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Abstract: The American cockroach (Periplaneta americana) is a medicinal insect. Its extract is used
clinically to promote wound healing and tissue regeneration, but the effective medicinal components
and mechanisms are not yet clear. It has been reported that human thymosin beta 4 (Tβ4) may
accelerate skin wound healing, however, the role of P. americana thymosin (Pa-THYs) is still poorly
understood. In the present study, we identify and analyze the DNA sequences of Pa-THYs by
bioinformatics analysis. Then we clone, express, and purify the Pa-THYs proteins and evaluate the
activity of recombinant Pa-THYs proteins by cell migration and proliferation assays in NIH/3T3 cells.
To elucidate the role of Pa-THYs in wound healing, a mouse model is established, and we evaluate
wound contraction, histopathological parameters, and the expressions of several key growth factors
after Pa-THYs treatment. Our results showed that three THY variants were formed by skipping
splicing of exons. Pa-THYs could promote fibroblast migration, but have no effect on fibroblast
proliferation. In wound repair, Pa-THYs proteins could effectively promote wound healing through
stimulating dermal tissue regeneration, angiogenesis, and collagen deposition. On the molecular
mechanism, Pa-THYs also stimulated the expression of several key growth factors to promote wound
healing. The data suggest that Pa-THYs could be a potential drug for promoting wound repair.
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1. Introduction

Skin is the largest external organ of the human body and is vulnerable to injuries. Particularly,
in elderly or diabetic patients, wound healing tends to be delayed and the risk of wound infection is
increased due to vascular aging and the weakness of tissue repair ability, which may eventually lead to
chronic wounds. In addition, wound treatment brings serious economic burdens and psychological
pressure to society, for example, in the United States, wound treatment costs more than $30 billion a
year [1]. Therefore, wound repair is one of the hot topics in the field of dermal surgery. At present, few
agents have been discovered to substantially promote wound repair in patients [2]. Current strategies
mainly include small molecule compounds extracted from plants or growth factors (epidermal growth
factor-like proteins (EGF), and human platelet-derived growth factor (PDGF-BB). However, small
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molecule compounds are unstable and less active, and growth factors are expensive, which restricts
their clinical application [3,4]. Therefore, the development of new drugs for wound healing has become
very important.

Thymosin β4 is a small (5 kDa) peptide, containing 43 amino acids and is found in many tissues
and cell lines of vertebrates, and is also known to be rich in platelets [5]. Structurally, there is only one
“THY” domain in human thymosin β4 (Tβ4), which usually contains a conserved motif “LKKTET”
that can form a complex with G-actin in a 1:1 ratio and inhibits G-actin to polymerize into filaments [6].
Aside from the function in actin-sequestering of Tβ4, it participates in numerous biological activities,
including wound healing [7], angiogenesis [8], cardiac repair [9], anti-inflammation [10,11], hair
regrowth [12], and reproduction [13]. To date, β-thymosin has been well researched in vertebrates,
but there are very limited studies on invertebrates, especially in insects. With the development of
bioinformatics, more and more thymosinβ4 homologues from invertebrates were identified. Compared
with β-thymosin in vertebrates, β-thymosin from invertebrates has more than one “THY” domain
which was categorized as a multimeric β-thymosin [14]. Although their homology is relatively high,
some functions are different. For example, multimeric β-thymosin can promote actin polymerization,
whereas β-thymosin is thought to be a sequester protein, which suggests that the function of these
two kinds of thymosin behave differently [6]. In addition, owing to exon skip splicing, many varieties
of thymosin in invertebrates have several isoforms, actually, they come from the same gene and
the functions of different isoforms are different [15,16]. However, most researches about multimeric
β-thymosin focused on its structural characterization, the style to connect with G-actin or the expression
in mRNA level, and little information has been explored on its molecular function [16–18].

P. americana, is a traditional Chinese medicine. Its extract has a good effect on wound healing [19].
Yet the key effective medicinal composition is still unknown, which hinders the further clinical
utilization and exploitation of P. americana. Considering that both vertebrate Tβ4 and the extract of
P. americana have good effects on wound healing, it is surprising that there are no reports about P.
americana thymosin. Therefore, the aim of this study is to get insights into the role of P. americana
thymosin in wound healing using animal models. Herein, we obtained the DNA sequences of thymosin
β4 homologue from P. americana genome and transcriptome by bioinformatics analysis. By in vitro
and in vivo experiments, we evaluate the function of Pa-THYs in wound healing. The present study
first demonstrates the role of multimeric β-thymosin protein for promoting wound healing in animal
models and provides a potential drug for wound healing.

2. Results

2.1. Bioinformatics Analysis of P. americana Thymosin

Based on the genome and transcriptome databases of P. americana which were established by our
laboratory, we identified the genome and transcript sequences of Pa-THYs by bioinformatics analysis.
There are one genome sequence and three transcript sequences of Pa-THYs. The genome sequence,
which contained six exons: exon 1 (139 bp), exon 2 (114 bp), exon 3 (114 bp), exon 4 (114 bp), exon 5
(114 bp), and exon 6 (26 bp) and five introns: intron 1 (4350 bp), intron 2 (7658 bp), intron 3 (6807 bp),
intron 4 (2311 bp), and intron 5 (4419 bp) (Figure 1a).



