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Abstract: Cognitive effort is intrinsically linked to task difficulty, intelligence, and mental toughness.
Intelligence reflects an individual’s cognitive aptitude, whereas mental toughness (MT) reflects
an individual’s resilience in pursuing success. Research shows that parietal alpha oscillations are
associated with changes in task difficulty. Critically, it remains unclear whether parietal alpha os-
cillations are modulated by intelligence and MT as a personality trait. We examined event-related
(de)synchronization (ERD/ERS) of alpha oscillations associated with encoding, retention, and recog-
nition in the Sternberg task in relation to intelligence and mental toughness. Eighty participants
completed the Sternberg task with 3, 4, 5 and 6 digits, Raven Standard Progressive Matrices test and
an MT questionnaire. A positive dependence on difficulty was observed for all studied oscillatory
effects (t = −8.497, p < 0.001; t = 2.806, p < 0.005; t = −2.103, p < 0.05). The influence of Raven
intelligence was observed for encoding-related alpha ERD (t = −2.02, p = 0.049). The influence of MT
was observed only for difficult conditions in recognition-related alpha ERD (t = −3.282, p < 0.005).
Findings indicate that the modulation of alpha rhythm related to encoding, retention and recognition
may be interpreted as correlates of cognitive effort modulation. Specifically, results suggest that effort
related to encoding depends on intelligence, whereas recognition-related effort level depends on
mental toughness.

Keywords: alpha oscillations; effort; encoding; mental toughness; recognition; retention; task difficulty;
working memory

1. Introduction

Mental toughness is a personality trait that enables individuals to cope better with
challenging tasks. Behavioral research shows that individuals who score high on mental
toughness have higher productivity [1], academic performance [2] and performance on
cognitive tasks [1,3–6]. It is believed that people with high mental toughness scores invest
more effort in cognitive tasks by encoding relevant information and inhibiting irrelevant
information, which leads to better performance [7]. According to neuroimaging studies,
encoding relevant and inhibiting irrelevant information is reflected in desynchronization
and synchronization in the parietal alpha rhythm, respectively [8–10]. Individual variability
of desynchronization and synchronization in parietal alpha rhythms may be related to
emotional and motivational processes related to task difficulty, as a consequence, expressed
by a varying degree of effort [11,12]. No study to date has investigated interrelations among
brain correlates of cognitive processes, intelligence and mental toughness. The present
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electroencephalography (EEG) study investigates how variability in mental toughness
and intelligence relates to parietal alpha oscillations recorded during working memory
processes (i.e., encoding, retention, retrieval) across four levels of difficulty. The results
of our study will improve understanding of the role of personality characteristics in the
performance of various cognitive processes and advance knowledge on the cognitive
mechanism for the distribution of effort between different cognitive processes.

Alpha oscillations (8–13 Hz) are a dominant (peak) frequency in adults [9]. Alpha
power is thought to be the inverse correlate of brain activation: inhibition of alpha power
is interpreted as the arousal of the cortex, during which a variety of cognitive processes
are required to perform various complex cognitive tasks [10,13–15]. The degree of alpha
power suppression is positively correlated with indicators of brain activation obtained using
functional magnetic resonance imaging [16,17]. Different opinions exist about the functional
significance of the alpha rhythm. Some authors suggest that EEG alpha oscillations do
not have any functional significance and reflect a biological artifact [18], whereas others
propose that the alpha-rhythm is a marker of cognitive inactivity or generalized idling
brain state [19,20]. More recent hypotheses relate the alpha rhythm with inhibitory control
and redistribution of neural resources [21].

Stimulus-related alpha power suppression relative to a prestimulus baseline is termed
event-related desynchronization (ERD). ERD is observed in a wide variety of cognitive
tasks that require perceiving a stimulus such as mental arithmetic [22,23], reading [24,25],
task conditions engaging specific attention and memory processes [26–29], memorization
tasks [30], and working memory [31,32]. Notably, most studies report ERD in the parietal
cortex. The parietal cortex serves a crucial role in transforming sensory input into motor
output and is involved in many cognitive operations, including spatial representation,
attention, sensorimotor transformation and abstract planning [33]. Research shows that the
lower the alpha power associated with a stimulus, the higher the accuracy of the task [9,10].
There is a general agreement that alpha desynchronization reflects cortical activation [10]
and is directly related to the expenditure of resources necessary to complete a cognitive
task [34]. Further, ERD increases with the complexity of the task, as more complex tasks
require more cognitive resources [9,34,35]. This effect reveals the relation of alpha desyn-
chronization with attentional demand and may reflect an increase in sustained attention
and in the amount of allocated cortical resources [30], which may be driven by activation
of thalamocortical networks associated with memory processes [36]. Some authors suggest
that alpha desynchronization reflects the amount of encoded and retrieved information
that is parametrically related to the decrease in synchronized firing of neurons [37–39].
Researchers have also interpreted this effect as an increase in effort invested in task perfor-
mance [40,41]. Overall, parietal alpha ERD is associated with cortical activation reflecting
expenditure of cognitive resources.

Event-related synchronization (ERS) was the focus of fewer EEG studies. ERS reflects
an increase in alpha power. It occurs when a task requires inhibiting a response [10],
ignoring irrelevant distractors [42] or retention of information in working memory [8,43].
Researchers interpret ERS as inhibition or inhibitory control, which allows one to slow
down cognitive processes and ignore irrelevant information [8,10]. Some suggest that
alpha synchronization reflects inhibition of task-irrelevant regions of the neuronal network
that allows information to gate into task-relevant brain areas [10,44]. Moreover, when
performing tasks that require information retention, alpha synchronization is interpreted
as active processing associated with memory maintenance [45]. This phenomenon also
increases with the complexity of the task [46,47], which may reflect the ‘idling’ of this
frequency band or increased top-down functional inhibition of brain regions that can
possibly perturb maintenance when attentional demands are higher [9,47]. Thus, ERS is
associated with inhibitory processes needed during problem solving.

