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An atlas of protein turnover rates in mouse tissues
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Protein turnover is critical to cellular physiology as well as to the growth and maintenance of

tissues. The unique synthesis and degradation rates of each protein help to define tissue

phenotype, and knowledge of tissue- and protein-specific half-lives is directly relevant to

protein-related drug development as well as the administration of medical therapies. Using

stable isotope labeling and mass spectrometry, we determine the in vivo turnover rates of

thousands of proteins—including those of the extracellular matrix—in a set of biologically

important mouse tissues. We additionally develop a data visualization platform, named ApplE

Turnover, that enables facile searching for any protein of interest in a tissue of interest and

then displays its half-life, confidence interval, and supporting measurements. This extensive

dataset and the corresponding visualization software provide a reference to guide future

studies of mammalian protein turnover in response to physiologic perturbation, disease, or

therapeutic intervention.
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Protein turnover is a fundamental process in all living
organisms. Cells are continually creating and destroying
proteins to maintain proteostasis. The rate of protein

turnover can change in response to physiologic stimuli1, devel-
opment and aging2, and disease3. Information about each pro-
tein’s turnover rate is also relevant to medical and surgical
therapies because protein turnover impacts pharmacokinetics and
pharmacodynamics4, as well as tissue remodeling during wound
healing5 and following graft transplantation6.

Most techniques for measuring protein turnover are limited to
bulk determination of average turnover rate in a cell population
or tissue, or individual analysis of a small number of isolated
proteins7–10. Simultaneously measuring individual protein turn-
over rates for thousands of proteins requires the broad identifi-
cation and quantification capabilities of state-of-the-art
proteomics. Mass spectrometry-based proteomics typically and
capably performs proteome-wide identification and quantifica-
tion at a snapshot in time11, whereas measuring proteome
synthesis rates, degradation rates, or combined turnover rates
comprise a challenging subfield12,13. For steady-state protein
turnover studies, stable isotope labels are introduced to the
organism of interest and proteins sampled over time to monitor
the rate of stable isotope incorporation. This method is most
feasible for cultured cells14–19 and tissues in vitro6, where the cost
of isotopically-labeled media is modest and serial sampling can
occur without necessarily sacrificing the entire culture. In con-
trast, stable isotopic labeling of mammalian tissues in vivo
requires expensive isotopically-labeled food or water, and the
collection of many tissues requires sacrificing an organism for
each measurement.

In vivo, isotopic labeling can be achieved through different
strategies. Some studies have utilized heavy water (2H2O) in mice
and humans (with sampling of blood plasma)20,21, while others
have administered 15N-enriched food to mice and rats22–26.

Although these methods can yield turnover rates across the
proteome, their resulting data quality and analysis are hindered
by inherently broad isotope distributions due to variable numbers
of heavy atoms present in the proteins. Analytically, the most
robust labeling strategy employs a diet containing a labeled amino
acid, such as the 13C6, 15N2-lysine used in the present work. This
auxotrophic, abundant, metabolically-isolated amino acid (lysine)
with a large, unique mass shift (8 Da) and a corresponding pro-
tease (Lys-C) greatly minimizes the increase in spectral com-
plexity associated with isotopic labeling7. Only a few studies have
measured protein turnover in mammals using isotopic labeling
with a heavy amino acid27–32 and, to our knowledge, there is no
publicly available dataset containing proteome-wide protein
turnover measurements across multiple mammalian tissues.

We have prepared a resource of in vivo protein turnover rates
across the proteome for representative mammalian tissues from
young adult mice. Half-lives for over 3000 unique proteins were
determined, providing an important reference for understanding
mammalian biology and an aid for the development of ther-
apeutic proteins or therapies directed against specific protein
targets33. We developed a software program, named ApplE
Turnover (Application for Elucidating Protein Turnover)34, to
calculate half-lives from the experimental data and greatly
enhance the accessibility of this resource. This program allows
global visualization of half-lives for each tissue, as well as a search
function for individual peptides and proteins. The user is thus
able to search for a given protein of interest and immediately
visualize the half-life along with the extent and confidence of
protein turnover evidence. The ApplE Turnover software pro-
gram and the data results files for each tissue have been made
freely and publicly available through the MassIVE repository
(http://massive.ucsd.edu) using the dataset identifier
MSV000086426, and a tutorial for users has been provided
(Supplementary Note 1).

Results
Overview. We analyzed five distinct tissue classes to determine
protein turnover rates across the proteome. The five tissue classes
(liver, skeletal muscle, cartilage, mucosa, and blood) were chosen
because they each contain specialized constituent cells and
matrices, have diverse biologic functions, and are morphologically
distinct. Liver is an accessory digestive organ with key metabolic
functions, skeletal muscle is a contractile tissue, cartilage is a
structural component of the skeletal system, mucosa is an
immunologically active barrier tissue that interfaces with the
external environment, and blood is a circulating biofluid that
perfuses other tissues. These diverse tissue types encompass a
wide range of protein turnover rates and enable comparisons
across classes (Fig. 1). Comparison of different tissues within
classes is also possible, as two muscle and three cartilage sites
were analyzed, for a total of eight tissues.