Int. J. Mol. Sci. 2019, 20, 4932 3 of 17Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 18 

 

 
Figure 1. The gene structure of β-thymosin in P. americana. (a) The structure and composition of 
β-thymosin in P. americana. (b) The exon skipping splicing process of P. americana thymosin 
(Pa-THYs). 

Due to skipping splicing of exons, three different transcripts were formed, which named as 
THY1, THY2 and THY3. THY3 contains all the exon sequences, while exon 4 is absent in THY1 and 
exon 2 and 4 are absent in THY2 (Figure 1b). These three transcript sequences were deposited in 
GenBank. They contain 507, 393, and 621 base pairs and encode 168, 130, and 206 amino acids 
respectively. The molecular weight of the THYs was 19 kDa, 14.6 kDa, and 23.4 kDa, and PI 
(isoelectric point) was 6.15, 5.70, and 5.95, respectively. The corresponding proteins were named as 
Pa-THY1, Pa-THY2, and Pa-THY3. No signal peptide was detected in Pa-THYs by the SignalP 3.0 
software. These three proteins are hydrophilic non-transmembrane proteins. The secondary 
structure of the protein is mainly composed of an alpha helix and irregular curl. According to 
sequence BLAST (Basic Local Alignment Search Tool) results, the longest sequence of THY3 was 
wholly contained THY1 and THY2. By using motif scan software, we found that THY3 have five 
“THY” domains, THY1 and THY2 have four and three “THY” domains, respectively (Table 1). 

Table 1. Results of bioinformatics analysis of Pa-THYs. 

 Pa-THY1 Pa-THY2 Pa-THY3 
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Signal peptide none none none 
Transmembrane no no no 
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“THY” domains 4 3 5 

Figure 1. The gene structure of β-thymosin in P. americana. (a) The structure and composition of
β-thymosin in P. americana. (b) The exon skipping splicing process of P. americana thymosin (Pa-THYs).

Due to skipping splicing of exons, three different transcripts were formed, which named as THY1,
THY2 and THY3. THY3 contains all the exon sequences, while exon 4 is absent in THY1 and exon 2
and 4 are absent in THY2 (Figure 1b). These three transcript sequences were deposited in GenBank.
They contain 507, 393, and 621 base pairs and encode 168, 130, and 206 amino acids respectively. The
molecular weight of the THYs was 19 kDa, 14.6 kDa, and 23.4 kDa, and PI (isoelectric point) was
6.15, 5.70, and 5.95, respectively. The corresponding proteins were named as Pa-THY1, Pa-THY2,
and Pa-THY3. No signal peptide was detected in Pa-THYs by the SignalP 3.0 software. These three
proteins are hydrophilic non-transmembrane proteins. The secondary structure of the protein is mainly
composed of an alpha helix and irregular curl. According to sequence BLAST (Basic Local Alignment
Search Tool) results, the longest sequence of THY3 was wholly contained THY1 and THY2. By using
motif scan software, we found that THY3 have five “THY” domains, THY1 and THY2 have four and
three “THY” domains, respectively (Table 1).

Table 1. Results of bioinformatics analysis of Pa-THYs.

Pa-THY1 Pa-THY2 Pa-THY3

Amino acid 168 130 206
Molecular weight (kDa) 19,039.55 14,582.52 23,435.50

Isoelectric point (PI) 6.15 5.70 5.95
Signal peptide none none none

Transmembrane no no no
Hydrophilic/Hydrophobic Hydrophilic Hydrophilic Hydrophilic

Subcellular locations plasma membrane and
nucleus

plasma membrane and
nucleus

plasma membrane and
nucleus

Alpha helix (%) 52.38% 49.23% 51.%
Random coil (%) 45.24% 47.69% 42.72%

Beta turn (%) 2.38% 3.08% 3.40%
Extended strand (%) 0% 0% 2.43%

“THY” domains 4 3 5
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2.2. Function Domain Analysis of P. americana Thymosin

According to the results of sequence alignment, Pa-THY isoforms 1, 2, and 3 resembled the
“assembly-promoting form” like other multimeric thymosin, which can promote a free barbed-end
filament elongation [6]. This is because they have a long N-terminal helix (green rectangle) and unstable
C-terminal structure which was decided by two function residues (red rectangle) [20,21] (Figure 2).
Additionally, multimeric thymosin contains more than two “THY” domains, which can bind at least
two G-actins [17]. The “THY” domain has a highly conserved region. In vertebrates, the conserved
motif sequence is LKKTET [13], while in P. americana and other invertebrates the motif sequences are
LKH(R)TET, MKKAET, and MKPTQT (black rectangle), respectively (Figure 2). Pa-THY isoforms 1, 2,
and 3 have 4, 3, and 5 domains, respectively, which means that they can combine more and different
numbers of G-actin, hence their properties may be different from each other.
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The results were confirmed by bacterial PCR and Sanger sequencing (TSINGKE, Beijing). Then, the 
E. coli was induced to express the THYs protein and Ni-affinity chromatography was used to purify 
the proteins. As expected, after being analyzed by SDS-PAGE, recombinant protein Pa-THY1, 
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Figure 2. Function domains analysis of thymosins. Alignment of five Pa-THYs domains with the other
four thymosins from different species (Ciboulot (Cib D, three), Actobidin (Act D, two), tetra thymosinβ
(Ce D, four), and human thymosin β4 (HsTβ4 D, one)). α-helix, motif sequences, and function residues
were marked by green, black and red rectangle, respectively.

