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Costimulatory molecules have been proven to enhance antitumor immune responses,
but their roles in prostate cancer (PCa) remain unexplored. In this study, we aimed
to explore the gene expression profiles of costimulatory molecule genes in PCa and
construct a prognostic signature to improve treatment decision making and clinical
outcomes. Five prognosis-related costimulatory molecule genes (RELT, TNFRSF25,
EDA2R, TNFSF18, and TNFSF10) were identified, and a prognostic signature was
constructed based on these five genes. This signature was an independent prognostic
factor according to multivariate Cox regression analysis; it could stratify PCa patients
into two subgroups with different prognoses and was highly associated with clinical
features. The prognostic significance of the signature was well validated in four different
independent external datasets. Moreover, patients identified as high risk based on our
prognostic signature exhibited a high mutation frequency, a high level of immune cell
infiltration and an immunosuppressive microenvironment. Therefore, our signature could
provide clinicians with prognosis predictions and help guide treatment for PCa patients.

Keywords: prostate cancer, costimulatory molecules, bioinformatics, biomarker, prognostic signature

INTRODUCTION

Over the past few years, prostate cancer (PCa) has become one of the most common lethal
malignant tumors in men, posing a grave danger to human health (Nguyen-Nielsen and Borre,
2016). The latest global cancer statistics predicted approximately 191,930 new cases of PCa and
33,330 PCa-related deaths in America in 2020 (Siegel et al., 2020). Early stage PCa has a good

Abbreviations: PCa, prostate cancer; mCRPC, metastatic castrate resistant prostate cancer; ICIs, immune checkpoint
inhibitors; TME, tumor microenvironment; TNF, tumor necrosis factor; PD-1, programmed cell death protein 1; PD-L1,
programmed cell death 1 ligand 1; TNFSF, tumor necrosis factor ligands superfamily; TNFRSF, tumor necrosis factor
receptor superfamily; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; RMA, robust multi-array average;
RSEM, RNA-Seq by Expectation-Maximization; LASSO, least absolute shrinkage and selection operator; GSEA, Gene Set
Enrichment Analysis; FDR, false discovery rate; PCA, principal component analysis; ROC, receiver operating characteristic;
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene set enrichment analysis;
TMB, tumor mutation burden; AUC, area under the curve; PSA, prostate-specific antigen; DR3, death receptor 3; MDSCs,
myeloid-derived suppressor cells.
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prognosis after surgical resection, but once it recurs or develops
into metastatic castration-resistant prostate cancer (mCRPC),
there are fewer treatment options available, and the average
survival time is only 2–3 years (Omlin et al., 2013; Wang
et al., 2018). With advancements in medicine, various targeted
therapies and immunotherapies have further improved the
prognosis of PCa, especially metastatic PCa. However, only a
small percentage of PCa patients can benefit from these therapies
(Sharma et al., 2017). Epigenetic regulation of gene plays a critical
role in cancer evolution (Grasso et al., 2012), and gene expression
variations or mutations have been frequently observed in PCa
(Gu et al., 2015). Therefore, exploring new genetic and epigenetic
biomarkers will be useful for predicting specific survival of PCa
patients and improving clinical outcomes.

Immunotherapy has become an important cancer treatment
method that can activate the immune system to attack and
kill tumor cells. In particular, immune checkpoint inhibitor
(ICI) therapy has seen great success in multiple types of
cancer (Loos et al., 2008; Jansen et al., 2019). However, only
a minority of PCa patients have an obvious response to
immunotherapy, stressing the need to explore more effective
treatment methods (Sharma et al., 2017). Studies have shown that
the tumor microenvironment (TME), which includes immune
cells, stromal cells, mesenchymal cells, cytokines, chemokines,
and blood vessels, plays an important role in the process of
tumorigenesis and development (Casey et al., 2015). Thus, a
deeper understanding of the immune microenvironment will
help us improve PCa patient outcomes. In fact, many studies
are currently exploring the therapeutic potential of costimulatory
molecules in cancer (Wei et al., 2018). Costimulatory molecules
play an important role in the regulation of tumor immunity by
affecting the activation, proliferation, survival and secretion of
T cells (Croft et al., 2013; Schildberg et al., 2016). At present,
there are two main families of costimulatory molecules: the B7-
CD28 family and the tumor necrosis factor (TNF) family. The
most common ICIs target programmed cell death protein 1
(PD-1) and programmed cell death 1 ligand 1 (PD-L1), which
are CD28 and B7 family members, respectively (Zhang et al.,
2018). The latest research showed that TNF family members,
including 19 TNF ligand superfamily (TNFSF) members and
29 TNF receptor superfamily (TNFRSF) members, are also
potential therapeutic targets that play important roles in the
regulation of cellular functions. TNFSF/TNFRSF members can
control immune cells to coordinate various mechanisms that
drive the costimulation or cosuppression of immune responses
(Dostert et al., 2019). However, the molecular functions of these
costimulatory molecules in PCa remain unexplored. Therefore,
we aimed to develop a specific and effective prognostic signature
based on several costimulatory molecules to guide treatment and
improve the clinical outcomes of PCa.