The data used to calculate protein turnover rates were
generated from mice that contained ~99% isotopically-labeled
lysine (Lys8) and were switched to a diet containing unlabeled
lysine (Lys0) on day zero; tissues were harvested 3, 7, 14, 30, and
60 d following removal of the isotopically labeled food (Online
Methods–Mice). A control experiment showed that the direction
of isotopic change (i.e., Lys0-to-Lys8 versus Lys8-to-Lys0) does
not impact the half-life measurements (Supplementary Fig. 1), as
reported by others7,25. Proteins were extracted from the mouse
tissues, digested into peptides with endoproteinase Lys-C, and
analyzed by mass spectrometry-based proteomics. The data were
processed to identify and quantify both the labeled (Lys8-
containing) and unlabeled (Lys0-containing) versions of each
peptide. These data served as input for the ApplE Turnover
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Fig. 1 Protein half-life distributions for each tissue class in this resource.
Histograms are output by ApplE Turnover. Source data are provided with
this paper; raw mass spectrometry data are available as described in the
“Data Availability” section.
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software to calculate peptide half-lives and the associated protein
half-lives.

ApplE Turnover uses the data from thousands of peptides in a
tissue to calculate tissue-specific protein turnover rates. Data for
an example peptide are shown in Fig. 2a: its relative fraction of
unlabeled (i.e., new) lysine (Lys0/LysTotal) increases over time, as
expected. The software employs a three-compartment model23

(Methods–ApplE Turnover) that considers both the delay in
availability of newly-introduced unlabeled lysine amino acids
after switching the mice to unlabeled food, as well as the recycling
of labeled lysine amino acids after catabolism of old label-
containing proteins. The model assumes that unlabeled proteins
must have been synthesized after the switch to the unlabeled-
lysine diet. In contrast, it does not assume that all labeled proteins
were synthesized before the diet switch, because previously-
existing labeled proteins are continually undergoing degradation
and thereby provide a recycled source of labeled lysine to
ribosomes for new protein synthesis.

The three compartments in this model—where unlabeled and
labeled lysines can reside—are the pool of free amino acids, the
pool of all proteins, and the pool of the protein of interest. The
kinetic coefficients for transfer between compartments are
determined using nonlinear regression of the proteome-wide

Lys0 and Lys8 peptide abundance data (Online Methods–ApplE
Turnover). These coefficients are unique to each tissue, thereby
providing insight into how quickly a given tissue receives access
to new free lysine, as well as the extent of lysine recycling from
degraded proteins. From these coefficients, we can predict the
relative fraction of available unlabeled lysine at any point in time.
This information, along with the observed peptide-specific values
for the relative fraction of unlabeled-lysine-containing peptide at
each timepoint (i.e., Lys0/LysTotal, as shown in Fig. 2a), allows
for the calculation of that peptide’s half-life in that tissue. All
peptide half-lives and the timepoint data from which they were
calculated are displayed for cartilage in Fig. 2b. The black curves
show a satisfactory overall fit of the model to the proteomic data
in this tissue. The peptide half-lives corresponding to a given
protein are then used to determine that protein’s half-life, as
shown in Fig. 2c for the example protein Annexin A6 (ANX6) in
cartilage.

Protein half-lives were determined for 3,106 unique proteins.
Many of these proteins were identified and quantified across
multiple tissues to yield a total of 8,319 protein half-lives.
Substantially more unique proteins (5,413) and peptides (76,687)
were identified in this reference set than could be quantified
precisely enough to report half-life values (Supplementary
Table 1). Quantification generally requires higher data quality
than does identification, including for mass spectrometry-based
proteomics of very complex samples. The likelihood of determin-
ing a peptide half-life strongly correlates with the observed
intensity of that peptide (Supplementary Fig. 2). The half-life
distributions for the proteins that were quantified in each tissue
class are shown in Fig. 1. These half-lives spanned a wide range,
from less than one day to hundreds of days. The median half-life
for each tissue ranged from 3.6 d for liver to 10 d for skeletal
muscle. The median uncertainty in each half-life measurement
across all tissues, estimated using 95% confidence intervals,
was ±0.9 d.

Tissue-specific differences. Protein half-lives appear to be largely
conserved across tissues, but there are notable differences. The
correlation plots in Fig. 3 show that liver proteins turn over much
faster than identical proteins in other tissues, in agreement with
prior work characterizing average bulk protein turnover in liver35.
In contrast, skeletal muscle proteins turn over somewhat more
slowly. For example, 393 (92%) of the 428 protein half-lives found
in both liver and muscle had a longer half-life in muscle, and 229
(54%) of them had a half-life more than twice as long. All three
cartilage tissues had similar protein half-lives and substantial
overlap of the proteins whose half-lives could be determined,
suggesting that protein turnover rates are conserved among
similar tissues (Supplementary Fig. 3). This also appears to be
largely true for the two muscle tissues; however, we observed that
some proteins (notably those associated with contractile, meta-
bolic, and regenerative functions) turned over faster in intrinsic
laryngeal muscle than sternocleidomastoid (Supplementary
Fig. 4), consistent with the energy-demanding superfast pheno-
type of these laryngeal muscles for airway protection and
vocalization36.