2.3. Expression and Purification of Recombinant Protein Pa-THYs

Recombinant plasmids (PET-THYs) were transformed into E coli BL21 (DE3) (Novagen, USA).
The results were confirmed by bacterial PCR and Sanger sequencing (TSINGKE, Beijing). Then, the E.
coli was induced to express the THYs protein and Ni-affinity chromatography was used to purify the
proteins. As expected, after being analyzed by SDS-PAGE, recombinant protein Pa-THY1, Pa-THY2
and Pa-THY3 with a molecular mass of approximately 25 kDa, 20 kDa and 30 kDa were detected
(Figure 3). All of the above proteins were soluble. In order to get higher concentration protein, the
Millipore was used to concentrate these proteins. After that, the concentration of protein was about
3 µg/µL (Pa-THY1), 2 µg/µL (Pa-THY2), and 3 µg/µL (Pa-THY3), respectively.

2.4. Pa-THYs Promoted Cell Migration of Fibroblasts

To confirm the bioactivity and the ability for wound healing of purified proteins (Pa-THYs), the
fibroblasts (NIH/3T3) were used to evaluate the ability of Pa-THYs on cell migration and proliferation.
An in vitro cell scratch was performed to investigate the effect of Pa-THYs on the migration of
fibroblasts. The results showed that Pa-THYs proteins promoted migration of fibroblasts with different
concentrations. Based on the quantitative analysis of cell migration rates, Pa-THYs and Tβ4 obviously
accelerated the migration of fibroblasts compared to PBS (phosphate buffer saline), and Pa-THY3 had a
stronger effect than others during cell migration in a low concentration (0.1 µg/mL). For Tβ4, Pa-THY1
and Pa-THY2, the best concentration for cell migration was 1 µg/mL, while for Pa-THY3 was 0.1 µg/mL.
Increasing protein concentration revealed a negative effect for cell migration in Tβ4 and all Pa-THYs
proteins (Figure 4a,b).
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Figure 4. Effects of Pa-THYs on the migration and proliferation of fibroblasts. (a) Representative
images of NIH/3T3 cells treated by Tβ4 and Pa-THYs proteins (0, 0.1 µg/mL, 1 µg/mL and 10 µg/mL).
Magnification, ×200. (b) Quantification of wound-healing assays in NIH/3T3 cells treated with Tβ4 and
Pa-THYs proteins. The wound healing percentage was compared with control group. (c) Cell viability
of NIH/3T3 cells treated by Tβ4 and Pa-THYs proteins with different concentrations (0, 0.01 µg/mL,
0.1 µg/mL, 1 µg/mL, and 10 µg/mL).
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MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue
Tetrazolium Bromide) assays were employed to determine the effects of Pa-THYs on the proliferation
of fibroblasts. Compared to the control group, all Pa-THYs and Tβ4 with different concentrations had
no effect on the proliferation of fibroblasts (Figure 4c).

2.5. Recombinant Protein Pa-THYs Promoted Wound Healing

Previous data showed considerable migration effects of Pa-THYs on fibroblasts and initially
proved that Pa-THYs were involved in wound healing. To observe the effect of Pa-THYs on wound
healing, a full-thickness skin wound model was established on the dorsal region of mice. Mice were
treated with Pa-THYs proteins every day (24 h interval), with PBS treatment as a negative control and
Tβ4 treatment as a positive control. The body weight and area of wounds were measured every two
days. The surface changes of dermal wounded skin and the images of the wound appearance were
observed and obtained every two days after treatment. During the wound healing process, all wounds
were dry and had a large scar at first, then the scar of Tβ4 and Pa-THYs groups became moist and
granulation tissue appeared while those in the PBS group were about to fall off (Figure 5a). Compared
to PBS and Tβ4 groups, Pa-THYs groups showed obvious wound contraction since day 3. Based on the
statistical data, Pa-THYs groups significantly accelerated wound healing compared with the PBS group
at day 3, Pa-THYs and Tβ4 treatment significantly accelerated wound healing compared with PBS
group at day 9 and 11 (Figure 5b). The results also showed that the mice’s body weight was not affected
after treatment (Figure 5c). Obvious abnormal behavior or noticeable toxicity were not observed.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 18 
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compared with the PBS group, there were a large number of granulation tissues were formed in 
Pa-THYs and Tβ4 treated groups. On day 7, as expected, the results clearly demonstrated that a high 
level of inflammation reaction happened in the PBS group. By contrast, the inflammatory response 
was milder in Tβ4 and Pa-THYs treated groups, and granulation tissues almost filled the whole 
wound area. On day 10, except for the PBS group, inflammatory cells nearly disappeared in the 
other treated groups and the wound area displayed better epithelialization, forming a complete 
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There was no obvious difference between the treated groups (Figure 6). 