In the current study, we examine ERS and ERD alpha correlates of the Sternberg task [48].
The Sternberg task is a popular working memory task. It requires participants to encode a set
of items presented on the screen, retain them for a short period of time, and in a subsequent
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screen identify whether a target item was a member of the original set. Neuroimaging
studies show that these three stages of performance are expressed in the modulation of
the alpha rhythm [8,43,49,50]. Posterior ERD is observed during the stage of encoding
information (ERD during encoding), posterior ERS is observed during the stage of information
retention (ERS during retention), and posterior ERD is observed again before and during
the response phase (ERD related to response preparation and execution). ERD related to
encoding [51] and retrieving [46] and ERS related to retention [46,47,49] increases with task
difficulty. Critically, no study has revealed in the same sample both effects when examining
Sternberg task performance. Specifically, studies that examined both these effects did not
reveal significant relations between encoding-related ERD and task difficulty [8,46,47,49,50].
Further, most studies do not calculate the individual alpha frequency for their analyses, while
alpha frequency peak is known to show large individual differences and, thus, analysis of
fixed frequency ranges may not be useful for studying alpha power modulation effects [9].
Our study examines the first-time effects of ERD/ERS across four levels of difficulty and
across three cognitive processes (encoding, retention and responding). The main goal of our
study is to identify how ERD/ERS related to difficulty and cognitive process are modulated
by individual differences in mental toughness and intelligence.

Individual differences correspond to variation in traits and characteristics among
individuals. Intelligence has been shown to be an important factor for task performance in
numerous EEG studies [52,53]. Some studies showed that people with high intelligence
demonstrate lower ERD when performing a task [11,54,55]. The Neural Efficiency hypoth-
esis proposes that participants with higher intelligence are more efficient and thus can
complete a task with less resources [56]. However, other studies observe the opposite effect,
showing that ERD is increased in individuals with high intelligence when performing a
task [57–59]. Authors often suggest that highly intelligent participants have access to more
resources in solving challenging tasks. Differences in parietal cortex activation (expressed
in both ERD; [57] and in blood oxygenated level-dependent signal [55,60]) for individuals
who scored high and low on intelligence tests are proposed to vary by difficulty level.
Specifically, the neural efficiency effect is observed in easy tasks, whereas for difficult tasks
that require higher cognitive effort, the opposite effect is observed [56].

Analysis of brain activity as a function of performance scores (i.e., subjective) rather
than a priori (i.e., objective) levels of difficulty also demonstrated fluctuations as a function
of tasks that were experienced as easy or difficult [61]. Specifically, brain activity increased
in highly intelligent participants and decreased in less intelligent participants when the
task became difficult. Since subjective task difficulty was analyzed, it was suggested that
the effect was driven by an individual’s reaction to subjective difficulty rather than by
difficulty level. The authors suggested that this dependency should be explained by the
level of motivation to perform difficult tasks, which differs between high-performing and
control participants [56,61]. This assumption is also consistent with findings showing a
trend towards a decrease in cortical activation at the most difficult levels for less intelligent
participants [57], which is unlikely to be explained by the achieved ceiling effect. Critically,
as studies do not typically use tasks with various levels of difficulty this effect has not
been systematically investigated using EEG. Our study will examine behavioral and brain
indices across four levels of task difficulty.

According to the Expected Value of Control Theory of mental effort [62], the resources
allowed to activate the top-down control processes are limited, which requires their econ-
omy and rational use. Therefore, instead of performing a task at the maximum level of their
capabilities, a person increases the efforts invested in completing a task as its requirements
increase. According to the Motivational Intensity Theory the amount of effort invested,
and therefore the amount of resources spent depends not only on the difficulty of the task
but also on the motivation to complete it [12,63].

Many studies that examined the relationship between alpha power and task diffi-
culty [11,54,55,57–59] did not control for motivational factors. Without considering person-
ality traits associated with motivation, it is difficult to determine whether the modulation
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of alpha activity as an effort indicator is associated with emotional-motivational aspects or
with merely the cognitive capabilities of participants. Mental toughness is a general term
for a set of positive psychological characteristics that play an important role in individual
achievement in various fields of activity as well as mental health [5]. One of the most popu-
lar mental toughness models characterizes mental toughness as a set of four interrelated
but independent components: (1) control: a person’s tendency to feel and act as if one
has an influence on the world around one’s life and the ability to maintain the level of
anxiety is under control; (2) commitment: a tendency to actively and persistently strive for
goals despite the difficulties that arise; (3) challenge: the tendency to view potential failures
as opportunities for self-development and to continue to strive for desired changes; and
(4) confidence in one’s abilities and in interpersonal relationships: maintaining high self-
esteem of one’s personality and abilities despite setbacks and the ability to develop social
bonds [64]. A mental toughness scale was derived as a factor of individual differences that
allows people to effectively cope with life difficulties (such as negative life events, stressful
situations, and failure in activity) and persistently pursue their goals [5]. Research shows
that mental toughness correlates with motivation and goal orientation [65,66]. Moreover,
mental toughness is positively associated with the level of productivity of employees with
a high level of perceived stress, as well as with academic performance [1,3]. Thus, mental
toughness reflects the set of personality characteristics necessary to maintain a sufficient
level of effort when difficult tasks arise [5]. We hypothesize that when solving relatively
easy tasks, the variability in alpha power related to task performance should be explained
by intelligence, and when performing difficult tasks, this variability should be explained by
the motivational indicators associated with the personality’s reaction to subjective difficulty
(i.e., mental toughness). We hypothesize that the influence of motivational aspects as assessed
by mental toughness is not driven by intelligence. Importantly, according to our knowl-
edge, no study has dissociated the impact of individual differences associated with mental
toughness and intelligence on the relationship between alpha power and task difficulty.