High-throughput sequencing and bioinformatics technologies
have facilitated the identification of key pivotal biomarkers for
PCa (Wang et al., 2013; Gu et al., 2020). Here, we acquired
60 costimulatory molecules (comprising 12 B7-CD28 family
members and 48 TNF family members) as candidates for
potential molecular therapy targets (Janakiram et al., 2015;
Dostert et al., 2019). Subsequently, the mRNA sequencing data

and clinical information of PCa patients were downloaded
from The Cancer Genome Atlas (TCGA) database to predict
disease free survival, and a prognostic signature for PCa
patients was constructed. We validated the efficiency of the
prognostic signature in four external datasets. Previous studies
indicated that the composition of infiltrating immune cells in
the tumor microenvironment is fundamental to the outcomes
of immunotherapy (Wu et al., 2020). Thus, understanding
immune infiltration in the PCa microenvironment is an essential
prerequisite for the success of immunotherapy. In our study,
we systematically described the landscape of costimulatory
molecules and classified PCa patients into different groups
according to the prognostic signature. We further evaluated the
immune microenvironment of PCa patients to identify patients
who may benefit more from immunotherapy.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
We identified several pivotal prognosis-related costimulatory
molecule genes in PCa using comprehensive bioinformatics
analysis. The specific flow chart is shown in Figure 1. The
mRNA expression profiles of PCa patients in the TCGA
database were obtained from UCSC Xena1. A total of 52
normal samples and 498 PCa samples were obtained. Disease-
free survival information was obtained from the cBioPortal
for Cancer Genomics2. All expression data were normalized
using the “RNA-Seq by Expectation-Maximization” package, and
log2(x + 1) transformation was performed. To select genes
with prognostic values and establish a risk signature, samples
from PCa patients with unknown survival status or without
follow-up information were excluded, and a total of 491 PCa
samples were included. Then, we obtained four normalized
independent microarray datasets, namely, GSE21034, GSE54460,
GSE70768, and GSE70769, from the Gene Expression Omnibus
(GEO3) database. The GSE21034,; GSE54460, GSE70768, and
GSE70769 datasets included 140 PCa samples, 90 PCa samples,
111 PCa samples, and 92 PCa samples, respectively. For
the GSE21034 dataset, the expression data were normalized
according to the robust multi-array average (RMA) method,
and the probes were annotated using the corresponding
annotation file. For the GSE54460 dataset, the expression
data were expressed as fragments per kilobase per million
values. The GSE70768 and GSE70769 datasets were sequenced
using the Illumina HumanHT-12 V4.0 expression BeadChip
platform, and the probes were annotated using the corresponding
“illuminaHumanv4.db” R package. The expression data in these
two datasets were log2 transformed and quantile normalized. The
detailed information for the datasets used in present study were
showed in Supplementary Table 1.

1https://xenabrowser.net/
2http://cbioportal.org
3https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | The flowchart of the present study design.

Identification of Costimulatory Molecules
With Prognostic Significance in PCa
These costimulatory molecule genes were mapped to the TCGA
dataset, and univariate Cox regression analysis was performed
to identify costimulatory molecule genes with prognostic
significance in PCa with P < 0.05. We also used Kaplan–Meier
curves and log-rank tests to verify the prognostic values of
these survival-related costimulatory molecule genes using the
“survival” R package (Tibshirani, 1997). Least absolute shrinkage
and selection operator (LASSO) Cox regression analysis was used
to screen the most significant prognostic costimulatory molecule
genes in PCa using the “glmnet” R package. The optimal values of
penalty parameters were determined by 10-fold cross-validation.

Consensus Clustering of
Prognosis-Related Costimulatory
Molecule Genes
To further explore the functions and prognostic values of the
costimulatory molecule genes in PCa from the results of LASSO
Cox regression analysis, we carried out consensus clustering to
confirm the cluster numbers using the “Consensus ClusterPlus”
R package. Then, Kaplan-Meier curves were plotted to verify the
prognostic values of the clusters. In addition, gene set enrichment
analysis (GSEA) was also performed to reveal the potential
functional mechanisms using the h.all.v7.2.symbols.gmt file. False
discovery rate (FDR) < 0.25 and normalized P-value < 0.05 were
set as the threshold values for significance.

Construction of a Prognostic Signature
Based on the Five Survival-Related
Costimulatory Molecule Genes
We performed multivariate Cox proportional hazards regression
analysis of these five survival-related costimulatory molecule
genes to obtain the corresponding coefficients. Subsequently, a
prognostic signature was constructed, and the risk score was
calculated using the following formula:

Risk score = β1 ∗ Exp1 + β2 ∗ Exp2 + βi ∗ Expi.

β and Exp represent the coefficients from the multivariate Cox
proportional hazards regression analysis and the expression levels
of selected genes, respectively. In addition, we generated Kaplan–
Meier curves and receiver operating characteristic (ROC) curves
to evaluate and validate the efficiency of the signature. Then,
we performed principal component analysis (PCA) to estimate
the distribution patterns and confirm the cluster numbers in the
TCGA dataset by using the “ggplot2” R package.

Functional Enrichment Analysis
To explore signature-related biological pathways, genes that were
strongly correlated with the risk score (correlation coefficient
R > 0.4) were obtained. A total of 525 positively correlated genes
and 87 negatively correlated genes were generated. We performed
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses to investigate the possible
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molecular mechanisms of the risk signature genes using the
Database for Annotation, Visualization and Integrated Discovery
version 6.84. P < 0.05 was regarded as the cutoff value.