Figure 5. Effects of Pa-THYs proteins on wound healing in mouse models. (a) Representative images
of skin wounds treated by Tβ4 and Pa-THYs proteins at indicated time points (0 d, 3 d, 5 d, 7 d, 9 d,
and 11 d). (b) Quantification data of wound-healing closure in mice treated with Tβ4 and Pa-THYs
proteins at indicated time points (0 d, 3 d, 5 d, 7 d, 9 d, and 11 d). * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001. (c) The body weight of mice treated with Tβ4 and Pa-THYs proteins at indicated time
points (0 d, 3 d, 5 d, 7 d, 9 d, and 11 d).
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2.6. Pa-THYs Promoted Wound Healing by Accelerating Dermal Regeneration

To examine the effect of Pa-THYs on dermal regeneration, we collected the dermal tissues of mice
treated by Tβ4 and Pa-THYs proteins at indicated time points (3 d, 5 d, 7 d, and 10 d). We analyzed the
formation of granulation tissue and the proliferation of fibroblasts and inflammatory cells by H&E
(hematoxylin-eosin) staining. Compared with the PBS group, our results indicated that there were a
large number of fibroblasts and monocytes that migrated to the bottom of the wound area in Tβ4 and
Pa-THYs treated groups on day 3 and few granulations were formed. On day 5, compared with the
PBS group, there were a large number of granulation tissues were formed in Pa-THYs and Tβ4 treated
groups. On day 7, as expected, the results clearly demonstrated that a high level of inflammation
reaction happened in the PBS group. By contrast, the inflammatory response was milder in Tβ4
and Pa-THYs treated groups, and granulation tissues almost filled the whole wound area. On day
10, except for the PBS group, inflammatory cells nearly disappeared in the other treated groups and
the wound area displayed better epithelialization, forming a complete epithelial structure (stratum
corneum, hyaline layer, granular layer, spinous cell layer, basal layer). There was no obvious difference
between the treated groups (Figure 6).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 18 
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neovascularization during wound healing, the blood vessels were observed at indicated time points 
by CD31 (Platelet endothelial cell adhesion molecule-1) immunohistochemistry. Compared to the 
PBS group, Pa-THYs could significantly promote angiogenesis in the early stages of wound healing. 
As is seen, there were many newly formed blood vessels at the bottom of the wound area on days 3 
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Figure 6. The H&E (hematoxylin-eosin) staining of dermal tissues treated with Tβ4 and Pa-THYs
proteins. a: adipose tissue; c: connective tissue; f: fibroblasts; g: granulation tissue; sc: stratumcorneum;
tl: transparent layer; tg: granular layer; pc: prickle cell layer; bl: basal layer; D: dermis; monocytes:
marked by black arrowhead (Scale bar = 100 µm, ×200).
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2.7. Pa-THYs Promoted Wound Healing Through Stimulating Angiogenesis

Angiogenesis is a critical process for wound healing in that newly formed blood vessels supply
nutrients, amino acids, and oxygen to stimulate wound repair [22]. To evaluate the neovascularization
during wound healing, the blood vessels were observed at indicated time points by CD31 (Platelet
endothelial cell adhesion molecule-1) immunohistochemistry. Compared to the PBS group, Pa-THYs
could significantly promote angiogenesis in the early stages of wound healing. As is seen, there were
many newly formed blood vessels at the bottom of the wound area on days 3 and 5. Compared to the
PBS group, the CD31+ area in Tβ4 and Pa-THYs treated groups were significantly increased on day 3
and day 5. After that, the new blood vessels significantly increased on day 7 and day 10 in PBS group
while the new blood vessels showed no obviously variation in Tβ4 and Pa-THYs treated groups, and a
large number of stripe-like blood vessels remained in the PBS group on day 10 (Figure 7).
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ANOVA analysis,; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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2.8. Pa-THYs Promoted Wound Healing Through Stimulating Collagen Deposition

Collagen is an important component for reconstructing dermis tissues at wound sites [23].
Masson’s trichrome staining was applied to describe collagen deposition (the blue shaded area) in
dermal tissues treated with Tβ4 and Pa-THYs proteins. As showed in Figure 8, compared with the
PBS group, significant accumulation of the collagen fibers was observed in the bottom of wound
tissues when treated with Tβ4 and Pa-THYs proteins on day 3 and day 5. From day 5 to day 10,
collagen gradually filled up with the whole wound tissue in all groups. Statistical analysis found
that collagen fibers were slowly formed on day 10 in Pa-THYs groups compared to PBS and Tβ4
treated groups. These data indicated that Pa-THYs could promote wound healing through stimulating
collagen deposition in early stage.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 18 
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factor (VEGF), fibroblast growth factor (b-FGF), transforming growth factor-β (TGF-β), matrix 
metallopeptidase 2 (MMP-2), and PDGF-BB at indicated time points (3 d, 5 d, 7 d, and 10 d). β-actin 
was used as a reference housekeeping gene to assess the different expression of factors between each 
group. As seen in Figure 9, our results show that all the factors participated in wound repair and that 
different Pa-THYs proteins may promote wound healing in different ways. Compared with the PBS 
group, Pa-THY1 mainly stimulated the expressions of b-FGF, MMP-2, TGF-β and PDGF-BB, but no 
factors significantly increased. Pa-THY2 mainly stimulated the expressions of MMP-2, TGF-β and 
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day 7 and PDGF-BB significantly increased in day 10.  