Most proteins have similar half-lives among tissues, but
researchers may be interested in those with statistically significant
differences between tissues. ApplE Turnover calculates P-values
and fold changes for the half-lives of each protein observed in
multiple tissues and allows for easy visualization of the data
supporting each difference (Fig. 4). Researchers can use the built-
in search box to easily find their protein of interest, and then
display all peptide half-lives for that protein to show the
distribution and confidence of turnover rates for separate tissues.
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Fig. 2 Example output plots from ApplE Turnover. a Experimental data
(open blue circles) collected at the 3, 7, 14, 30, and 60 d timepoints for the
peptide WGTDEAQFIYILGNRSK from the protein ANX6 in cartilage. The y
axis indicates the relative fraction of this peptide that contains unlabeled
(i.e., new) lysine (Lys0/LysTotal, where LysTotal is the sum of Lys0 and
Lys8 quantities). ApplE Turnover uses these data to generate a model fit
(orange curve) and 95% confidence interval (bound by the red and green
curves). b Data for all quantified peptides in cartilage. Black curves indicate
the model fits for this tissue; black open circles indicate the mean relative
lysine fractions for the WGTDEAQFIYILGNRSK peptide at its calculated
half-life of 7.5 d. c Half-lives for ANX6-derived peptides in cartilage plotted
as a function of mean squared error (of the model fit); the
WGTDEAQFIYILGNRSK data are black and indicated by an arrow. The
calculated half-life for ANX6 is 7.4 d (orange line); the 95% confidence
interval is bound by the red and green lines. The peptide half-life data are
plotted as the best model fit to all observations of a given peptide ± the
2.5th and 97.5th percentile values from 200 simulations per peptide, based
on a minimum of six peptide observations (of which at least three occurred
at a single experimental timepoint), from a pool of n = 22 biologically
independent samples. Source data are provided with this paper; raw mass
spectrometry data are available as described in the “Data Availability”
section.
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Figure 4 shows the supporting information for the half-lives
reported for Myosin-4 (MYH4), a motor protein and component
of the skeletal muscle contractile apparatus. These data
confidently show that MYH4 turns over more slowly in muscle
than in mucosa.

Blood proteins. The resource uncovered protein turnover char-
acteristics that appear unique to blood and its function within the
circulatory system and in perfused tissues. First, the protein half-
lives for blood exhibit a clear bimodal distribution (Fig. 1). The
most abundant short (<3.5 d) and long (>3.5 d) half-life proteins
are albumin and hemoglobin, respectively, indicating that the
bifurcation in half-lives might reflect protein sets attributable to
the primary components of whole blood: plasma and cells (most
of which are hemoglobin-carrying erythrocytes). We assessed this
possibility further by reviewing the two protein sets and found
that 66 of 85 (78%) of the shorter half-life proteins have a secreted
designation in UniProt, compared to 8 of 70 (11%) of the longer
half-life proteins. A gene ontology (GO) analysis—performed on
each protein set using the other set as background (Supplemen-
tary Data 1)—corroborated the plasma designation for the shorter
half-life set by identifying extracellular proteins associated with
regulation of various catalytic activities, defense response, and
humoral immunity; in contrast, the longer half-life set was
comprised of intracellular proteins involved in metabolic and
biosynthetic processes, along with oxidoreduction and other
catalytic functions.

Although the bimodal distribution of protein half-lives in
whole blood is satisfactorily explained by distinct turnover rates
for circulating plasma and cells, we caution that these half-life
estimates may be less precise than those reported for solid tissues.
This is because the model assumes that proteins undergo

synthesis, lifetime residence, and degradation solely within the
analyzed tissue. This assumption does not hold for blood,
however, as plasma proteins are predominantly synthesized in the
liver and secreted into circulation; and blood cells arise in bone
marrow, enter circulation, and are eventually degraded in the
liver and spleen. Future studies might improve measurement
precision and half-life estimates somewhat by fractionating blood
prior to proteomic analysis. Even then, additional model
development is required to accurately reflect amino acid recycling
and the relative amounts of heavy and light isotopic amino acids
available in the multiple biologic compartments in which blood
proteins are synthesized.

The issue of blood protein synthesis occurring outside of the
analyzed tissue also has a small impact upon turnover estimates
in the solid tissues. We detected little hemoglobin in these tissues,
consistent with effective transcardial perfusion of the vasculature
with buffer solution at the time of harvest, but we did identify
plasma proteins that presumably entered the tissues by diffusion.
Inspection of the model curve fits for abundant plasma proteins
within the solid tissues reveals that some data points lie in an
impossible region above the curve representing free lysine
turnover. Supplementary Fig. 5 illustrates this phenomenon for
skeletal muscle albumin. Consider a hypothetical protein with an
instantaneous half-life (t1/2= 0): the relative fraction of Lys0 in
this protein would match that of free amino acid Lys0 over time
due to immediate and repeated degradation and resynthesis, with
each synthesis event drawing from the available free lysine pool.
However, the example in Supplementary Fig. 5 shows an albumin
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data are provided with this paper; raw mass spectrometry data are available
as described in the “Data Availability” section.
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turnover rate that exceeds that of free lysine in skeletal muscle, in
violation of the model assumptions. The explanation for this
discrepancy between the data and model-predicted maxima is
that albumin is not synthesized in skeletal muscle, but
exogenously with access to a separate amino acid pool. Therefore,
caution is required when interpreting half-life values for
exogenous proteins. Such exogenous blood proteins represent
only 2–4% of all half-life estimates across the solid tissues in the
dataset, and therefore have minimal impact on the determina-
tions of individual tissue uptake/recycling coefficients and the
endogenous protein turnover measurements.