Estimation of the Immune
Microenvironment Composition
For quantification of the cellular composition of the immune
infiltrates in each risk group, a set of metagenes, including
non-overlapping sets of genes that are representative of twenty-
eight specific immune cell subpopulations, was obtained from a
previous study (Charoentong et al., 2017). Then, we employed
single-sample gene set enrichment analysis (ssGSEA) to quantify
the 28 types of immune cells based on the metagenes. In the
tumor microenvironment, immune and stromal cells are the
two main non-tumor components and have been proposed
to be valuable for tumor treatment and prognostication. To
assess the tumor microenvironment of different risk groups, the
immune and stromal scores for the TCGA dataset, reflecting the
infiltration levels of non-tumor cells, were calculated using the
ESTIMATE package (Yoshihara et al., 2013). The differences in
immune cell composition and immune and stromal scores were
compared between high-risk and low-risk PCa patients.

Comparison of Significantly Mutated
Genes
Tumor mutation burden (TMB) is defined as the total amount
of coding errors of somatic genes, base substitutions, insertions
or deletions detected per million bases (Chalmers et al., 2017).
In the present study, we used 38 MB as the length of exons.
TMB was calculated as the number of variants/the length of
the exons for each PCa sample via Perl scripts based on the
JAVA8 platform (Abida et al., 2019). The somatic mutation
status data of PCa samples (workflow type: VarScan2 Variant
Aggregation and Masking) were downloaded from the TCGA
data portal5 in December 2020. Mutation data were filtered using
the “maftools” R package and compared between high-risk and
low-risk patients.

Statistical Analyses
We performed the t-test or Wilcoxon test for comparisons
between the two groups, and used the one-way analysis of
variance test or Kruskal–Wallis test for comparison between
multiple samples. Univariate and multivariate Cox regression
analyses were performed to evaluate the prognostic values of
costimulatory molecule genes. Moreover, we used Kaplan–Meier
curves and log-rank tests to assess survival differences. Pearson’s
chi-square test was used to assess differences in the distribution
of clinical variables for PCa patients. All procedures involved
in the present study were conducted using Perl and R scripts.
A P-value < 0.05 was considered to indicate significance in all
statistical tests.

4https://david.ncifcrf.gov/
5https://portal.gdc.cancer.gov/repository

RESULTS

Identification of Costimulatory Molecule
Genes With Prognostic Significance in
PCa
First, we extracted the expression data of 60 costimulatory
molecule genes in PCa from the TCGA database. These
costimulatory molecules consisted of 13 B7-CD28 family genes
and 47 TNF family genes, and the gene expression correlations
among the 60 costimulatory molecule genes are shown in
Supplementary Figure 1. Then, we performed a univariate
Cox regression analysis to assess the prognostic relevance of
the expression of these costimulatory molecule genes, and the
screening criterion was P < 0.05. The results showed that a total
of 14 costimulatory molecule genes were significantly associated
with the prognosis of PCa. Among these fourteen significant
genes, ten genes (TNFSF18, TNFRSF6B, TNFRSF18, TNFRSF25,
CD80, CD86, CD70, RELT, LTA, and CD276) were recognized
as risk factors with HR > 1, and four genes (TNFSF10, EDA2R,
TNFSF13, and LTBR) were recognized as protective factors
with HR < 1 (Table 1). Moreover, Kaplan-Meier curves were
used to confirm the prognostic value of each of the fourteen
genes (Figure 2). The results showed that high expression of
the risk genes (TNFRSF18, TNFRSF6B, TNFSF18, TNFRSF25,
CD80, CD86, CD70, RELT, and LTA) was associated with a poor
prognosis in PCa. High expression of protective genes (TNFSF10
and EDA2R) was associated with a good prognosis in PCa.
However, patients with high expression of CD276, TNFSF13, and
LTBR had no significant difference in prognosis compared with
patients with low expression. In addition, LASSO Cox regression
analysis was executed to select genes with the highest prognostic
value; five genes were selected, namely, RELT, EDA2R, TNFSF10,
TNFSF18, and TNFRSF25 (Supplementary Figures 2A,B).

Identification of Two Clusters Using
Consensus Clustering
To explore the prognostic value of the five costimulatory
molecule genes, we performed a consensus clustering
analysis to stratify PCa patients. Then, we executed a
PCA to validate the reliability of the cluster numbers.
The results demonstrated that k = 2 was the most stable
value in the TCGA dataset (Figures 3A,B). The clustering
heatmap and PCA clearly demarcated two clusters when
k = 2 (Supplementary Figures 3A,B). Nevertheless, we
also showed the results of consensus clustering when k = 3
(Supplementary Figure 3C), k = 4 (Supplementary Figure 3E),
and k = 5 (Supplementary Figure 3G). The clusters overlapped
with each other when there were three (Supplementary
Figure S3D), four (Supplementary Figure 3F), or five
(Supplementary Figure 3H) clusters. Therefore, patients
were divided into two clusters (cluster 1 and cluster 2). The
Kaplan–Meier curves revealed that the two clusters had different
prognoses, and cluster 1 showed a worse prognosis than
cluster 2 (Figure 3C). In addition, GSEA revealed that several
oncogenic pathways, including the inflammatory response
(normalized enrichment score: NES = 1.621), the interferon
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TABLE 1 | Univariate Cox analysis of costimulatory molecule genes in TCGA dataset.