Figure 8. Masson staining of wound areas in dermal tissues treated with Tβ4 and Pa-THYs proteins
(Scale bar = 500 µm, ×40). All the groups compared to PBS group in certain time point, two-way
ANOVA analysis, * p < 0.05; ** p < 0.01; **** p < 0.0001.
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2.9. Pa-THYs Stimulating the Expression of Cytokines and Growth Factors

To confirm the role of cytokines and growth factors to wound healing after Tβ4 and Pa-THYs
proteins treatment, we examined the expression of relative factors (vascular endothelial growth
factor (VEGF), fibroblast growth factor (b-FGF), transforming growth factor-β (TGF-β), matrix
metallopeptidase 2 (MMP-2), and PDGF-BB at indicated time points (3 d, 5 d, 7 d, and 10 d).
β-actin was used as a reference housekeeping gene to assess the different expression of factors between
each group. As seen in Figure 9, our results show that all the factors participated in wound repair and
that different Pa-THYs proteins may promote wound healing in different ways. Compared with the
PBS group, Pa-THY1 mainly stimulated the expressions of b-FGF, MMP-2, TGF-β and PDGF-BB, but
no factors significantly increased. Pa-THY2 mainly stimulated the expressions of MMP-2, TGF-β and
PDGF-BB, and TGF-β significantly increased in day 5 and day 10. Pa-THY3 mainly stimulated the
expressions of MMP-2 and PDGF-BB to accelerate wound healing, MMP-2 significantly increased in
day 7 and PDGF-BB significantly increased in day 10.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 18 
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(b-FGF), transforming growth factor-β (TGF-β), matrix metallopeptidase 2 (MMP-2), and platelet 
derived growth factor-BB (PDGF-BB) in mice treated with Tβ4 and Pa-THYs proteins were 
determined by qRT-PCR. All the factors were compared to PBS group in certain time point, Two-way 
ANOVA analysis, * p < 0.05; ** p < 0.01; *** p < 0.001. 
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the number of “THY” domains ranges from 2 (Drosophila melanogaster, NP_726909.1) to 27 (Hydra 
vulgaris, AAW82079.1) [16]. Different splicing methods could produce a variety of β-thymosin 
isoforms, and it can significantly increase the complexity of thymosin in invertebrates [15]. For 
example, there are two thymosin isoforms (HaTHY1 and HaTHY2) in Helicoverpa armigera, which are 
expressed differently in different organs and co-regulated growth and immune reaction [18]. In this 
study, due to exons alternative splicing, three P. americana thymosin isoforms were formed. The 4, 3, 
and 5 “THY” domains were identified in THY1, THY2 and THY3, respectively. A similar 
phenomenon was also found in other species such as the fruit fly [24], cotton bollworm [18], and 
termite [25]. Thus, the functions of these three isoforms may be different.  

Figure 9. The expressions of vascular endothelial growth factor (VEGF), fibroblast growth factor
(b-FGF), transforming growth factor-β (TGF-β), matrix metallopeptidase 2 (MMP-2), and platelet
derived growth factor-BB (PDGF-BB) in mice treated with Tβ4 and Pa-THYs proteins were determined
by qRT-PCR. All the factors were compared to PBS group in certain time point, Two-way ANOVA
analysis, * p < 0.05; ** p < 0.01; *** p < 0.001.
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3. Discussion

In vertebrates, β-thymosins usually have one conserved “THY” domain, while in invertebrates,
the number of “THY” domains ranges from 2 (Drosophila melanogaster, NP_726909.1) to 27 (Hydra
vulgaris, AAW82079.1) [16]. Different splicing methods could produce a variety of β-thymosin isoforms,
and it can significantly increase the complexity of thymosin in invertebrates [15]. For example, there are
two thymosin isoforms (HaTHY1 and HaTHY2) in Helicoverpa armigera, which are expressed differently
in different organs and co-regulated growth and immune reaction [18]. In this study, due to exons
alternative splicing, three P. americana thymosin isoforms were formed. The 4, 3, and 5 “THY” domains
were identified in THY1, THY2 and THY3, respectively. A similar phenomenon was also found in
other species such as the fruit fly [24], cotton bollworm [18], and termite [25]. Thus, the functions of
these three isoforms may be different.

