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The profoundly aggressive nature of glioblastoma multiforme (GBM) leads to a dismal prognosis, 
with an overall survival of 15 months with standard surgery and chemoradiation (1, 2). Innovative 
therapeutic approaches are required to make meaningful survival advances. Therefore, efforts are 
underway to harness the immune system, target molecular signaling pathways, and even inhibit cell 
division utilizing alternating electric fields. These new therapies impact the follow-up neuroimaging 
in ways we are just beginning to understand. Immunotherapies, targeted therapies, antiangiogenic 
therapy, and tumor-treating fields (TTFields) are discussed, with a brief review of existing challenges 
in response assessment for these patients, along with some potential solutions.

The evaluation and optimization of novel techniques affecting the tumor microenvironment and 
signaling is under active investigation, including redirected T lymphocytes (chimeric antigen recep-
tor T-cell, CAR-T), immune checkpoint inhibitors (nivolumab), growth factor/receptor inhibitors 
and vaccines (i.e., rindopepimut, dendritic cell vaccines), oncolytic virotherapy (i.e., poliovirus), 
among others (3–7). The harnessing of immune response involves inflammatory sequela which com-
plicates the appearance on neuroimaging. Recognition of these factors has influenced the refinement 
of response assessment criteria as reflected in the immunotherapy Response Assessment in Neuro-
Oncology, with lengthening of the expected window of pseudoprogression from 3 to 6 months, and 
extending the follow-up interval to confirm radiographic progression from 4 weeks to 3 months (8).

There is a paucity of data evaluating physiologic and metabolic imaging parameters in these 
patients, necessitating more studies to maximize the potential of advanced imaging tools in detecting 
elusive disease and redefining response in these patients.

Diffusion weighted imaging (DWI) utilizing apparent diffusion coefficient (ADC) has shown 
value in immunotherapy-treated GBM. Specifically, minimum ADC values from enhancing 
areas could differentiate between inflammation and progressive tumor in dendritic cell immu-
notherapy patients (9). In patients treated with anti-programmed cell death (PD-1) agents 
(nivolumab and pembrolizumab), after an initial 6-month period of suspected inflammatory 
hypercellularity, stabilization, and decrease in volumes of intermediate ADC areas correlated 
with response (10). Diffusion tensor imaging metrics such as fractional anisotropy (FA), linear, 
planar, and spherical anisotropy coefficients (CL, CP, and CS, respectively) have been shown 
to characterize tumor microenvironments at the cellular and subcellular level (11–13). These 
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FIGure 1 | 47-year-old woman with GBM, status post gross total resection and chemoradiation, treated with dendritic cell vaccine immunotherapy (ICT-107) (four 
vaccine treatments over 2 months prior to this imaging.) (a) Contrast-enhanced T1-weighted image shows large lobulated nodular enhancing lesion measuring 
4.5 cm × 2.8 cm at site of previously resected GBM which had increased from prior scans. (B) FLAIR images demonstrate a large area of associated T2/FLAIR 
signal abnormality in the left hemisphere. (C) DSC shows elevated rCBV from the enhancing region of the tumor. Overall constellation of these conventional and 
advanced imaging findings were concerning for true progression. Logistic regression model combining rCBVmax with FA (D) and CL (e) according to analysis used 
in Wang et al. AJNR 2016 did not meet criteria for true progression (rCBVmax 4.396, FA 0.112, CL 0.0418) (12), suggesting a significant component of treatment-
related changes. However immunotherapy was discontinued due to concern for progression. (F) Pathology from surgical resection performed 2 weeks later 
demonstrates predominant treatment effect (~80%) with hyalinization of vessels and tissues, geographic necrosis, and macrophage infiltration. Recurrent infiltrating 
glial tumor cells with marked nuclear pleomorphism were also present, comprising approximately 20% of the specimen. Abbreviations: GBM, glioblastoma 
multiforme; FLAIR, fluid attenuation inversion recovery; DSC, dynamic susceptibility contrast; rCBV, relative cerebral blood volume; rCBVmax, maximum relative 
cerebral blood volume; FA, fractional anisotropy; CL, linear anisotropy coefficient.
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techniques were applied to GBM following standard therapy, 
and a combination of FA, CL, and maximum relative cerebral 
blood volume (rCBVmax) had the highest accuracy in identi-
fying true progression (area under the curve 0.91) (12). This 
multiparametric analysis may allow more accurate assessment 
following immunotherapy compared to conventional imaging 
(Figure 1). Perhaps in the future, techniques such as diffusion 
kurtosis imaging, diffusion spectrum imaging and restriction 
spectrum imaging (RSI) may allow even further characteriza-
tion of subtleties of response assessment (14–18).