Official symbol HR P-value HR.95L HR.95H

RELT 1.649 <0.001 1.319 2.061

TNFRSF25 1.418 <0.001 1.196 1.682

EDA2R 0.746 <0.001 0.635 0.877

TNFSF18 1.703 <0.001 1.269 2.284

TNFRSF18 1.321 0.001 1.129 1.546

CD80 1.317 0.002 1.107 1.567

CD276 1.652 0.002 1.196 2.284

LTA 1.277 0.005 1.080 1.510

TNFRSF6B 1.346 0.005 1.095 1.656

CD86 1.336 0.006 1.087 1.641

TNFSF10 0.742 0.015 0.584 0.943

LTBR 0.572 0.018 0.360 0.908

CD70 1.243 0.027 1.025 1.507

TNFSF13 0.699 0.037 0.499 0.979

LTB 1.135 0.051 0.100 1.289

TNFRSF4 1.167 0.055 0.997 1.367

TNFRSF8 1.207 0.072 0.983 1.482

TNFRSF1B 1.238 0.080 0.974 1.574

TNFRSF10C 0.859 0.080 0.724 1.019

EDA 1.186 0.086 0.976 1.440

CTLA4 1.136 0.089 0.981 1.316

TNFSF13B 1.163 0.090 0.977 1.385

FASLG 1.136 0.144 0.957 1.348

TNFSF15 0.911 0.150 0.803 1.034

TNFRSF10D 0.877 0.161 0.731 1.053

ICOS 1.108 0.164 0.959 1.280

TNFSF14 1.136 0.179 0.943 1.369

TNFRSF9 1.122 0.183 0.947 1.328

TNFRSF10A 0.873 0.188 0.714 1.069

TNFSF11 1.150 0.200 0.928 1.426

TNFRSF1A 0.755 0.213 0.485 1.175

TNFSF9 1.098 0.227 0.944 1.277

TNFRSF12A 1.089 0.316 0.922 1.287

TNFRSF13B 1.069 0.318 0.937 1.220

TNFRSF17 1.071 0.323 0.935 1.227

CD27 1.076 0.352 0.922 1.255

NGFR 0.935 0.370 0.807 1.083

PDCD1 1.074 0.397 0.910 1.268

FAS 0.903 0.405 0.710 1.149

TNFSF8 1.070 0.422 0.907 1.263

TNFSF12 0.872 0.435 0.619 1.229

TNFSF4 1.115 0.445 0.843 1.476

TNF 1.064 0.470 0.899 1.258

HHLA2 0.944 0.500 0.799 1.115

TNFRSF11A 0.939 0.516 0.778 1.134

ICOSLG 1.114 0.552 0.800 1.592

VTCN1 0.971 0.558 0.881 1.071

TNFRSF13C 1.056 0.565 0.877 1.271

TNFRSF11B 0.951 0.572 0.800 1.132

TNFRSF10B 0.897 0.585 0.607 1.326

CD274 1.052 0.601 0.869 1.274

TNFRSF21 1.066 0.612 0.833 1.364

(Continued)
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TABLE 1 | Continued

Official symbol HR P-value HR.95L HR.95H

TNFRSF14 1.078 0.627 0.797 1.457

TMIGD2 1.044 0.633 0.876 1.244

EDAR 1.030 0.634 0.911 1.165

PDCD1LG2 1.023 0.817 0.842 1.245

CD28 0.984 0.840 0.844 1.148

TNFRSF19 1.009 0.899 0.882 1.153

CD40 0.988 0.907 0.811 1.204

CD40LG 0.995 0.948 0.851 1.163

HR, hazard ratio; HR.95L, Lower limit of the 95% confidence interval; HR.95H, Upper limit of the 95% confidence interval.

FIGURE 2 | The Kaplan–Meier curves for the 14 costimulatory molecule genes in prostate cancer from The Cancer Genome Atlas dataset, including TNFSF10,
TNFSF18, TNFRSF6B, TNFRSF18, TNFRSF25, CD80, CD86, CD70, RELT, EDA2R, LTA, CD276, TNFSF13, and LTBR.

alpha response (NES = 1.566), the interferon gamma response
(NES = 1.596), TNFA signaling via NFKB (NES = 1.377),
IL6/JAK/STAT3 signaling (NES = 1.626), IL2/STAT5 signaling
(NES = 1.449), epithelial mesenchymal transition (NES = 1.426),
and angiogenesis (NES = 1.392), were significantly enriched in
cluster 1 (Figure 3D).

Validation of the Five Survival-Related
Costimulatory Molecule Genes
The expression levels of these five costimulatory molecule
genes in PCa were compared between normal and tumor
samples. RELT and TNFSF10 had high expression levels
in tumor tissues compared with normal tissues, while

EDA2R and TNFSF18 had low expression levels in tumor
tissues compared with normal tissues in TCGA dataset.
TNFRSF25 expression was not significantly difference
between tumor tissues and normal tissues in the TCGA
dataset (Figure 4A). In addition, we assessed the correlations
between the expression levels of these five genes in different
clinical subgroups. RELT and TNFSF18 were expressed
at high levels, and EDA2R and TNFSF10 were expression
at low levels in patients with advanced disease in terms
of T stage. The expression level of TNFRSF25 showed no
significant difference among patients with different T stages
(Figure 4B). The expression levels of RELT, TNFSF18,
and TNFRSF25 were high, and the expression levels of
EDA2R were low in patients with lymphatic metastasis
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FIGURE 3 | Consensus clustering based on the five costimulatory molecule genes. (A) Consensus clustering cumulative distribution function (CDF) for k = 2 to
k = 10. (B) The relative change in area under the CDF curve for k = 2 to k = 10. (C) The Kaplan–Meier curve evaluate the prognosis of prostate cancer patients.
(D) The Gene Set Enrichment Analysis showed that several oncogenic pathways were significantly enriched in cluster 1.