The current study examines for the first time the influence of mental toughness and
intelligence on the relation between parietal alpha rhythm responses to three phases (encod-
ing, retention and responding) and four difficulty levels of the Sternberg task. Specifically,
we test the following main hypotheses: (1) ERD during encoding, ERS during retention,
ERD during recognition are related to task accuracy; (2) ERD during encoding, ERS during
retention, ERD during recognition increase with Sternberg task difficulty; (3) Only in easy
task conditions, Raven scores will correlate with the alpha power effects; (4) Only in difficult
task conditions, mental toughness scores will correlate with alpha power effects.

2. Materials and Methods
2.1. Participants

Eighty healthy right-handed adult participated in the study (20 ± 3.5 years (mean ±
standard deviation; 49 females). The sample size was determined taking into account the
previous EEG studies described in the Introduction, as well as the known understated power
effect in EEG studies [67]. All participants had normal or corrected-to-normal vision; they
reported no history of neurological, or mental disorders. The experiments were approved
by the ethics committee of the Psychological Institute of Russian Academy of Education and
signed informed consent was obtained from all participants. All experiments were conducted
in a sound-attenuated chamber.

2.2. Materials

Participants completed a numeric Sternberg task with four levels of difficulty during
EEG recording (Figure 1). The stimuli were presented and responses were recorded using
Psychopy2 [68]. Each trial began with the presentation of a cross cue symbol (1 s duration).
A total of 200 ms after the disappearance of the cross, a list of a unique combination of
randomly chosen digits appeared (encoding phase; 1.5 s duration), followed by a blank
screen retention interval (retention phase; 2 s duration), and then a target digit (retrieval
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phase; 2 s duration). Participants were asked to indicate whether a target digit was in the
previous encoding set by pressing a button to respond yes or no. The time participants had
to respond was not limited. The probe was in-set for 50% of all trials, and the order of in-
set/out-set trials was pseudorandomized. There were four pseudorandomized conditions
of difficulty in the experiment: 3, 4, 5, and 6 digits in the encoding set. Each condition
consisted of 30 trials. Before the start of the experiment, participants completed a short
training block with feedback on the accuracy of responses. Responses (correct/error) and
reaction time, calculated as the time taken from the appearance of the probe to the button
response, were recorded for all trials for each difficulty level.

Figure 1. Research materials. (Left panel): Example of stimuli and presentation sequence for the
Sternberg task. (Right panels): (top)—example of the RSPM stimuli; (bottom)—example of the
MTQ48 questions.

Participants completed a Russian adaptation of the Mental Toughness Questionnaire
(MTQ48; Clough et al., 2002), a 48-item inventory that requires responses to statements on a
5-point Likert scale ranging from strongly disagree, to strongly agree. The MTQ48 provides
a total mental toughness (MT) score and measures six subscales of challenge, commitment,
emotional control, life control, confidence in abilities and interpersonal confidence. The
factor structure, validity and; reliability of the MTQ48 questionnaire were supported by
previous studies [64,69].

The Raven’s Standard Progressive Matrices (RSPM) measure general intelligence as a
basic cognitive function. Raven’s Matrices is a visual-spatial test that includes five sets of
twelve different matrices of increasing in difficulty [70] and is designed to measure eductive
(i.e., the ability to make meaning out of confusion) and reproductive (i.e., the ability to
absorb, recall and reproduce information) abilities [71]. RSPM consists of 60 non-verbal
logical-mathematical problems divided into five sets of 12 problems each (sets A, B, C, D
and E), thereby increasing the difficulty both within and across sets [72]. Each problem
includes a matrix of geometric figures with one pattern missing. The participant is asked to
select the correct missing pattern of each matrix from a set of examples [73]. To obtain the
final score, the total amount of points received is calculated (highest score—60 points).

2.3. EEG Equipment

EEG data were recorded from 64 electrodes placed according to the international 10-10
system with a Brain Products ActiChamp amplifier (BrainProducts, Munich, Germany).
All experiments were performed in a soundproofed and electrically shielded room with
dim lighting. The raw signal was recorded without any filtering and the sampling rate was
1000 Hz. Electrode-to-skin impedance was kept below 10 kΩ for all channels with a highly
conductive chloride gel.
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2.4. Data Analysis

EEG preprocessing was performed with Brainstorm software and Python scripts
(including the MNE-Python package, [74]). Based on visual analysis, high-amplitude
artifacts were rejected from the data. Prior to the Independent Component Analysis
(ICA) analysis, bad channels were removed from EEG. ICA ocular correction analysis was
then performed, and components related to eye movements were manually selected and
removed from the data. After ICA, signals in bad channels (e.g., the signal looks flat) were
replaced by spherical interpolations over the neighborhood electrodes. After removing
artifacts, the following number of trials remained in the data: mean = 25 ± 1 for the 3-digit
condition, mean = 34 ± 2 for the 4-digit condition, mean = 28 ± 2 for the 5-digit condition,
and mean = 32 ± 3 for the 6-digit condition. In order to reduce volume conduction effects,
current source density (CSD) transformation was applied to EEG data. Stimulus-locked
epochs for each task difficulty condition were extracted from the data (−300 to 5000 ms
relative to the stimulus). Trials with response times exceeding 3 sigma deviations from the
mean were excluded from the analysis.