Long-lived proteins. Most proteins were found to turn over in a
matter of days, but some long-lived proteins have half-lives on the
scale of months or years. These long-lived proteins are of parti-
cular relevance to aging and degenerative diseases25,37–40. Such
proteins were identified in all solid tissues but were most pre-
valent in cartilage. GO analysis of cartilage proteins with half-
lives greater than 21 d implicated these proteins in cell adhesion,
morphogenesis, and the extracellular matrix (Supplementary
Data 2). These GO terms are representative of structural proteins,
such as collagens, which are expected to have long half-lives25,41.
A notable feature of these long-lived proteins is their relatively
poor fit to the three-compartment model, compared to the short-
lived proteins (Fig. 5). Our model assumes that all proteins are
available for degradation and that degraded proteins are con-
tinually being replaced by newly synthesized proteins. However,
we observed that a fraction of each long-lived protein was not
degraded and remained labeled with Lys8, at least for the 60-d
time course of the experiment. This observation directly impacts
the model fit: whereas the time series data appear to form an
asymptote in Lys0 incorporation for many long-lived proteins,
the model fails to fit this asymptote and continues to rise.

Special consideration should be taken when using the reported
half-lives for these long-lived proteins. Such cases are readily
identifiable by their long half-lives, poor fits to the model, and
consequent wide confidence intervals. A possible biologic
contributor to inaccurate half-life estimates for the long-lived
proteins in our dataset is late postnatal tissue development. The
mice used in this study were 8–10-week-old young adults,
whereas mice reach full adult maturity around 12 weeks42. Any
tissue growth and maturation during this time would result in the

rate of protein synthesis exceeding the rate of decay; however, our
model assumes a steady-state in protein abundance. Such growth
will have a negligible effect when modeling proteins that turn
over quickly, but a substantial impact on proteins with very slow
rates of decay. If the long-lived proteins identified in this study
exhibited much greater synthesis than degradation rates (or were
not being degraded at all) at early timepoints, then their reported
half-lives are underestimated and, in reality, much longer than as
determined by our model. Another possible explanation is that
these proteins undergo a non-exponential degradation, whereby
they exhibit faster degradation rates in the first few hours of their
molecular lifetimes followed by prolonged periods of relative
stability43.

Proteoform-specific differences. A single protein can be deco-
rated with post-translational modifications (PTMs) that drama-
tically alter the function of the protein. These different forms of a
given protein are defined as proteoforms and have substantial
biological importance44. In this study, we were able to identify
thousands of peptides containing PTMs and determine their half-
lives. Although the identity of an intact proteoform cannot be
definitively determined through the identification of a single
peptide, the identification of both a modified and unmodified
peptidoform is evidence for two distinct groups of proteoforms:
one which contains the PTM and one which does not.

We determined half-lives for 3,431 peptides that contained
PTMs. Of these 3,431 half-lives, 2,439 had an additional half-life
as an unmodified peptidoform. All proteoform group compar-
isons had their P-value and fold change determined by ApplE
Turnover. Most PTMs were not found to have a significant
influence on protein turnover, but there was a significant
difference in 66 cases including acetylation, methylation,
phosphorylation, hydroxylation, and carboxylation (Supplemen-
tary Data 3). For example, we observed an N-terminal acetylation
that appeared to increase the half-life of the protein Peptidyl-
prolyl isomerase A (PPIA) in both liver and cricoid cartilage
(Fig. 6). In support of this observation, N-terminal acetylation has
previously been shown to influence proteoform half-life45. The
PTM results reported here highlight the ability of ApplE
Turnover to report proteoform-specific differences observed in
the half-life data.
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Discussion
This protein half-life dataset and corresponding ApplE Turnover
software serve as a powerful resource for studying fundamental
protein turnover, interrogating biological questions, and devel-
oping therapeutics. We find that the turnover rates for individual
proteins can vary significantly across tissue classes, consistent
with known differences in tissue composition and physiologic
function. We also show that anatomically distinct tissues within a
given class have largely similar protein turnover rates. As noted,
the three-compartment model does not fully accommodate the
physiologic complexity of turnover dynamics for blood and long-
lived proteins, warranting caution when interpreting their half-
life estimates. However, most protein half-lives (>96%) are robust
and useful measures of protein turnover in mammalian tissues
with relative confidence intervals below 40% (Supplementary
Fig. 6). For example, a protein in this resource with a half-life of
10 d can be reasonably expected to have a 95% confidence
interval that spans less than 8–12 d (i.e., 40% of 10 d).

Isotopic labeling strategies, such as implemented here, repre-
sent a gold standard approach to peptide and protein half-life
determination because they allow high-precision measurement of
relative abundance with no impact on protein structure. There
are, to our knowledge, no methods or datasets for orthogonal
validation of proteome-wide half-lives using an independent
assay; consequently, this is not a feature of previous labeling
studies. Here, to ensure internal and external consistency and
precision of the model-based half-life values generated by ApplE
Turnover, we pursued a three-pronged validation approach. First,
as ApplE Turnover uniquely computes a given protein’s half-life
using the half-lives of its constituent peptides (e.g., Fig. 2c), we
confirmed consistency across the independently determined
peptide half-lives for each protein in the resource (Supplementary
Table 2). Second, we validated the peptide and protein half-lives
output by ApplE Turnover using a previously published software
tool, Turnover GUI31. We provided both software programs with
identical input in the form of Lys0 and Lys8 peptide quantifica-
tion data, and the linear regression of their respective half-life
values showed robust agreement for all tissue classes
(R2= 0.9876–0.9973; Fig. 7a and Supplementary Fig. 7).