(Figure 4C). The expression levels of RELT, TNFSF18, and
TNFRSF25 were high, and the expression levels of EDA2R
and TNFSF10 were low in patients with a high Gleason
score (Figure 4D).

Construction and Validation of the
Prognostic Signature Based on Five
Costimulatory Molecule Genes
We performed a multivariate Cox proportional hazards
regression analysis based on these five survival-related
costimulatory molecule genes. Subsequently, we constructed
a prognostic model to stratify PCa patients based on
the above multivariate Cox regression analysis results,
integrating the expression profiles of five survival-related
costimulatory molecule genes and their corresponding

regression coefficients. A risk score was calculated as shown
below:

Riskscore = (0.23799 ∗ RELT) + (−0.25874 ∗ EDA2R)

+ (−0.25207 ∗ TNFSF10) + (0.45293 ∗ TNFSF18)

+ (0.25466 ∗ TNFRSF25)

Next, we used the optimal cutoff point for survival to
stratify PCa patients into the high-risk and low-risk groups
in all datasets. Kaplan–Meier analysis revealed that patients
in the high-risk group had a significantly poorer prognosis
than patients in the low-risk group (Figure 5A). We further
validated these results in four GEO datasets. Similarly, significant
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FIGURE 4 | The association between the expression levels of the five costimulatory molecules and clinical factors. (A) The expression levels of the five costimulatory
molecules between the normal and tumor samples; (B) T2 staging vs. T3 and T4 staging; (C) N0 staging vs. N1 staging. (D) Gleason score for 6, 7, 8, 9, and 10. GS
represents the Gleason score. The unpaired Student’s t-test was performed for comparison between two samples and the one-way analysis of variance test for
comparison between multiple samples.

differences were found in the GSE21034 (Figure 5D), GSE70768
(Figure 5J), and GSE70769 (Figure 5M) datasets. The same
trend, although less significant difference, was observed in the
GSE54460 dataset (Figure 5G). Moreover, the ROC curve showed
good performance of these models for survival prediction in
the TCGA dataset, and the area under the curve (AUC) was
0.725 at 1 year, 0.705 at 2 years, 0.743 at 3 years, and 0.745 at
5 years (Figure 5B). The efficiency of the risk model was further
validated in the GSE21034 (Figure 5E), GSE54460 (Figure 5H),
GSE70768 (Figure 5K), and GSE70769 (Figure 5N) datasets and
showed good performance. PCA was performed to determine the
distribution characteristics of the high-risk and low-risk groups.
Different distributions for high-risk and low-risk patients were
confirmed in the TCGA (Figure 5C), GSE21034 (Figure 5F),
GSE54460 (Figure 5I), GSE70768 (Figure 5L), and GSE70769
(Figure 5O) datasets.

Associations Between the Prognostic
Signature and Clinicopathological
Factors of PCa
The heat map shows the expression of the five selected survival-
related costimulatory molecule genes and clinicopathological

factors in the high- and low-risk groups (Figure 6A). Moreover,
the detailed distribution of the clinicopathological data across
patient subgroups is shown in Table 2. The results showed
that high-risk patients tended to have an advanced T stage,
high prostate-specific antigen (PSA) levels, high Gleason scores
and lymphatic metastasis. We used univariate and multivariate
Cox regression analyses to determine whether the prognostic
signature was an independent predictor factor for disease free
survival in PCa patients. Univariate Cox regression analyses
showed that patient age, pathological T stage, pathological
N stage, Gleason score, PSA level, and risk score were
significantly associated with prognosis (Figure 6B). Multivariate
Cox regression analyses revealed that the Gleason score and risk
score were significantly associated with prognosis (Figure 6C).
These results demonstrated that the prognostic signature is
an independent risk factor that can predict the prognosis of
PCa patients. To determine the relationship between the risk
signature and clinicopathological factors (age, pathological T
stage, pathological N stage, Gleason score, and PSA level),
patients were separated into different subgroups according to
clinicopathological variables. The bar charts show that PCa
patients with advanced age (Figure 6D), high pathological T stage
(Figure 6E), lymph node metastasis (Figure 6F), high Gleason
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FIGURE 5 | Construction and validation of a prognostic-related risk score model. The Kaplan–Meier curves, time-dependent receiver operating characteristic curves
and principal component analysis for The Cancer Genome Atlas dataset (A–C), GSE21034 dataset (D–F), GSE54460 dataset (G–I), GSE70768 dataset (J–L), and
GSE70769 dataset (M–O).

score (Figure 6G), high PSA levels (Figure 6H), and recurrence
(Figure 6I) tended to have a high risk score. These results
demonstrated that our prognostic signature is closely associated
with the clinical factors of PCa.

