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A B S T R A C T   

Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia. DM can lead to a number 
of secondary complications affecting multiple organs in the body including the eyes, kidney, heart, and brain. 
The most common effect of hyperglycemia on the brain is cognitive decline. It has been estimated that 20–70% of 
people with DM have cognitive deficits. High blood sugar affects key brain areas involved in learning, memory, 
and spatial navigation, and the structural complexity of the brain has made it prone to a variety of pathological 
disorders, including T2DM. Studies have reported that cognitive decline can occur in people with diabetes, which 
could go undetected for several years. Moreover, studies on brain imaging suggest extensive effects on different 
brain regions in patients with T2D. It remains unclear whether diabetes-associated cognitive decline is a 
consequence of hyperglycemia or a complication that co-occurs with T2D. The exact mechanism underlying 
cognitive impairment in diabetes is complex; however, impaired glucose metabolism and abnormal insulin 
function are thought to play important roles. In this review, we have tried to summarize the effect of hyper-
glycemia on the brain structure and functions, along with the potential mechanisms underlying T2DM-associated 
cognitive decline.   

Introduction 

Diabetes is a metabolic disorder characterized by defects in the 
body’s ability to regulate glucose and insulin homeostasis. According to 
the International Diabetes Federation (IDF), type-2 diabetes mellitus 
(T2DM) accounts for atleast 90% of all cases of diabetes, affecting 
approximately 463 million people worldwide. Increased prevalence of 
obesity due to unhealthy diets, physical inactivity, and increased 
average life expectancy, has led to an increase in the prevalence of 
diabetes, and it has been predicted that the number of patients with 
T2DM will increase to 700 million by 2045 (Federation, 2019). It has 
been observed that the age of onset of T2DM is also reduced. Moreover, 
increasing evidence suggests that T2DM is a major contributor of 
cognitive decline in elderly as well as young individuals (Lalithambika 
et al., 2019; Rajamani, 2014). Due to increasing prevalence of T2DM and 
increased life-expectancy, diabetes-associated cognitive dysfunction has 
become a serious burden on the available health resources. Therefore, a 
deeper understanding of diabetes-associated cognitive decline will help 
in developing novel therapeutic options for this condition. 

T2DM affects several organs of the body, including the brain. The 

association between cognitive decline and T2DM is poorly recognized 
and is sparsely addressed. The exact mechanism underlying cognitive 
impairment in diabetes is complex; however, impaired glucose meta-
bolism and abnormal insulin function are often associated with cogni-
tive impairment. Studies have shown that hyperglycemia leads to 
hypertension, dyslipidemia, inflammation, and abnormalities in 
hypothalamic-pituitary-adrenocortical axis (Rama and Sagar, 2019; 
Hazari et al., 2015). Moreover, chronic hyperglycemia is toxic to neu-
rons and leads to the formation of advanced glycation end products 
leading to oxidative damage and neuronal injury. Inflammation and 
dyslipidemia are the other important factors that can cause neuronal 
damage leading to cognitive impairment (Naguib et al., 2020). 

T2DM is closely linked to poor performance in a variety of cognitive 
domains as well as brain structural abnormalities (Dove et al., 2021; 
Mirahmadizadeh et al., 2020). T2DM and its related cognitive impair-
ment can have a significant impact on people of all age’s quality of life 
(Abdellatif et al., 2020; Xia et al., 2020). Diabetic patients have a lower 
ability to resist against oxidative stress and have increased activation of 
inflammatory pathways in the cells (Sharma et al., 2020; Srikanth et al., 
2020). People are more susceptible to cognitive impairment and 
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neurodegeneration as a result of increased oxidative stress and inflam-
mation in the body (Yang et al., 2020; Damanik and Yunir, 2021). Arpita 
et al. conducted a study of 1278 T2DM patients in a south Indian pop-
ulation to assess cognitive impairment and reported a prevalence of 35.8 
% (Chakraborty et al., 2021; Subramanian et al., 2021; You et al., 2021). 
Individuals with diabetes are 1.5 times more likely than those without 
diabetes to experience cognitive decline and early stages of dementia 
(Lin et al., 2022). 

It has been reported that hyperglycemia increases the risk of damage 
to blood vessels within the brain. The structural changes observed in the 
diabetic brain are hippocampal injury, reduction in gray matter density, 
reduction in white matter microstructure, and atrophy (Fig. 1) (Seaquist, 
2010). Furthermore, the mechanisms underlying structural brain ab-
normalities in T2DM may include endocrine, metabolic, and vascular 
pathways. 