Third, we conducted further validation of our half-life measure-
ments, as well as assumptions underpinning the three-compartment
model, by analyzing peptides containing two lysine residues. The
proteomic data in this resource predominantly arise from peptides
containing a single lysine generated by LysC digestion; however,
peptides with a missed cleavage contain two lysines and, by exten-
sion, one of three isotope label combinations: Lys0Lys0, Lys0Lys8, or
Lys8Lys8. Given that ApplE Turnover excludes these missed cleavage
peptides from its training set, we used the three-compartment model
to predict the relative abundances of Lys0Lys0, Lys0Lys8, and
Lys8Lys8 peptides as a function of peptide half-life at each labeling
timepoint. The model predictions showed strong agreement with the
observed fractional abundances within each tissue class (pooled
R2= 0.8639–0.9724; Fig. 7b and Supplementary Fig. 8), further
validating that the model accurately reflects lysine availability and
incorporation within mouse tissues.

In summary, the resource of protein half-lives we describe here
provides researchers with insight into the dynamics of protein
turnover rates for thousands of proteins across several unique
tissue types. Methods for determining comprehensive protein
turnover rates in mammalian tissue are cost- and time-prohibi-
tive, and the complexity of tissue proteomics coupled with stable
isotope labeling creates a challenge for protein half-life determi-
nation. Thus, we have made this resource, including all of the raw
and processed data, publicly available, and we have provided a
tutorial demonstrating how to access, visualize, and analyze these
data (Supplementary Note 1). Furthermore, the tools used to

process the raw data (MetaMorpheus, the FlashLFQ algorithm
within mzLib, and ApplE Turnover) are written with open-source
code to provide analysis transparency and facilitate
reproducibility34,46. The ApplE Turnover software tool greatly
enhances the benefit of the data in this resource, including future
additions by us or others, because it enables protein- and tissue-
specific searches along with facile data visualization.

Methods
Mice. Animal experiments were performed with approval of the Animal Care and Use
Committee of the University of Wisconsin School of Medicine and Public Health and
complied with all relevant ethical regulations. All mice were housed at 22 °C and 50%
relative humidity with a 12 h light/dark cycle, switched at 6 am and 6 pm.

NBSGW mice (Jackson Laboratory stock 026622)47 were obtained from the
Humanized Mouse Core of the University of Wisconsin-Madison. Heavy
isotopically-labeled Lys8–SILAC mouse diet (13C6, 15N2-lysine > 98%) was
purchased from Silantes (product #230984640; Munich, Germany). Lys8 food was
chosen over the Lys6 option to provide additional separation between the peptide
isotopic envelopes, which can improve SILAC quantification. The mice were
maintained on the Lys8 diet for three generations48; Lys8 incorporation was
monitored using serial blood draws and mass spectrometry and confirmed to be
~99% at the time of experimentation. The mice had previously undergone subrenal
graft implantation, followed by explantation, in an unrelated study that involved no
systemic manipulations and had no bearing on the current work. At time zero,
n= 22 mice (8 male, 14 female) were switched from the labeled Lys8 food to
Silantes unlabeled Lys0 food (product #230004600). The mice were 8–10 weeks old
at time zero.
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Fig. 7 Validation of ApplE Turnover. a Comparison of calculated peptide
half-lives in cartilage, generated by ApplE Turnover and Turnover GUI. b
Relative fractions of the three isotopic label combinations (Lys0Lys0,
Lys0Lys8, Lys8Lys8) of missed cleavage peptides in cartilage, as a function
of peptide half-life. The expected values for each experimental timepoint
are plotted as solid curves; the observed data are matched-color open
circles. Note that each of these missed cleavage plots is analogous to the
single plot in Fig. 2b, which shows the relative fraction of unlabeled lysine
(Lys0) for all peptides in cartilage. Results from other tissues are shown in
Supplementary Figs. 7 and 8. Source data are provided with this paper; raw
mass spectrometry data are available as described in the “Data Availability”
section.
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Five age-matched and unlabeled C57/BL6J mice (2 male, 3 female; Jackson
Laboratory stock 000664) were used as controls to assess: (i) the generalizability of
turnover data from the NBSGW strain, and (ii) the impact of the direction of
isotopic change. These control mice were raised on a standard unlabeled diet (2018;
Teklad), switched to Silantes unlabeled Lys0 food for two weeks, then switched to
the Lys8–SILAC diet at time zero. The mice were sacrificed 14 d after the
introduction of the heavy isotopically-labeled food and tissues were compared with
the 14 d samples from the primary experiment (Supplementary Fig. 1).