Prognostic Signature-Related Biological
Processes and Pathways
To explore signature-related biological pathways, genes strongly
correlated with the risk score were filtered. A total of 525
positively related genes and 87 negatively related genes in the
TCGA dataset (Pearson | R| > 0.4) were obtained (Figure 7A).
The detailed results of the functional enrichment analysis are
shown in Supplementary Table 2. The top ten results of the
GO analyses are shown in Figures 7B–D. The most enriched
terms for biological process, cellular components, and molecular
function were “inflammatory response,” “membrane,” and
“tumor necrosis factor-activated receptor activity,” respectively.
According to the KEGG analysis, the most significantly enriched
term was osteoclast differentiation (Figure 7E).

The Prognostic Signature Was
Associated With the Immune
Microenvironment
To gain a better understanding of the associations between our
prognostic signature and the immune microenvironment, we
displayed the expression profiles of 28 immune cell types in a

heat map for high- and low-risk groups. The results showed
significant differences in the immune cell infiltration status
between high- and low-risk patients (Figure 8A). The box plots
showed that high-risk patients had a high percentage of immune
cells, including activated B cells, activated CD8 T cells, activated
CD4 T cells, CD56bright natural killer cells, CD56dim natural
killer cells, central memory CD4 T cells, central memory CD8 T
cells, immature B cells, natural killer cells, type 1 T helper cells,
activated dendritic cells, gamma delta T cells, macrophages, mast
cells, myeloid-derived suppressor cells (MDSCs), plasmacytoid
dendritic cells, regulatory T cells, T follicular helper cells, and type
2 T helper cells (Figure 8B). The immune and stromal scores for
the TCGA cohort were calculated according to the ESTIMATE
algorithm. We found that high-risk PCa patients had significantly
higher immune scores, stromal scores, and ESTIMATE scores
than low-risk patients (Figures 8C–E).

Differences in Genomic Alterations
Between High-Risk and Low-Risk
Patients
To investigate whether there were differences in genomic
alterations between the 2 clusters, we compared the TMB and
gene mutation patterns between high-risk and low-risk patients
with available somatic mutation data in the TCGA entire set.
Patients in the high-risk group had a higher TMB than those
in the low-risk group (Figure 8F). The top 20 mutated genes
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FIGURE 6 | Relationship between the prognostic signature and clinicopathological factors of PCa patients. (A) The heat map shows the expressions of the five
costimulatory molecule genes and clinicopathological factors in the high- and low-risk groups. The univariate (B) and multivariate (C) Cox regression analyses of
clinicopathological factors (including the risk score) and prognosis. The bar chat showed that the prognostic signature had significantly different in different clinical
subgroups, and the PCa patients with advanced age (D), high pathological T stage (E), node metastasis (F), high Gleason score (G), high prostate-specific antigen
(H), and recurrence (I) tend to have a high risk score. ns: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 666300

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-666300 August 10, 2021 Time: 12:51 # 11

Ge et al. Signature for Predicting PCa Prognosis

TABLE 2 | Association between the risk score model and patients’ clinical characteristics.

Variables TCGA cohort (n = 491), n (%) Risk score P-value

Low risk (n = 233) High risk (n = 258)

Age (mean ± SD, years) 61.0 ± 6.8 60.3 ± 6.9 61.6 ± 6.7 0.045

≤60 years 221 (45.0) 115 (49.4) 106 (41.1) 0.070

>60 years 270 (55.0) 118 (50.6) 152 (58.9)

Pathological T stage 0.001

T2 185 (37.7) 108 (46.4) 77 (29.8)

T3 290 (59.1) 120 (51.5) 170 (65.9)

T4 10 (2.0) 3 (1.3) 7 (2.7)

Unknown 6 (1.2) 2 (0.8) 4 (1.6)

Nodal stage <0.001

N0 341 (69.4) 173 (74.2) 168 (65.1)

N1 78 (15.9) 19 (8.2) 59 (22.9)

Unknown 72 (14.7) 41 (17.6) 31 (12.0)

Gleason score <0.001

6 45 (9.2) 28 (12.1) 17 (6.6)

7 245 (49.9) 150 (64.4) 95 (36.8)

8 64 (13.0) 22 (9.4) 42 (16.3)

9 134 (27.3) 33 (14.1) 101 (39.1)

10 3 (0.6) 0 (0) 3 (1.2)

PSA at initial diagnosis (ng/ml) 0.011

≤4 58 (11.8) 22 (9.4) 36 (14.0)

(4,10] 268 (54.6) 144 (61.8) 124 (48.1)

(10,20) 98 (19.9) 45 (19.3) 53 (20.5)

>20 53 (10.8) 16 (6.9) 37 (14.3)

Unknown 14 (2.9) 6 (2.6) 8 (3.1)

for low-risk (Figure 8G) and high-risk (Figure 8H) patients
were compared. We found that 49.55% of samples in the
low-risk group and 63.67% of samples in the high-risk group
had alterations in these genes. The forest plot illustrated that
the TP53, STAB2, MUC17, PCDHB7, CUBN, CACNA1A, and
MXRA5 genes were mutated at a significantly higher rate in
high-risk patients (Figure 8I).