The targeted anti-vascular endothelial growth factor anti-
body bevacizumab has drastic effects on tumor vasculature 
and subsequent imaging. Diffusion has been widely studied in 
the evaluation of bevacizumab-treated tumors with somewhat 
complex results, though overall a trend demonstrating increas-
ing restricted diffusion corresponds with worse prognosis in 
this setting (19–22). RSI has been shown to be less affected by 
bevacizumab-related changes in T2/FLAIR signal compared to 
standard DWI and may add specificity to the response assessment 
following antiangiogenic therapy (18).

Magnetic resonance spectroscopy (MRS) can also add util-
ity in the response assessment of these patients. MRS has been 
evaluated to assess response to bevacizumab, differentiation 

of pseudoprogression from true progression, and the genetic 
profiling of gliomas (23–25). Elevated lipid and low choline/N-
acetyl aspartate (NAA) ratios have been reported in association 
with pseudoprogression (24, 26). Early experience with whole-
brain echo-planar spectroscopic imaging following standard 
therapy also shows higher Cho/Cr and Cho/NAA ratios in 
patients with true progression compared to pseudoprogression, 
with further improved discriminatory accuracy with multivari-
ate logistic regression analyses (27). The added value of MRS in 
the immunotherapy setting is yet to be determined.

Tumor-treating fields utilize alternating electric fields to 
inhibit mitosis (28, 29) and was FDA approved for recurrent GBM 
in 2011 and for newly diagnosed GBM in 2015 (30, 31). Initial 
experience utilizing advanced imaging techniques demonstrates 
decreased FA, Cho/Cr ratio, and rCBVmax, along with increased 
ADC within the first 2 months in patients treated by TTFields 
(32, 33). Understanding the imaging findings in patients treated 
with TTFields requires further investigation, to see if and how the 
appearance and timing of pseudoprogression and true progres-
sion in these patients differ from tumors treated with standard 
therapy and immunotherapy.

The devastating prognosis of GBM which has only been mod-
estly improved by recent efforts is a testament to the exceedingly 
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adaptive behavior of this tumor, with the best currently available 
overall survival of 20.5  months with TTFields in addition to 
standard therapy (31). As a result, the evolving standard of 
care will likely require a multimodality approach incorporat-
ing TTFields and immunotherapy with surgery, radiation, 
and chemotherapy, the optimal combination of which is still 
being defined. These new therapies have the capability to mask 
and/or mimic disease on conventional images and, therefore, 
imaging evaluation is challenging. Advanced MR techniques 
have shown potential to further differentiate true progression 
from pseudoprogression, though efforts to understand these 
subtleties are early in development. There are barriers to adopt 
these imaging tools into clinical workflow, including added 
time for scanning and processing data, which often requires 
subspecialized knowledge and/or software that is not readily 
available. Optimizing understanding and use of readily avail-
able imaging data such as ADC values may provide added value 
without added acquisition or processing time. Efforts should 
also be made to create user friendly applications to process and 
interpret advanced MRI data. Furthermore, computation of 
multiparametric radiomic data may allow distillation of many 

imaging variables into a clinically relevant synthesis, potentially 
aiding in response assessment (34). Close collaboration with 
neuropathology, neurosurgery, and neuro-oncology is also 
critical in the optimization of response assessment. For exam-
ple, the quantification of a pathologic specimen’s proportion 
of tumor vs. treatment effects [i.e., the histologic analysis used 
in Wang et al. (12)], and the use of image-matched specimens 
can further elucidate tissue composition and define treatment 
response. Continued multidisciplinary efforts are necessary to 
better define treatment response and guide therapy in patients 
with GBM.
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