Tissue harvest. NSBGW mice were euthanized by isoflurane overdose 3, 7, 14, 30,
and 60 d after the introduction of Lys0 food (n= 4–5 per timepoint); as noted above,
C57/BL6J mice were euthanized 14 d after the introduction of Lys8 food (n= 5).
Thirty microliters of whole blood was collected from the retro-orbital plexus, snap-
frozen on dry ice, and stored at −80 °C until use. After euthanizing animals and
draining blood, mice were additionally perfused with 20mL of cold PBS to remove
residual blood from the circulatory system. Next, liver, skeletal muscle [sternocleido-
mastoid, intrinsic laryngeal (thyroarytenoid-lateral cricoarytenoid complex)], cartilage
(arytenoid, cricoid, thyroid), and mucosa (vocal fold) samples were harvested. Ster-
nocleidomastoid and cricoid are reported in the main text as representative skeletal
muscle and cartilage, respectively. Tissues were microdissected, washed in PBS, snap-
frozen in liquid nitrogen, and stored at −80 °C until use.

Preparation of solid tissues
Solubilization. Approximately 12mg of tissue was cut from each liver and sterno-
cleidomastoid and solubilized for proteomics; all other tissues were solubilized in their
entirety. Tissues were solubilized in 150 μL of 4% sodium dodecyl sulfate (SDS),
100mM dithiothreitol, and 100mM tris-HCl (pH 7.5). Each sample was heated at
95 °C for 6min to lyse cells and denature endogenous proteases. Next, a probe sonicator
was applied for 2min while using a grinding motion to shred the tissue between the
tube and probe. Samples were incubated overnight at 4 °C, incubated at room tem-
perature for 30min, and then centrifuged at 16,000 × g for 5min to separate insoluble
cellular debris. Next, 140 μL of the protein-containing supernatant was transferred to a
new LoBind Eppendorf tube; for liver, only 30 μL of supernatant was transferred.

Filter-aided sample preparation (FASP). Cell lysates were prepared using the FASP
method49. Briefly, 8 volumes of 8M urea was added to each of the protein-
containing supernatants and loaded onto an Amicon 0.5 mL 30,000 molecular-
weight-cutoff (MWCO) centrifugal ultrafiltration unit (EMD Millipore). Proteins
were washed with 8M urea, reduced, alkylated with iodoacetamide, washed again
with 1M urea, and then digested with Lys-C (Wako) [40:1 (w/w) protein/enzyme
ratio] at 37 °C overnight to generate peptides. The resulting peptides were small
enough to pass through the MWCO filter and collected after centrifugation. Lys-C
was quenched using 10% trifluoroacetic acid (TFA) to a final concentration of
0.5%. Peptides were desalted using C18 Bond Elut OMIX 100-μL pipette tips
(Agilent) and eluted with 0.1% TFA in 70% acetonitrile. Peptides were dried in a
SpeedVac and reconstituted in 5% acetonitrile and 0.2% formic acid.

Preparation of whole blood. One μL of whole blood from each mouse was lysed
using 4 μL of 8M urea and 10mM tris-HCl (pH 7.5). Samples were bath sonicated for
3min to shear chromatin. Next, 7.5 μL of 50mM ammonium bicarbonate was added
followed by 1.25 μL of 10mM dithiothreitol. Samples were incubated at room tem-
perature for 1 h to allow for reduction of cysteines, then 1.25 μL of iodoacetamide was
added and incubated without light for 40min to acetylate cysteines. Samples were
diluted with 40 μL of 50mM ammonium bicarbonate prior to digestion with 1 μg of
Lys-C. Samples were digested at 37 °C overnight and quenched with 3.25 μL TFA.
Peptides were desalted using C18 Bond Elut OMIX 100 μL pipette tips (Agilent) and
eluted with 0.1% TFA in 70% acetonitrile. Peptides were dried in a SpeedVac and
reconstituted in 5% acetonitrile and 0.2% formic acid.

Data acquisition. Approximately 1 μg of reconstituted peptides, as estimated by a
BCA assay (Pierce), was injected into a Waters nanoAcquity HPLC coupled to an
electrospray ionization Orbitrap mass spectrometer (QE-HF; Thermo Fisher Sci-
entific; Xcalibur 4.0 software). Peptides were separated at 60 °C on a 100 μm-inner-
diameter column packed with 20 cm of 1.7 μm ethylene-bridged hybrid C18 par-
ticles (Waters) and eluted at 0.3 μL/min in 0.2% formic acid with a gradient of
increasing acetonitrile over 2.5 h. A full mass scan [300−1500 mass/charge ratio
(m/z)] was performed in the Orbitrap at 60,000 resolution. The 10 most intense
MS1 peaks were selected for fragmentation by higher-energy collisional dissocia-
tion at 42% collision energy, and the resulting fragments were analyzed with a
resolution of 7500 and an isolation width of 2.5 m/z. Dynamic exclusion was
enabled with a repeat count of 2 over 30 s and an exclusion duration of 120 s.