Multimeric thymosin could bind to more than one G-actin and enhance motility of filaments by
promoting assembly in the barbed end (+). Its function was similar to profilin: G-actin complex was
only occurring in multimeric thymosin [6,26]. The study found that the N-terminal a-helix amphipathic
(M6, I9 and F12) and N-terminal a-helix length in β-thymosin/WH2 control the affinity of these peptides
for actin, the elongation of N-terminal a-helix of β-thymosin may lead to the loss of actin sequester
function [27,28]. Recent research confirmed that it is also relative to the stability of the C-terminal
helix, which is mainly due to the two sites of Tβ4 (Ser31 and Thr34) were substitution [21,29]. Through
sequence alignment, we found that thymosin from P. americana have a long N-terminal a-helix and
unstable C-terminal helix. We observed that Pa-THYs not only combine more than one G-actin, but
also promote G-actin assembly in the barbed end (+) of filament.

Cell migration involves dynamic change of the cytoskeleton. Multimeric β-thymosin could
combine more than one G-actin to regulate assemble and disassemble of microfilaments. For
example, Ciboulot (Drosophila melanogaster) have three “THY” domains and can bind two G-actin
monomers; tetraThymosin (Caenorhabditis elegans) have four “THY” domains and can bind three G-actin
monomers [17]. Pa-THYs could promote fibroblasts migration but have no effect on proliferation.
It also demonstrated that the ability of Pa-THYs to stimulate fibroblasts migration was Pa-THY3 >

Pa-THY1 > Pa-THY2. Therefore, we speculate that the different ability on cell migration may be related
to the number of “THY” domains.

Wound healing is a complex physiological process of organisms, and is regulated by various cells
and some intra- and intercellular signaling pathways derived from the epidermis and dermis [30].
It involves several interrelated phases, including hemostasis or coagulation (platelet aggregation
and vasoconstriction), inflammation (release cytokines and remove debris), tissue regeneration
(angiogenesis and granulation tissue formation) and tissue remolding (collagen deposition) [31]. Tβ4
could accelerate wound healing either directly applying to the surface of full-thickness dermal wound
or giving intraperitoneal by stimulating angiogenesis, keratinocyte migration, collagen deposition
and wound contraction [7,32–34]. It has also been found that Tβ4 have anti-inflammation properties
in corneal wound healing [35], and cascade four Tβ4 (4xTβ4) was more efficient than standard Tβ4
in wound healing [36]. Researchers suggest that granulation tissue, which is mainly composed of
fibroblasts, macrophages, and new blood capillaries, invades the wound space on the fourth day after
injury [37]. Neovascularization occurs under hypoxic conditions, with the aim of transporting and
utilizating adequate oxygen when tissue is destroyed [22]. In our research, at the early stage of wound
healing, a large amount of fibroblasts, a few granulation tissues, and a few new blood vessels were
observed in Pa-THYs and Tβ4 treatments. On day 7, granulation tissues were nearly filled in the whole
wound, but there were still lots of inflammatory infiltrations in the PBS group. This may be one reason
for delayed wound repair. Once the wound is filled up with new granulation tissue, the new blood
vessels begin apoptosis [38]. On day 10, the wound in treatment groups had completely epithelialized,
the inflammatory reactions and striate vessels disappeared compared with control group. Collagen is
the major component for the improved strength of wound, and increasing collagen deposition can
accelerate the epithelialization [39]. In this experiment, compared with the control group, the treatment
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groups present more collagen deposition at days 3 and 5. All of this confirmed that Pa-THYs could
accelerate wound healing by promoting fibroblast migration, neovascularization, collagen deposition,
and by inhibiting inflammation.

Researchers found that many growth factors are important in wound healing, such as VEGF,
b-FGF, TGF-β, MMP-2, and PDGF-BB [40]. VEGF, b-FGF, and TGF-β are the most potent cytokines
in promoting wound angiogenesis [41,42]. The expression of VEGF can be directly up-regulated by
b-FGF, thus they have a synergistic effect [43]. MMPs were reported to be upregulated during wound
healing when treated with Tβ4 [5]. PDGF-BB was approved for treatment of diabetic foot ulcers by the
FDA [44], and it was reported that there is a more pronounced effect on myocardial angiogenesis when
combined with PDGF-BB and b-FGF [45]. Previously, Tβ4 was reported to up-regulate the expression
of VEGF and MMPs during dermal wound repair [46,47], which is in accordance with the results of
our experiment. Most interestingly, researchers found that the new blood vessels were not formed
after long time use Tβ4 to cure injured corneal [48]. This indicated that VEGF was not the major factor
to promote angiogenesis. In this study, after treatment with protein Pa-THY1, Pa-THY2, and Pa-THY3,
the expression changes of above factors were different. Pa-THY1 can obviously enhance the expression
of b-FGF, MMP-2, TGF-β, and PDGF-BB. Pa-THY2 enhanced the expression of MMP-2, TGF-β, and
PDGF-BB. Pa-THY3 up-regulated the expression of MMP-2 and PDGF-BB. Therefore, we suspect
that different isoforms of thymosin from P. americana may regulate wound healing through different
signal pathways. Further studies are required to evaluate the molecular mechanisms of Pa-THYs for
accelerating wound healing.