CSD signal in each channel was translated into the time-frequency domain using
wavelet transformation with a multitaper approach (tfr_multitaper function from the MNE-
Python package). The 7000 ms were used with a window centered at each 1000 ms time
step from 1 to 40 Hz. A set of good tapers (i.e., those with the least leakage from far away
frequencies) were chosen automatically based on MNE algorithms. The width of wavelets
was different for different bands and was chosen so that the number of cycles was equal to
frequency/2, where the frequency was a range from 1 to 40 Hz. For each time-frequency
bin and each electrode, spectral power averaged over subsets of trials used for the analysis
was calculated.

Finally, baseline normalization of power was performed, thus obtaining event-related
spectral perturbation. To calculate ERD/ERS, the log-ratio baseline was calculated as an
averaged spectral power over the −200 to 0 ms pre-stimulus time window (separately for
each location and each frequency) and applied to the spectral power values. Statistical analysis
was conducted using electrodes selected a priori and confirmed by the peak ERD/ERS of the
alpha rhythm related to the baseline on the topography figures (Figure 2). A priori, alpha
rhythm depression was expected on the parietal lateral electrodes (P3, P4), whereas alpha
rhythm activation was expected to be observed on the parietal-occipital lateral electrodes
(PO7, PO8), in accordance with previous EEG studies using the Sternberg task [47,50].

For statistical analysis, the individual alpha frequency was used (individual peak of
oscillations power in the frequency range from 8 to 13 Hz). Alpha power related to the
baseline was averaged over the selected electrodes in the time range selected using time-
frequency figures and cluster-based permutation t-tests (1000 permutations) using permuta-
tion_cluster_1samp_test function from the mne Python package, that identifies statistically
significant clusters of activity associated with the event. The following time intervals of
interest were chosen: 300–1300 ms for ERD during encoding, 2300–3300 ms for ERS during
retention, 3900–4400 ms for ERD related to the probe for responding (see Figure 2).

For each task difficulty level for each participant, average accuracy calculated as the
proportion of correct responses, reaction time, and alpha power (in electrodes and time
periods of interest) were calculated using R studio. Outliers were removed using the
3 sigma rule for all analyses. The following values were removed as outliers for each
variable: 1 value for the encoding-related ERD variable, 0 values for the retention-related
ERS variable, 1 value for the probe-related ERD variable, 9 values for the reaction time
variable, 7 values for the accuracy variable, 4 values for the Raven score variable, 4 values
for the mental toughness score variable.
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Figure 2. EEG oscillatory activity during Sternberg task trial performance. (A): Time-frequency plots
of baseline-corrected oscillatory activity at the P4 (top) and PO8 (bottom) electrodes. Black outlines
indicate p < 0.05 (permutation statistics). Time is shown relative to the stimulus onset. Black bold
lines on x-axis indicate time periods of stimulus presentation for the encoding and probe stages.
(B): Topographical maps of baseline-corrected alpha band activity at 300–1000 ms, 2300–3300 ms,
3900–4300 ms after stimulus onset.

Below we describe the analysis used to test each hypothesis:

1. ERD during encoding, ERS during retention, and ERD related to responding are
related to task accuracy.

A linear mixed effects model was fitted to test the effect of each EEG variable (e.g., ERD
related to encoding) as a function of accuracy, using the following formula: a target
variable—the EEG component, a predictor—accuracy (correct or error response), a
random effect—participant ID. This random effect was used to control for individual
differences in the EEG effect that can increase individual variability. The Wald z-
statistic was used to test the coefficients of the model.
For all subsequent analyses, only correct responses were selected.

2. ERD during encoding, ERS during retention and ERD related to responding increase
with Sternberg task difficulty.

For each EEG variable, a linear mixed effects model was fitted (using nlme package in R)
with the following formula: a target variable—the EEG effect calculated for each partici-
pant, a predictor—task difficulty, a random effect—participant ID. To test the coefficients
of the model, the Wald z-statistics was used.

3. For the easier task conditions, the variability of the severity of these effects is explained
by the Raven scores

For each EEG variable, a linear mixed effects model was estimated with the following
formula: a target variable—the EEG scores, a predictors—task difficulty, Raven score
(high or low) and their interaction, a random effect—participant ID. For these analyses,
participants were divided into high-Raven (top 30%) and low-Raven (bottom 30%)
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groups using their total Raven score. To test the coefficients of the model, the Wald
z-statistics was used.

4. For more difficult task conditions, the variability of the severity of these effects is
explained by the mental toughness (MT) scores

For each EEG variable, a linear mixed effects model was with the following formula:
a target variable—the EEG effect, predictors—task difficulty, mental toughness score
(high or low) and their interaction, a random effect—participant ID. For these analyses,
participants were divided into high-MT (top 30%) and low-MT (bottom 30%) groups
using their total MTQ-48 score. To test the coefficients of the model, the Wald z-statistics
was used.

For each fixed effect of each model, the effect size was calculated using the following
formula: f2 = (R2

2 − R1
2)/(1 − R2

2), where R2
2 represents the variance explained for a

model with the given effect and R1
2 represents the variance explained for a model without

the given effect [75]. This measure reflects the proportion of variance explained by the
given effect relative to the proportion of outcome variance unexplained and is considered
small at a value of 0.02, medium at a value of 0.15, and large at a value of 0.35 [76].