Identification and quantification of peptides and proteins. A customized fork of
MetaMorpheus (v. 0.0.305) and mzLib (v. 1.0.470) was used for mass calibration, global
post-translational modification discovery (G-PTM-D)50, and the identification and
quantification of peptides and proteins from the mass spectrometry data. This custo-
mized fork allowed for the creation of an averagine51 model with a modified 13C
abundance of 1.2% for peptides containing at least one unlabeled lysine and 2.0% for

peptides without an unlabeled lysine, in contrast to the original 13C abundance of 1.1%.
The source code, executable, and task settings are freely available here: https://doi.org/
10.5281/zenodo.556310146. Note that this software is suitable for analysis of data
containing peptide mixtures of heavy and light stable-isotope amino acids, commonly
referred to as SILAC (Stable Isotope Labeling by Amino acids in Cell culture) whether
performed in cells or in larger organisms. All files were searched against a UniProtKB/
Swiss-Prot.xml protein database of Mus musculus accessed May 19, 2020 with fixed
carbamidomethylation of cysteine and variable oxidation of methionine. All other
parameters were maintained at their default values except for the addition of variable
Lys8 for mass calibration and G-PTM-D, the specification of the SILAC turnover label
for quantification, and the allowance of up to one missed proteolytic cleavage. The
specification of the SILAC turnover label allowed for the identification and quantifi-
cation of partially labeled peptides containing a missed cleavage and both a labeled and
unlabeled lysine. The intensities for these partially labeled peptides are distributed
between the fully labeled and fully unlabeled intensities in the output.

ApplE Turnover software. We developed an Application for Elucidating Protein
Turnover (ApplE Turnover) from time-course proteomic data (https://github.com/
smith-chem-wisc/AppleTurnover/releases/tag/1.01)34. ApplE Turnover accepts
MetaMorpheus’s “AllQuantifiedPeptides.psmtsv” output, which contains light and
heavy intensities for each peptide found at a 1% FDR in each sample. Timepoints
are automatically determined by the program for each MS file if the file contains
“_dX_” or “_Xd_” in the file name, where ‘X’ is the timepoint for that file (e.g.,
“180628_Liver_3d_bio1.raw” is interpreted as a day 3 timepoint). The heavy and
light intensities are used to create a relative abundance of unlabeled (new) peptide
intensity divided by the sum of unlabeled and labeled peptide intensity, ranging
from 0 to 1.

ApplE Turnover can readily analyze data from traditional pulse experiments (in
which a heavy isotope is administered to unlabeled mice at time zero) as well as our
experimental design (in which heavy-labeled mice are administered unlabeled food at
time zero). In the current experiment, all unlabeled peptides are newly synthesized
because there was no unlabeled lysine available before the unlabeled pulse. In contrast,
labeled peptides represent a combination of new and old synthesis because labeled
lysine continued to circulate within the mouse after the introduction of unlabeled lysine.
For this analysis, relative abundances that had missing values for either the unlabeled or
labeled peptide were discarded. Peptides were required to have at least six total valid
relative abundances, of which at least three were required from a single timepoint. Thus,
each peptide half-life value in this resource results from between 6 and 22 biologically
independent replicates (mice). Peptides failing to meet these criteria were discarded,
accounting for much of the difference between the numbers of identified and quantified
peptides and proteins in this study (Supplementary Fig. 2 and Supplementary Table 1).

Peptide sequences identified by MetaMorpheus are queried against the original
protein database to find every possible protein that each sequence could have
originated from, effectively undoing protein parsimony. This step prevents peptides
that originate from multiple proteins from skewing any of the protein half-lives.
Such peptides are reassigned a new protein identifier, where the possible protein
accessions are sorted alphabetically and concatenated with ‘|’ as a delimiter. For
example, a peptide originating from protein B and protein A would have the
distinct protein identifier A | B but would not be considered when determining the
half-life for either protein A or B.

ApplE Turnover employs a three-compartment model to accurately account for
the recycling of heavy lysine in each tissue (Fig. 8). Our implementation of this
model utilizes equations 23–28 and the four fitting parameters (kst, kbt, ka0, and kbi)
reported by Guan and coworkers23. We then optimized the computational steps to
train the model and fit the data, as explained below.

Although intended for homogenous tissue, this method should be reasonably
effective for heterogeneous tissues with multiple cell types because the aggregate
recycling rate of all cell types in each tissue is determined from the observed data, which
itself arises from all cell types in the tissue. Non-linear regression is used to fit the model
to the observed data using the mean squared error (MSE) between the fit and those data
as the loss function. Several steps are taken to prevent the model from becoming
trapped in a local minimum. First, all peptides are modeled using a set of default
parameters and their approximate half-lives are determined. Peptides are then sorted by
these provisional half-lives and peptides within the inner quartile range are selected for
training. This step helps to prevent training on peptides that originate from sources
other than the tissue of interest, such as short half-life blood proteins and poorly-
behaved long-lived extracellular matrix proteins. These inner-quartile peptides are
sorted by the number of valid values and the sum of all labeled and unlabeled
intensities. The top 100 peptides are then used as the initial training set to fit the model.
If there are fewer than 100 peptides available, then all peptides are used for training.

A new model is fit to each training peptide by moving each of the three tissue-
specific coefficients (kst, kbt, and ka0) individually in small steps until the MSE of the fit
no longer decreases. At each step, a coefficient representing the peptide half-life (kbi) is
also shifted until the MSE no longer decreases for that specific kst, kbt, or ka0 step. We
discovered that kbi must be optimized at each step or else a sawtooth behavior occurs,
which prematurely stops the nonlinear regression in an artificial local minimum. Once
each training peptide has its own set of optimized coefficients, the median value for
each tissue-specific coefficient (kst, kbt, and ka0) across the 100 training peptides is saved
and used as the starting value for a second round of fitting. In this second round, all 100
training peptides are fit together instead of separately, such that the MSE is the average
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of all peptide fits. The kbi remains unique to each peptide, but the kst, kbt, and ka0
coefficients are forced to be consistent across all peptides. The resulting coefficients are
then used as the starting values for a third round of training, this time using the
complete set of peptides with half-lives within the inner quartile range.

