads to underestimation of
polymorphism or � for the modern species. Bias may also
be introduced into estimates of other parameters, such
as underestimation of divergence times (Andermann
et al. 2019). The approach also underestimates the
information content in the data, as it in effect treats
two sequences (although unphased) as only one. This
mistake in the treatment of the data was made by
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Rannala and Yang (2003) in the analysis of three human
noncoding loci of Zhao et al. (2000), Yu et al. (2001), and
Makova et al. (2001), and by Yang (2015) in the analysis
of the five nuclear loci from East Asian brown frogs
(Zhou et al. 2012). The mistake is easy to see from the
occurrence of the same ambiguity character (such as Y)
in multiple sequences at the same site in the alignment.

Strategy D (diploid analytical integration) produced
results that are extremely similar to the use of the full
data (F) in all simulation settings of this study (see
also Gronau et al. 2011). As the algorithm averages
over all possible phase resolutions and constitutes a
full likelihood approach to handling missing data,
it is the optimal statistical approach when the data
consist of unphased diploid sequences, and may thus be
recommended in general, even for inference problems
that are not examined in our simulation study. As a
statistical inference method, strategy D is equivalent to
the approach of sampling phase resolutions in a Markov
chain Monte Carlo (MCMC) algorithm (Kuhner and
Felsenstein 2000), but the approach of analytical phase
integration appears to have a computational advantage.

The computational effort required by strategy F is
proportional to the number of distinct site patterns at
each locus that may result from enumerating all possible
phase resolutions. For the data sets simulated in this
article as well as the two real data sets analyzed here, the
computational load for strategy D is comparable to (if not
better than) that for strategy P, in particular when one
considers the preprocessing of computational phasing
required by strategy P. In such cases, strategy D should
be recommended. However, when there are many long
sequences of high heterozygosity at a locus, enumeration
of all phase resolutions may lead to a huge number of
site patterns. For example, the three noncoding regions
of human DNA analyzed by Rannala and Yang (2003)
have about 60 sequences per locus, with ∼104 sites.
The number of site patterns is 50–73 in the unphased
alignments (strategy A), but reaches 1.2–4.4 million for
strategy D, rendering the analysis unfeasible. Note that
those loci are long genomic segments, which may be
affected by recombination, whereas data sets suitable for
analysis under the MSC typically involve much shorter
genomic segments (e.g., Burgess and Yang 2008).

We suggest that computational phasing (strategy P)
should be an acceptable alternative when strategy D
is computationally unfeasible. In our analyses of the
simulated and real data sets, strategy P produced similar
results to the use of full data (F) or the analytical
phase integration approach (D), with very small biases.
Note that the Bayesian program PHASE assumes a
population genetics model and is designed for sequence
or allelic data from the same species. However, our use
of it to analyze sequence data from multiple species
produced relatively small biases in parameter estimation
in both simulated data and in the two real data sets,
much better than random phase resolution or haploid
consensus sequences. We also note that phasing based on
reads combined with bioinformatic analysis shows great

promise (Andermann et al. 2019). In particular, exciting
developments in sequencing technology to provide
longer reads, combined with computational algorithms
(Porubsky et al. 2020; Zhou et al. 2020; Cheng et al. 2021),
may soon make it practical to produce routinely fully
phased diploid genomes.
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