3. Results
3.1. Behavioral Basic Statistics

Mean accuracy for the 3-digit, 4-digit, 5-digit and 6-digit conditions was 93.5 ± 4.1%,
95.1 ± 4.5%, 95.1% ± 4.5%, and 94.4% ± 5.4%, respectively (Figure 3). The mean reaction
time for the 3-digit, 4-digit, 5-digit and 6-digit conditions was 716 ± 146 ms, 773 ± 158 ms,
791 ± 162 ms, and 838 ± 179 ms, respectively (Figure 3).

Figure 3. Behavioral results of the Sternberg task. (Left panel): y-axis—accuracy (percentage of
correct responses averaged across participants). (Right panel): y-axis—reaction time averaged across
participants. x-axis—the task difficulty condition (3, 4, 5, 6 digits in the encoding set). Grey bars and
black lines indicate means. Colored bands indicate ±1 standard errors (blue color corresponds to the
3 digits condition, red—4 digits, green—5 digits, pink—6 digits). Dots and density curves indicate
data distribution.

The mean total MTQ-48 score of participants was 31.7 ± 4.2. The mean Raven score was
49.3 ± 6.5. Significant correlations were not observed among total scores on MTQ-48, Raven
and Sternberg task accuracy when considering average accuracy and accuracy calculated for
all task difficulty levels separately). Both mental toughness (r = −0.2165, p < 0.001) and Raven
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scores (r = −0.2375375, p < 0.001) showed significant negative relations with reaction time on
the Sternberg task.

3.2. Alpha Power Correlates of the Sternberg Task

During the encoding period (0–1.5 s after stimulus onset), alpha power ERD was
observed in the 300–1300 ms time interval with a peak on the parietal lateral electrodes
(Figure 3). During the retention period (1.5–3.5 s), alpha power ERS was observed in the
2300–3300 ms time interval with a peak on the occipital-parietal lateral electrodes (Figure 3).
During the probe period (3.5–5.5 s), alpha power ERD was observed in the 3900–4400 ms
time interval with a peak on the parietal lateral electrodes (Figure 2).

3.3. Accuracy Dependence on Alpha Power Correlates of the Sternberg Task

Linear mixed effects model predicting the ERD related to encoding showed a significant
reduction in the effect for erroneous responses, in comparison with correct ones (t = 2.298,
p < 0.05, f2 = 0.01). Linear mixed effects model predicting the ERS related to retention did not
reveal significant differences between erroneous and correct responses (t = −1.261, p > 0.05,
f2 = 0.003). Linear mixed effects model predicting the ERD related to a probe showed
significant reduction in the effect for erroneous trials (t = 2.619, p < 0.01, f2 = 0.01; Figure 4).

Figure 4. Event-related alpha power by response accuracy shown separately for each Sternberg trial
phase. During the encoding phase, ERD was observed (300–1300 ms), during the retention phase
ERS was observed (2300–3300 ms), during the probe phase, ERD was observed (3900–4300 ms). For
this visualization, for each trial phase, the mean of the alpha power was normalized to minimize
individual differences and added to the initial mean ± 1 standard error of the mean. Grey bars and
black lines indicate means. Colored bands indicate ±1 standard errors. Dots and density curves
indicate data distribution.
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3.4. Alpha Power Correlates Dependence on Task Difficulty

Linear mixed effects models revealed a significant negative relation between task
difficulty and ERD related to encoding (t = −8.497, p < 0.001, f2 = 0.25; Figure 5A). A signifi-
cant positive relation was observed between task difficulty and ERS related to retention
(t = 2.806, p < 0.005, f2 = 0.03; Figure 5A). Significant negative relation was revealed between
task difficulty and ERD related to a probe (t = −2.103, p < 0.05, f2 = 0.02; Figure 5A).

Figure 5. Event-related alpha power by task difficulty and individual differences shown separately
for each Sternberg trial phase: left vertical panel—Encoding (300–1000 ms), middle vertical panel—
Retention (2300–3300 ms), right vertical panel—Probe (3900–4300 ms). (A) Relation of alpha ERD/ERS
with task difficulty. Colored bands indicate ±1 standard errors (blue color corresponds to the 3 digits
condition, red—4 digits, green—5 digits, pink—6 digits). (B) Interaction between task difficulty and
individual differences groups (‘High’—top 30% Raven/MTQ48 score group, ‘Low’—bottom 30%
Raven/MTQ48 score group). Only significant results are shown: for the encoding phase, significant
interaction between difficulty and Raven score groups was found; for the probe phase, significant
interaction between difficulty and MTQ48 score groups was found. Grey bars and black lines indicate
means. Dots and density curves indicate data distribution.

3.5. Raven Scores Influence on Relation between EEG Effects and Task Difficulty

Significant negative relation was revealed between the Raven score (high/low Raven
groups condition) and the event-related alpha power during encoding (t = −2.02, p < 0.05,
f2 = 0.02; Figure 5B). No significant effect was found for Raven scores and the task difficulty
predictors interaction (t = 0.725; p > 0.05, f2 = 0.01; Figure 5B).

No significant relation was found between ERS during retention and the Raven score
(t = −1.557, p > 0.05, f2 = 0.02). No significant effect was found for Raven scores and task
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difficulty predictors interaction (t = 0.508, p > 0.05, f2 = −0.004). No significant relation was
observed between ERD during a probe and Raven scores (t = −1.101, p > 0.05, f2 = 0.02). No
significant effect was found for Raven scores and the task difficulty predictors interaction
(t = 0.637, p > 0.05, f2 = −0.003).