DISCUSSION

Immunotherapy, as a rapidly growing field, aims to identify
corresponding biomarkers prompting the immune system to
recognize and kill cancer cells (Bilusic et al., 2017; Cha et al.,
2020). Accumulating evidence indicated that the potential of
immunotherapy in PCa treatment (Bilusic et al., 2017). However,
effective biomarkers for predicting the prognosis of PCa patients
remain scarce, and a single biomarker is insufficient to predict
the clinical outcomes and response to immunotherapy (Smits
et al., 2017). Previous studies have revealed that costimulatory
molecules play an important role in the progression of various
tumors (Loos et al., 2008; Zou and Chen, 2008; Geng et al., 2015).
To improve the clinical therapy outcomes of PCa, we identified
five costimulatory molecules and constructed a new prognostic
signature for PCa patients based on these five genes. To our
knowledge, our study provides the first prognostic signature of
costimulatory molecules in patients with PCa. Moreover, the

efficiency of our signature was well validated in four different
GEO datasets. The multivariate Cox regression analysis indicated
that our signature was an independent predictive factor for
PCa patients and was significantly correlated with prognosis
in different clinical subgroups. These results demonstrated that
our prognostic signature is an effective and reliable prognostic
tool. Additionally, we found that our prognostic signature
was associated with the immune microenvironment. These
findings should enhance the development of immunotherapeutic
strategies for PCa patients.

The costimulatory molecules play an important role in the
regulation of tumor immunity (Pitt et al., 2016). Topalian
et al. (2020) reported that the costimulatory molecules expressed
on tumor cells or lymphocytes play vital roles in regulating
the antitumor immune response and that these molecules are
closely related to the progression of tumors. At present, there
are two main families of costimulatory molecules: the B7-
CD28 family and the TNF family (Tang et al., 2018; Dostert
et al., 2019). To determine the expression of the costimulatory
molecule genes in PCa patients, we acquired data on 13 B7-
CD28 family members and 47 TNF family members for our
study (Janakiram et al., 2015; Dostert et al., 2019). After using
univariate and multivariate Cox proportional hazards regression
analyses, we identified five costimulatory molecular genes (RELT,
TNFRSF25, EDA2R, TNFSF18, and TNFSF10) with prognostic
value. However, the functions and roles of these costimulatory
molecules in PCa remain unclear. RELT, a new member of the
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FIGURE 7 | The costimulatory molecule-based signature-related biological pathways. (A) The most related genes of costimulatory molecule-based signature in PCa
(Pearson | R| > 0.4). (B–E) The GO and KEGG analysis of the identified the potential functions and pathways of costimulatory molecule genes.

TNFRSF family, accelerates tumor progression and regulates the
infiltration of numerous immune cell types. RELT is significantly
upregulated as glioma grade increases and is associated with
a poor prognosis (Jin et al., 2020). TNFRSF25, also known as
death receptor 3 (DR3), belongs to the TNFRSF family and
is highly expressed in T cells. Recent studies have shown that
DR3 is a potential immunotherapy molecular target for cancer
treatment and plays essential roles in protective inflammation,
autoimmune diseases, and tumor immunotherapy (Mavers et al.,
2019; So and Ishii, 2019). EDA2R, also known as TNFRSF27
or XEDAR, mainly coordinates various cellular and organismal
biological processes and exerts its roles by activating gene
transcription. Studies have indicated that EDA2R is a direct

p53 target that can be activated by p53 (Brosh et al., 2010).
They also confirmed that treatment of cancer cells with the
ligand EDA-A2, which can specifically activate EDA2R, leads to
p53-dependent cell death. In addition, Tanikawa et al. (2010)
found that EDA2R is frequently downregulated in colorectal
cancer patients due to epigenetic alterations. Interestingly, this
is consistent with our findings that EDA2R is also markedly
downregulated in PCa patients in the TCGA dataset. TNFSF18
is one of the TNFRSF members expressed by myeloid cells
and provides costimulatory signals to boost T cell activity. The
blockade of TNFSF18-GITR signaling to target mesothelioma
stem cells might be translated into a therapeutic strategy for
mesothelioma treatment (Wu et al., 2019). Recent evidence
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FIGURE 8 | Immune microenvironment and tumor mutation burden in high-risk and low-risk patients. (A) The gene expression profile of 28 immune cell types in
high- and low-risk patients. (B) Box plots showing 28 differential immune cell infiltration difference between high- and low-risk patients. (C–E) The immune score,
stromal score and ESTIMATE score in high- and low-risk patients. (F) Patients in high-risk group had higher tumor mutation burden than those in low-risk group.
(G,H) The mutation profile of the top 20 mutation genes in the low- and high-risk groups. (I) Forest plot illustrated the differences of mutation frequency of several
gene (TP53, STAB2, MUC17, PCDHB7, CUBN, CACNA1A, and MXRA5) in high- and low-risk patients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

has further shown that TNFSF10 is an apoptosis-inducing
ligand and can promote the apoptosis of cancer cells (He
et al., 2012). Sun et al. (2018) revealed that the abnormal
expression of TNFSF10 influences the apoptosis of PCa cells.
Furthermore, relevant studies have shown that TNFSF10 is
a promising anticancer agent for cancer that exhibits good
anticancer activity by inducing apoptosis (Janakiram et al., 2015;
Dostert et al., 2019).