4. Materials and Methods

4.1. Bioinformatics Analysis for DNA Sequences of P. americana Thymosin

We identified the gene and transcript sequences of P. americana thymosin from genomic and
transcriptional databases which were built by our lab [49]. The introns and exons of the P. americana
thymosin gene sequence were analyzed by the softberry program (http://linux1.softberry.com/all.htm).
According to alternative splicing, there are three different transcript variants (THY1, THY2, and
THY3) in P. americana thymosin. All complete thymosin cDNA sequences were deposited in GenBank
(accession No. MK573540, MK573541, MK573542). The DNA sequences were analyzed by the online
program at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Conserved motifs were determined using
Motif Scan (http://myhits.isb-sib.ch/cgi-bin/motif_scan) and signal peptide was predicted using the
SignalP Server (http://www.cbs.dtu.dk/services/SignalP/). The theoretical PI and molecular mass were
estimated by ExPASy (http://www.expasy.ch/tools/peptide-mass.html).

4.2. Cloning, Expression, and Purification of Pa-THYs

The sequences of THYs were cloned into a PET-28(a) vector, the proteins Pa-THYs were
expressed in E. coli cells and purified by His Trap TMFF crude. Briefly, the sequences of THYs
were amplified from the total cDNA of P. americana with specific primers, as follows: PET-Pa-F (EcoR
I): 5′-CGCGAATTCATGTCGGCCCCAGTC-3′; PET-Pa-R (Xho I): 5′-CCGCTCGAGTTATGCTTTCTT
CTCTTCATCG-3 and then cloned into PET-28(a) vector at EcoR I and Xho I recognition sites. The
plasmids of PET-THY1, PET-THY2, and PET-THY3 were transformed into E. coli BL21 (DE3) competent
cells for the final expression. The proteins (Pa-THY1, Pa-THY2, and Pa-THY3) were induced by
isopropyl β-D-thiogalactoside (IPTG) at 37 ◦C for 6 h. The cells were harvested by centrifuging at
8000 rpm for 10 min and suspending in a 1× PBS phosphate buffer. The E. coli was shattered using
ultrasonication, then centrifuged at 12,000× g for 10 min at 4 ◦C to remove the precipitate. The
recombined proteins were purified by His Trap TMFF crude (1 mL) according to the manufacturer’s
instructions and analyzed with SDS-PAGE. To get the high concentration of these proteins, they were
concentrated by an ultrafiltration centrifuge tube (Millipore, Massachussettes, USA), and the total
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protein concentration was measured by BCA (bicinchoninic acid) protein assay kit (Biosharp, Hefei,
Anhui, China) according to the manufacturer’s instructions.

4.3. Cell Culture

The NIH/3T3 cell line was provided by the Core Facility of West China Hospital. The NIH/3T3 cell
was cultured with DMEM (HyClone, Boston, MA, USA) supplemented with 10% fetal bovine serum
(FBS) at 37 ◦C in a humidified atmosphere of 5% CO2.

4.4. Cell Migration and Proliferation Assays

Effects of Pa-THYs on NIH/3T3 cell migration were determined by wound healing assay. Briefly,
wound healing assay was carried out in six-well plates (3 × 105 cells/well), wounds were created using
a pipette tip. The cells were then rinsed with PBS to remove any free-floating cells and debris. After
washing, the medium was replaced by a control medium with different concentrations (0, 0.1, 1 and 10
µg/mL) Pa-THYs, and the cells were incubated at 37 ◦C. The area of wound healing was observed at 0,
and 24 h, and representative images for each concentration were photographed. NIH/Image J software
(https://imagej.net/NIH_Image) was used for quantification of the scratch wound area based on an
edge-detection and thresholding technique. We calculated the migrated area by calculating the blank
area of the scratch in different time point after Pa-THYs protein treatment.

Effects of Pa-THYs on NIH/3T3 cell proliferation were determined by MTS
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)
(72 h) assays. Briefly, MTS assays were carried out in 96-well plates (2000 cells/well, five replicates),
and the treatments of proteins were initiated at 24 h post-seeding, cells were cultured for 72 h. Then
20 µL MTS (Promega, Madison, WI, USA) was added to each well (100 µL medium) and incubated
for 1–2 h at 37 ◦C. OD490 was measured by a Gen5 Microplate Reader (BioTek, Winooski, Vermont,
USA) according to the manufacturer’s instructions. IC50 values were calculated by GraphPad Prism 5
(San Diego, CA, USA).

4.5. Animal Model

The P. americana were raised in our lab in an appropriate environment (T: 25–30 ◦C; humidity:
70–80%). Synthetic Tβ4 was purchased from Shanghai Zhengyan Chemical Technology Co., Ltd.
(Shanghai, China). A total of 75 free of viruses, bacteria and parasites KUNMING mice (7 weeks
old, male) were purchased from Da Shuo (Cheng Du, China). The mice were raised in a standard
laboratory pellet diet and water ad libitum about a week to adapt the environment under controlled
temperature (22–25 ◦C) and humidity (about 60%) with a 12 h light/ dark cycle. All animals testing
used in this study were performed in accordance with guidelines of the Animal Care Committee of
Sichuan University (Chengdu, China).(20190412001, 12, April 2019).