3.6. Mental Toughness Scores Influence on Relation between EEG Effects and Task Difficulty

In the probe-related alpha ERD analysis, a significant interaction effect was found
for mental toughness scores and the task difficulty predictors: low mental toughness in-
creased the negative relation between alpha power and task difficulty (t = −3.282, p < 0.005,
f2 = 0.06; Figure 5B), in other words, low mental toughness participants, as compared to
high mental toughness ones, demonstrated ERD in difficult task conditions.

No significant relation was found between the ERD related to encoding and the mental
toughness score (high/low MTQ48 groups condition; t = −0.707, p > 0.05, f2 = 0.02). No
significant effect was found for the mental toughness score and the task difficulty predictors
interaction (t = 1.736, p = 0.08, f2 = 0.005). No significant relation was found between the
ERD related to retention and the mental toughness score (high/low MTQ48 groups condition;
t = −1.435, p > 0.05, f2 = 0.02). No significant effect was found for the mental toughness score
and the task difficulty predictors interaction (t = 0.696, p > 0.05, f2 = −0.006).

No significant relation was found between the ERD related to a probe the mental
toughness score (high/low MTQ48 groups condition; t = −0.338, p > 0.05, f2 = 0.02).

4. Discussion

We investigated parietal alpha oscillations and their relations to task difficulty as
measured using the Sternberg task, Raven scores and mental toughness. We highlight
five main findings. (a) As expected we found reaction time increased and accuracy de-
creased with task difficulty, with the exception of the easiest level that had lower accuracy
compared other levels; (b) alpha power correlates demonstrate classic oscillatory effects
for encoding (early ERD), retention (ERS) and probe (late ERD), replicating past research;
(c) task difficulty modulated oscillatory effects, albeit only for the ERD related to encoding
this correlation was strong and linear; (d) participants with high Raven scores demonstrated
significantly stronger ERD related to encoding; € participants with high mental toughness
scores demonstrated significantly stronger ERD related to responding at for most difficult
task conditions. Findings contribute to our understanding of cognitive mechanisms and
neuromodulation and are discussed in terms of theories of effort.

4.1. Behavioral Analysis

Participants’ mean accuracy scores on the Sternberg task were high (>90%) for all
difficulty levels, confirming that participants understood the task. The reaction time cost
was about 20–50 ms as latencies decreased with difficulty. Although the reaction time
to the Sternberg task showed a linear increase as a function of difficulty, participants
had significantly lower accuracy in the easiest condition (3-digits). Probably participants
erroneously underestimated this condition as too easy and failed to allocate adequate
control during performance. It is known that people find very easy tasks to be boring,
monotonous and even unpleasant, which may lead participants to avoid the task [77]. This
may explain the decreased accuracy in this, the easiest condition.

As expected, mental toughness did not correlate with the Raven scores. However,
mental toughness and Raven scores were negatively related to reaction time, but not ac-
curacy. A lively debate exists on whether reaction time can be interpreted as effort, since
long reaction times may reflect both increased cognitive load (increased effort) and atten-
tional failure (insufficient effort level; [62,78]). Nevertheless, our results suggest that both
mental toughness and nonverbal intelligence are independently important for Sternberg
task performance. According to chronometric approaches to human intelligence [79,80],
intelligence is directly related to the speed of information processing. This assumption has
been supported by many studies, which led to the view that the shorter reaction time in
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participants with high intelligence levels could correspond to increased efficiency of brain
functioning [56].

4.2. Alpha Power Correlates of the Sternberg Task

We observed classic oscillatory correlates of the Sternberg task condition in the alpha
band: parietal ERD related to encoding, parietal-occipital ERS related to retention, and parietal
ERD related to responding to a probe. These results concur with findings in magnetoen-
cephalography (MEG) and EEG studies [8,43,47,49,50]. ERD related to encoding and retrieval
may be interpreted as cortical activation [10] and visual attention enhancement required
during information encoding and/or information retrieval in working memory [10,44,81–83].
ERS related to retention may be interpreted as cortical deactivation and inhibitory control
required to inhibit irrelevant information so as to keep the relevant information in working
memory [10,84,85]. It should also be noticed that ERS was pronounced in a slightly different
alpha frequency band—upper alpha frequency (10–13 Hz), in comparison with ERD. This
effect was observed also by Wianda and Ross [8], who concluded that ERS related to retention
effect reflects a separate functional mechanism of alpha oscillations being not simply opposite
to ERD related to encoding.

4.3. Accuracy Dependence on Alpha Power Correlates of the Sternberg Task

Only ERD effects showed significant relation to accuracy. Weak ERD increased the
likelihood of an error. This suggests that ERD related to set encoding and responding to
the probe is critical for task performance. We also observed a similar trend for the ERS
related to retention: weak ERS seemed to insignificantly increase the probability of an
error. Our results suggest that successful performance on the Sternberg task relies more
on correct information encoding and retrieving in working memory than information
retention. This result may be explained by the features of our task requiring participants to
retain information for only two seconds with no distractors. An alternative explanation
may be that the ERD effect related to encoding overlapped the ERS effect since the ERD
preceded ERS and affected electrodes used for ERS analysis (PO7–PO8). The relative
duration of the retention phase may lead to better dissociation of these alpha correlates of
encoding and retention. However, behavioral statistics show a low percentage of errors
for all task conditions, which probably led to increased variance in the error responses
group, thus results need to be replicated. To our knowledge, there are no studies that
have shown an association between accuracy and the power of the parietal alpha rhythm
associated with working memory task performance. Nevertheless, the encoding and
retention processes reflected by ERD and ERS are considered necessary to perform the
Sternberg task [8,43,47,49].