Based on these five costimulatory molecular genes, we
developed a prognostic signature for PCa patients. The
performance of our prognostic signature was validated in four
different independent GEO datasets. The results showed good
performance in three datasets (GSE21034, GSE70768, and
GSE70769). The P-value in the GSE54460 dataset did not reach
statistical significance, which might be attributed to the small
sample size. In addition, we further investigated the association
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between the prognostic signature and clinical factors. We found
the high-risk patients were older and had more advanced T
stage, a higher rate of lymphatic metastasis, higher Gleason
scores, higher PSA levels and a higher mortality rate than
low-risk patients. These results revealed that our prognostic
signature is closely correlated with clinical factors. Therefore,
this prognostic signature could be applied as a supplement
for guiding treatment and improving the clinical prognosis
of PCa patients. In general, our prognostic signature was well
validated in different GEO datasets, which encouraged our
investigation of the underlying molecular mechanisms. Through
GO and KEGG enrichment analysis of these costimulatory
molecules, we found that the potential molecular mechanisms
of these costimulatory molecules in PCa were closely related
to the immune pathway, as indicated by the enrichment
of terms such as “regulation of immune response,” “innate
immune response,” “immune response,” “adaptive immune
response,” “immunological synapse,” and “positive regulation
of T cell proliferation.” These results indicate that immune
heterogeneity may be the cause of the difference in prognosis
between patient groups.

Subsequently, we explored the immune cell infiltration
and tumor mutation profiles of the high-risk and low-
risk groups to further reveal the difference in the immune
microenvironment between these two groups. The results
showed that the high-risk group exhibited significantly greater
infiltration of immune cells, including activated B cells, activated
CD8 T cells, activated CD4 T cells, CD56bright natural
killer cells, CD56dim natural killer cells, central memory
CD4 T cells, central memory CD8 T cells, immature B
cells, natural killer cells and type 1 T helper cells, than
the low-risk group. In addition, the infiltration of various
immunosuppressive cells, including activated dendritic cells,
gamma delta T cells, macrophages, mast cells, MDSCs,
plasmacytoid dendritic cells, regulatory T cells, T follicular
helper cells, and type 2 T helper cells, was greater in
high-risk patients than in low-risk patients, suggesting the
presence of an immunosuppressive microenvironment in high-
risk patients. Complex interactions between immunosuppressive
cells cooperate to suppress antitumor immune responses and
promote disease progression. Targeting regulatory T cell function
or the secretion of immunological processes can lead to
tumor immune evasion (Vinay et al., 2015). Su et al. (2019)
found that CCL2 induced the recruitment of M2-like tumor-
associated macrophages and regulatory T cells, thus promoting
metastasis with immune suppression and neoangiogenesis in
PCa. Sullivan et al. (2021) studied Hi-Myc mice crossed to
mast cell knockout mice and demonstrated that higher levels
of mast cell infiltration led to the promotion of cancer cell
invasion. MDSCs are known to play critical roles in tumor
immune evasion. Lu et al. (2017) found that MDSCs promoted
the initiation and progression of PCa in a mouse model. In
addition, the level of MDSC infiltration correlated with the
PSA levels and metastasis in PCa patients (Lu et al., 2017).
Understanding the immune microenvironment of each PCa
patient can help us identify patients who are more likely to benefit
from immunotherapy.

Similarly, we found that the tumor mutation burden
(TMB) in the high-risk group was also higher than that in
the low-risk group, especially in terms of TP53 mutation
frequency, which was obviously increased in the high-risk
group. Some scholars have found that sequencing technology
indicates that the TP53 mutation frequency is much higher
than that reported in the TCGA database (Mateo et al.,
2020). Martin et al. (2011) revealed that prostate epithelial
Pten/TP53 loss leads to epithelial to mesenchymal transition.
TP53 mutation is linked to a higher level of tumor-infiltrating
T cells, which influences the immunotherapy response in
prostate cancer (Kaur et al., 2019). Mu et al. (2017) reported
that PTEN loss with TP53 mutation causes resistance to
antiandrogen therapy of PCa. In addition, Jiang et al.
(2018) demonstrated that TP53 mutation could result in an
immunosuppressed state in gastric cancer. In the present
study, the immunosuppressive microenvironment in high-
risk patients might be partly due to the high frequency of
TP53 mutations in high-risk patients. The above conclusions
revealed that these costimulatory molecules have important
prognostic values for patients with PCa. These findings give
us sufficient confidence that our signature can be applied as
a novel strategy for guiding treatment and improving clinical
therapy outcomes.

In our study, we constructed a costimulatory molecule-
related prognostic signature for PCa, which could be used to
stratify patients to further guide treatment and improve clinical
outcomes. This study was the first comprehensive study of the
expression profiles and clinical significance of costimulatory
molecule genes in PCa patients. Although our study provides
important insights to better evaluate costimulatory molecules and
the prognosis of PCa patients, it inevitably has some limitations
that need to be noted. First, regardless of the fact that we used
four different independent datasets for validation, the present
study was a retrospective study. All data were obtained from the
public databases. Moreover, our research was entirely conducted
through a series of bioinformatics methods, so experimental
and prospective studies are needed to further confirm the good
predictive ability of our prognostic signature.

CONCLUSION

In this study, we performed the first comprehensive analysis
of costimulatory molecules in patients with PCa through a
series of bioinformatics analysis methods. We identified several
key prognostic costimulatory molecule genes, built a reliable
and valid prognostic signature, and explored the potential
molecular mechanisms of this signature. Our prognostic
signature could stratify PCa patients into two subgroups
with different prognoses and showed high associations with
the clinical features. Moreover, patients identified as high
risk based on our prognostic signature exhibited a high
mutation frequency, a high level of immune cell infiltration,
and an immunosuppressive microenvironment. Thus, our
signature could provide clinicians with prognosis predictions and
treatment guidance for PCa patients.
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