After a consensus set of tissue-specific coefficients has been established, the user may
choose to discard messy peptides [that contain any relative abundance ratio with an
abnormally high residual (>0.1)] from the fit. Such messy peptides were discarded for
the current analysis. These peptides are typically contaminants, have low intensity, or
are false-positive identifications. After the removal of messy peptides, the model is fit a
final time using the set of remaining inner-quartile peptides. Next, a grid analysis is
implemented as follows to check that the coefficients yield a global, rather than a local,
minimum. Each coefficient is modified by a factor of 0.1, 0.2, 0.33, 0.5, 0.9, 1.0, 1.1, 1.25,
2, and 4. There are 12 modification factors and three coefficients, requiring 1728
analyses. For each set of coefficients, the kbi is optimized for each peptide and the MSE
is recorded. If the MSE of the modified set is lower than the MSE of the original set,
then the modified coefficients are optimized to reduce MSE and additional rounds of
shotgun analysis are used to check for a global minimum.

The global coefficients determined from the training set are then applied to every
peptide in the tissue under analysis to determine their respective half-lives. Each peptide
half-life value is obtained by a nonlinear regression fit of its 6–22 biologically
independent observations to the model (e.g., the orange curve in Fig. 2a); the MSE of
this model fit is then calculated. Confidence intervals for these peptide half-lives are
generated using a hybrid of the Monte-Carlo and bootstrapping methods. First, the
sample standard deviation of the model error for each timepoint of each peptide is
calculated using Eq. (1):

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

∑
N

i¼1
xi � �x
� �2

s

ð1Þ

where s is the standard deviation of a single timepoint, N is the number of ratios
observed for the timepoint, xi is the observed ratio, and �x is the expected ratio for that
timepoint. If only one ratio exists for a given timepoint, then the standard deviation is
substituted by the absolute difference between the fit and the observed ratio. In the
current analysis, we used 200 simulations to model the half-life error for each peptide.
For each simulation, the observed ratios are sampled with replacement until the
number of simulated ratios for each timepoint matches the original data. These
sampled ratios are then modified using the inverse of a normal distribution in
combination with a random number generator and the sample standard deviation for
each simulated ratio. Finally, these simulated data are are fit using the tissue-specific
coefficients to determine the simulated half-lives. This process produces 200 simulated
half-lives; the 95% confidence interval is identified between the 5th-shortest and 5th-
longest simulated half-lives.

Protein half-lives and confidence intervals (e.g., the orange and red/green curves
in Fig. 2c, respectively) are determined using the simulated half-lives of their
constituent peptides. All 200 simulations from each peptide of a given protein are
pooled, and the median half-life of these simulations is reported as the half-life of
the corresponding protein. The 95% confidence interval is the range between the
2.5 and 97.5 percentiles of the simulations.

ApplE Turnover additionally compares between tissues when multiple input files
(tissues) are provided (e.g., Fig. 4b). Proteins identified across multiple tissues are
selected and a log2 fold change and −log10(P-value) are reported for each shared
protein. The P-value is calculated by normalizing the observed ratios for all timepoints
and implementing a two-tailed t-test. Normalization is achieved by finding the average
kbi for the protein in both tissues and creating a normalization timepoint, which is a
theoretical timepoint at which both tissues have relative fractions close to 0.5. Ratios are
then normalized by subtracting the theoretical ratio at the current timepoint and adding
the theoretical ratio at the normalization timepoint. This process maintains the standard
deviation of the ratios and allows for a consistent comparison across tissues. In addition
to comparing protein turnover rates across tissues, this method is also used to
determine differences in proteoform half-lives caused by PTMs. For this resource, we
considered these proteoform half-life differences significant if they had a log2 fold
change > 0.25 and a P-value < 0.0001. Comparisons involving oxidation of methionine
and/or proteins with half-lives < 3 d were omitted.

Despite the multiple training rounds, numerous analyses to check for a global
minimum, and calculation of confidence intervals, the processing of our data in
ApplE Turnover required only three minutes per tissue on a quad-core computer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All acquired and analyzed data, as well as the xml search database downloaded from
UniProt, have been deposited in the MassIVE repository (https://massive.ucsd.edu/)
under the dataset identifier MSV000086426 and are available at https://doi.org/10.25345/
C5RB7F. A tutorial for users has been provided (Supplementary Note 1). Source data are
provided with this paper.

Code availability
The source code and executable for the customized MetaMorpheus (https://github.com/
smith-chem-wisc/MetaMorpheus) and mzLib (https://github.com/smith-chem-wisc/
mzLib) branches used in this resource are available at https://doi.org/10.5281/
zenodo.556310146. The source code and executable for ApplE Turnover are available at
https://github.com/smith-chem-wisc/AppleTurnover/releases/tag/1.01 or from https://
doi.org/10.5281/zenodo.555509234. The ApplE Turnover executable file is also available
in the MassIVE repository (https://doi.org/10.25345/C5RB7F) with the data.
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