Before the mouse model was established, all mice were anesthetized by intraperitoneal injection of
10% chloral hydrate. Under sterile conditions, the dorsal hair of the mice was shaved and completely
removed with hair removal cream (Veet, Tokyo, Japan), then the skin was sterilized with 75% EtOH
and a circular full-thickness excisional wound on dorsal of each mouse was made, 1.2 cm in diameter,
which was created by a surgical scissor. The mice were divided into five groups of fifteen animals,
each including: control group with wound and PBS treatment, positive group with wound and Tβ4 (5
µg) treatment, test group I with wound and Pa-THY1 (5 µg) treatment, test group II with wound and
Pa-THY2 (5 µg) treatment, test group III with wound and Pa-THY3 (5 µg) treatment. After 24 h of
surgery, they were applied to the wound by pipetting the liquid (50 µL) directly into the wound area
until 11 days later. The wounds were left open with no dressing.

4.6. Macroscopic Evaluation

Appetite and general health conditions were monitored daily, and body weight was measured
every other day. For wound area study, the wound beds were photographed with a digital camera
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and a ruler at the specific time points (0 d, 3 d, 5 d, 7 d, 9 d, and 11 d). Wound images were used to
calculate the wound area by the NIH/Image J software. The following equation was used to measure
the rate of wound closure,

y(n) =
A0 −Xn

A0
· 100% (1)

where y (n): the rate of wound closure (%); A0: wound area at day 0; Xn: wound area at day (n).
Wound healing curves were constructed by Graph Pad Prism 5.

4.7. Sample Collection and Histological Analysis

To examine re-epithelialization, granulation tissue, vessel counts, and collagen content of the
wounds, three mice from each group were euthanized at 3, 5, 7, and 10 days after treatment. The entire
wound and adjacent wound were harvested down to the fascia, and then bisected through the center
of the lesion to get the largest diameter of the wound, one-part tissue was stored in liquid nitrogen
to detect the expression of relative factors and another part was fixed in formalin solution (4%) for
histological evaluation of wound healing. The fixed tissue samples were routinely processed and
embedded in paraffin, 4 µm sections of middle wound bed were stained with hematoxylin and eosin
(HE), CD31 antibody and Masson Trichrome. The positive area of CD31 and collagen deposition were
measured by NIH/Image J software (https://imagej.net/NIH_Image).

4.8. RNA Extraction and qRT-PCR

Total RNA was extracted frozen tissues of wound healing models by using Trizol reagent (Takara,
Japan) according to the manufacturer’s instructions. The purity and concentration of total RNA
were determined by UV Spectrophotometer (Eppendorf, Hamburg, Germany) and 1% agarose gel
electrophoresis. The first-stand cDNA was synthesized by the HiScript®II 1st Strand cDNA Synthesis
Kit (Vazyme, Nanjing, China) following the manufacturer’s instructions. The primers of the quantitative
real-time PCR (qRT-PCR) was designed by Prim5 software (Table 2). The qRT-PCR was used to detect
relative expression of b-FGF, PDGF-BB, TGF-β, VEGF, and MMP-2 by an ABI 7500 real-time PCR
detection system (ABI, Carlsbad, CA, USA), and the relative expression of these genes were normalized
by an internal control (β-actin). The qRT-PCR final reaction volume was 20 µL which was added
according to the instructions, and under the following conditions: 2 min of pre-denaturation at 95 ◦C,
followed by the 30 cycles for 15 s, 59–60 ◦C for 15 s, and 72 ◦C for 30 s, and each reaction was performed
in triplicate. Relative expression of genes was calculated using the 2−∆∆CT method.

Table 2. Oligonucleotide primers used in the experiments.

Primer Name Sequence F (5′–3′) Sequence R (5′–3′)

VEGF F:CTACTGCCGTCCGATTGA R:TCTCCGCTCTGAACAAGG
TGF-β F:AATACGTCAGACATTCGGGAAGCA R:GTCAATGTACAGCTGCCGTACACA
b-FGF F:TGCTTCCACCTCGTCTGTCT R:GAGGCAAAGTGAAAGGGACC

MMP-2 F:GAACTTGCGATTATGCCATGATGAC R:TCTGAGGGATGCCATCAAAGAC
PDGF-BB F:CCAGGACGGTCATTTACG R:TGGTCTGGGTTCAGGTTG
β-actin F:CATCCGTAAAGATCTATGCCAAC R:ATGGAGCCACCGATCCACA

4.9. Statistical Analysis

Data was shown as mean ± SD. The data were performed using a student’s t-test (for two groups),
one-way ANOVA followed by Tukey’s test (for more than two groups) and two-way ANOVA followed
by multiple comparisons were performed using Graph Pad Prism 5 (San Diego, CA, USA). The p-value
< 0.05 was considered to be significant, the p-value < 0.01 was considered to be extremely significant.
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Abbreviations

IPTG isopropyl β-D-thiogalactoside
Tβ4 human thymosin β4
THY P. americana thymosin
VEGF vascular endothelial growth factor
TGF-β transforming growth factor-β
b-FGF fibroblast growth factor
MMP-2 matrix metallopeptidase 2
PDGF-BB platelet derived growth factor-BB
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