4.4. Alpha Power Correlates Dependence on Task Difficulty

ERD related to encoding increased strongly and linearly with task difficulty, which is
in agreement with previous studies [35]. This EEG effect may reflect a resource-intensive
top-down process whose activation level depends on task requirements. This result may
be interpreted by existing theories of effort as the investment of resources that enable the
execution of behavior, arguing that effort functions to sustain activity that is needed for goal
attainment [12,63]. According to existing theories of mental effort [62], the resources needed to
activate the top-down control processes are limited, which requires their economy and rational
use. Therefore, instead of always performing a task at the maximum level of their capabilities,
a person increases the efforts invested in completing a task as its requirements increase.

ERD related to the probe was significantly increased with task difficulty as well. The
relation between task difficulty and ERD during response preparation and execution in
the Sternberg task has not been shown to date. Parietal ERD associated with a recog-
nition and response probe appears to reflect the evidence accumulation process during
decision-making [86]. This relation suggests a correspondence of effort modulation to
the mobilization of resources. However, the enhanced ERD related to the probe was ob-
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served only for the most difficult condition. Thus, the classic idea about effort as a general
phenomenon may be incorrect: different processes required by a task may be differently
related to effort. Perhaps the processes reflected by ERD related to the probe (attentional
preparation, information retrieving) are less effortful, which is why we did not observe an
effort increase at easy conditions (3, 4, 5 digits) for which the base ERD level was enough.
However, weak enhancement of ERD may be also explained by individual differences
in the mental toughness of participants. Specifically, ERD and difficulty correlated for
participants with low mental toughness, but not for the high mental toughness group.

ERS related to retention increased with task difficulty, which is in agreement with
previous studies [46,47]. We can interpret this relation in terms of the increased effort
needed to mobilize cognitive resources. However, the ERS level did not differ between the
two most difficult task levels (5 and 6 digits). This result may be explained by the ceiling
effect: on average, participants were not capable to activate ERS more. It would mean that
the process reflected by ERS (inhibition, relevant information retention) requires too many
cognitive resources so that even 6 digits could not have been maintained at the proper level
by activation in this posterior brain region. This is consistent with functional magnetic
resonance imaging results showing a leveling off of activation in the parietal cortex when
five or six items need to be processed, whereas activation in prefrontal regions continued
to increase linearly [87]. Future research should consider brain-behavioral relations in
prefrontal areas. Another explanation may be that we observed the phenomenon of
effort drop described by the Motivational Intensity Theory [88]. According to this theory,
individuals stop investing effort in task performance, when the task is too difficult, and the
likelihood of success is assessed as too low. Perhaps, the processes reflected by ERS are too
resource-intensive and the 6-digit level of the Sternberg task was enough to stop investing in
these processes. However, this is unlikely because the performance in the highest difficulty
level was higher than 90%. Overall, both interpretations suggest a high resource cost of the
retention process implemented through inhibitory control. It is important to note that our
results suggest that while participants invest in some particular processes, they may stop
investing in other ones, thus, effort may not be a general phenomenon.

Critically, the alpha ERD effect that shows increases with task difficulty is also observed
in studies using other working memory tasks, for example, the n-back task [32,34,40,41,46].
However, studies using the n-back task do not report results associated with an alpha
ERS effect. Although the Sternberg task is similar to the n-back task in requiring encod-
ing, retention, and retrieving, the n-back task requires simultaneous implication of these
processes, which leads to overlapping in some of their neural correlates [46]. Therefore,
the increasing alpha ERD with task difficulty can be associated with both encoding and
retrieving and can also be distorted by the overlapping ERS effect. Interestingly, Fairclough
and Ewing [41] observed an increase in absolute alpha power in the most difficult 7-back
condition. This effect may indicate the drop in effort in the very difficult condition, as
described by the Motivational Intensity theory. We suggest that a study using the Sternberg
task that includes very difficult conditions and ERD/ERS measures may more clearly reveal
this effect as a stimulus-related correlate of task performance and show which specific
process this effect refers to.

4.5. Mental Toughness Scores Influence on Relation between EEG Effects and Task Difficulty

We also hypothesized that if alpha correlates of the task reflect the effort, we would
observe the influence of mental toughness on these effects for the most challenging task
levels. Mental toughness reflects both internal motivation to perform challenging tasks
and self-efficacy [5,64], thus, we assumed that at the most difficult levels, participants with
mental toughness would demonstrate stronger alpha effects due to stronger effort.

Indeed, we observed a significant influence of the mental toughness scores in the
most difficult conditions. However, the effect was contrary to our hypothesis: participants
with lower scores on mental toughness demonstrated stronger ERD related to the probe,
which may be interpreted as stronger effort. Perhaps, our task was too easy to reveal
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the effect predicted by our hypothesis based on the literature review [12,56,63]: increased
effort for more motivated and emotionally stable participants at challenging conditions.
Alternatively, due to their low self-efficacy, individuals with low mental toughness assessed
the 5- and 6-digit conditions as difficult, but feasible and, thus, requiring effort increase,
while individuals with high mental toughness levels assessed these conditions as easy and
not requiring effort increase. Then it can be hypothesized that increasing the encoding
set and adding more difficult conditions would reveal an expected phenomenon of effort
increase for people with high mental toughness levels and effort drop for people with low
mental toughness. This hypothesis concerns only effort investment into processes involved
in the last step of the Sternberg task: attentional preparation, and response execution.

We did not observe significant differences in the ERD related to encoding and the ERS
related to retention. Thus, ERD related to responding to the probe is getting enhanced only
for the high-mental toughness group, whereas ERD related to encoding is getting enhanced
for everyone. Perhaps these emotional-motivational aspects affecting effort appear only at
the latest stage of the task when a response is required. The fact that we do not see mental
toughness effect on the ERS, may mean that the ERS dynamic we observed (ERS stops
increasing at the most difficult conditions) cannot be explained by effort leveling off, and
rather should be explained by the ceiling effect.

4.6. Raven Scores Influence on Relation between EEG Effects and Task Difficulty

We evaluated intelligence to control for its effects on task performance in relation to
mental toughness. Previous studies have shown differences in the alpha rhythm between
participants with high and low levels of intelligence (the Raven test was mainly used; [57,89].
However, for subjectively difficult tasks, these differences might be explained by different
motivational levels in the compared groups [56].

According to our hypothesis, if the EEG effect reflects effort, it should be different
between participants who score higher or lower on The Raven’s Standard Progressive
Matrices as an intelligence measure. According to the neural efficiency effect, individuals
with higher intelligence invest less effort in task performance, in general, since these tasks
are easier for them [11]. However, only the ERD related to encoding showed a significant
difference in values between the high- and low-Raven groups. The low-Raven group
demonstrated weaker ERD, which was opposite to our expectations. The decrease in ERD
related to encoding in low-Raven participants contradicts the hypothesis of Neubauer and
Fink [11] that the neural efficiency effect may be observed for easy tasks. Perhaps, this type
of brain activation was assessed by the low-Raven group as too resource-intensive, so they
tried to avoid it and use different strategies.

We did not observe significant differences between high- and low-Raven groups for
ERS related to retention and ERD related to a probe. It means that the processes reflected by
these EEG-correlates were activated at the same level for these two groups. It suggests that
the capability to activate these processes (top-down inhibition and attentional preparation
and information retrieval) does not depend on figurative intelligence. Another explanation
may be that the difference in these effects was not observed, because this difference occurs
in the first trial phase: participants with high intelligence invested strongly in the first
required process (encoding) and did not need to invest strongly in the subsequent phases
of a trial (retention and the probe).

An important result for our study is that the Raven influence on the studied alpha
correlates differed from the mental toughness influence, which may mean successful
dissociation of the cognitive and motivational factors affecting performance.

4.7. Effort Distribution among Processes

Many studies consider effort as a general phenomenon related to task performance
and study it through general physiological correlates of task performance, such as car-
diovascular indicators or general cortical activation [40,41,90,91]. However, some authors
suggest that not all cognitive processes require effort, while some may require more effort
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than others, and the performance of any task is associated with the distribution of effort
among the controlled processes [62]. Thus, it would be more correct to study effort through
physiological correlates of separate cognitive processes required by a task. Different results
for the studied EEG effects of encoding, retention and recognition may mean different
relations among these processes and effort. It may mean that effort is distributed differently
for different working memory processes.

For encoding, effort increases with objective task difficulty. For retention (i.e., mainte-
nance), this increase in effort levels at the level of 6 digits in parietal cortices is probably
due to the high cost of this process. Thus, this result leads to two hypotheses: (1) retention
is a more resource-intensive process than encoding, and (2) distribution of effort depends
on the resource intensity of a process.

According to our results, for processes related to attentional preparation and infor-
mation retrieval, the increase in effort was pronounced only in people with low mental
toughness. Thus, mental toughness determines the effort modulation dynamics. The mech-
anism of effort distribution in parietal cortices is different for different processes: for some
processes, mental toughness plays a role, while in others it does not. It also means that the
Motivational Intensity Theory [12] does not account for some psychological differences
related to difficulty perception and leads to a stronger increase in effort with task difficulty
in people who are less resistant to difficulties.

4.8. Limitations

We recognize three limitations of our study. First, the experimental task albeit having
4 levels of difficulty appeared to be too easy for participants and led to a low number of
errors, which made it difficult to interpret the relations between the alpha rhythm and
accuracy. Second, the absence of more difficult conditions did not allow us to interpret the
relation of mental toughness with alpha rhythms in terms of the Motivational Intensity
Theory, which would be highly relevant in this effort study. Third, short time intervals
related to the retention phase made it difficult to interpret the functional significance
of alpha ERS. As this is the first study to identify relations between alpha power and
personality traits such as mental toughness, future research is needed to replicate and
expand these results. Future studies should consider including reward manipulations and
additional questionnaires that distinguish intrinsic and extrinsic motivation.

5. Conclusions

We investigated how ERD related to encoding, ERS related to retention, and ERD
related to recognition of a probe depend on task difficulty, mental toughness, and cognitive
ability. All studied alpha effects increased with task difficulty and are considered as
correlates of the top-down resource-intensive processes necessary for task performance,
illustrating dynamics as modulation of effort. However, for ERD related to a probe, this
relation was observed only in participants with low mental toughness, showing that the
modulation of effort depends on the motivational-emotional response to task difficulty:
participants who are less resistant to challenging tasks paradoxically invest more in rather
difficult tasks. This result contradicts the predictions of Motivational Intensity Theory.
For the further study of this phenomenon, more difficult task conditions should be added
to the experimental design. Our results show that the relation between task difficulty,
intelligence, mental toughness and stimulus-related alpha power varies with the type
of cognitive process (encoding, retention and recognition). This suggests that the effort
distribution mechanism works differently for different cognitive processes. Therefore, it
can be concluded that effort should not be viewed as a general process associated with task
performance and must be studied through correlates of separate processes. Further study
of factors that drive effort modulation requires new experiments with more challenging
conditions, alternative measures of intrinsic motivation, and manipulation of extrinsic
motivation. Such investigations can reveal the influence of various motivational factors on
effort in particularly difficult conditions.
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