Type-2 diabetes and cognitive decline 

Glucose is the primary source of energy for every cell in the body 
(Howarth et al., 2012; Fioramonti and Pénicaud, 2019). Despite being 
only two percent of the body weight, the brain utilizes more than twenty 
percent of daily energy intake (Erbsloh et al., 1958). Since, neuronal 
cells are continually active in order to regulate important functions 
required for the body’s survival, they require twice as much energy as 
cells of the body (Harris et al., 2012; Mergenthaler et al., 2013). Neurons 
are also active during sleep to manage the sleep cycle, in addition to 
other critical responsibilities. Therefore, a constant supply of glucose is 
required for normal brain metabolic processes, brain vitality, cerebral 
signal conduction, cognitive function, neurotransmission, and synaptic 
plasticity. Despite the fact that the brain is highly dependent on glucose, 
severe and long-term hyperglycemia can be harmful (Heni et al., 2015). 

Diabetes has been shown in a number of studies to have a negative 
impact on the hippocampus and to promote neuronal death via a variety 
of mechanisms (Pamidi and BN, 2012). The hippocampus is a part of 
limbic system that is particularly vulnerable to elevated blood sugar 
levels and plays a role in memory, as well as emotional, reproductive 
and adaptive functions (Foghi and Ahmadpour, 2013; Sadeghi et al., 
2016). It also helps in the formation of new memories and the associa-
tion of emotions and senses like fragrance and sound with memories 
(Squire, 1992; Lewis, 2012). The hippocampus serves as a memory in-
dicator, directing memories to the brain’s right region for long-term 

storage and retrieval (Turgut and Turgut, 2011; Jarrard, 1993). 
Because of its anatomical complexity, the hippocampus is vulnerable 

to a variety of pathological diseases, including T2DM (Pamidi and BN, 
2012; Alvarez et al., 2009; Biessels et al., 1996). The hippocampus’s 
structural complexity has made it prone to a variety of pathological 
disorders, including T2DM. The granular layer of the dentate gyrus (DG) 
continues to proliferate throughout life (Kitamura and Inokuchi, 2014; 
Koehl and Abrous, 2011; Kitabatake et al., 2007). Memory and learning 
problems can be caused by anything that disrupts the equilibrium be-
tween neuronal proliferation and death in the DG region (Van der 
Borght et al., 2007; Kobilo et al., 2011). Moreover, hyperglycemia 
suppresses granular cell growth and induces neuronal death (necrosi-
s/apoptosis) in the CA3 region and the DG (Choi et al., 2009; Zhang 
et al., 2008; Li et al., 2002; Ahmadpour et al., 2010). 

Effect of hyperglycemia on the brain structure 

Hyperglycemia can cause nerve damage in the brain, increasing the 
risk of cognitive decline (Sharma et al., 2020; Srikanth et al., 2020; 
Vieira et al., 2018; Biessels and Whitmer, 2020). Both gray matter and 
white matter changes are among the T2DM-related brain structural 
abnormalities (Chen et al., 2021). Patients with T2DM experience 
cognitive decline and anatomical brain abnormalities, especially 
observed in the hippocampus (Li et al., 2020). Patients with T2DM 
exhibit brain shrinkage, as evidenced by reduced total and regional 
white and gray matter volumes (Moran et al., 2013). Additionally, it was 
found that T2DM patients had a little larger volume of white matter 
hyperintensities than non-T2DM patients (Moran et al., 2017). These 
abnormalities in the brain may serve as imaging biomarkers for T2DM 
alone or T2DM combined with cognitive decline (Zhang et al., 2011). 

People with T2DM exhibit somewhat more global brain atrophy than 
those without diabetes, and this atrophy steadily worsens over time in 
comparison to normal ageing. Additionally, vascular lesions, especially 
lacunar infarcts, are more frequent. Numerous research examined the 
connection between brain atrophy and diabetes; some only looked at 
cortical or subcortical shrinkage, while others looked at both (Falvey 
et al., 2013; SK et al., 2003). Hippocampal atrophy has been suggested 
to occur in T2DM patients. Atrophy of the medial temporal lobe, in 
especially the hippocampus, is regarded to be a sign of neuro-
degeneration (Scheltens et al., 2002; Korf et al., 2007). 

Global brain atrophy, which happens gradually over time compared 
to normal ageing, is slightly more common in adults with T2DM than in 
people without diabetes (Knopman et al., 2011, 2005). Vascular lesions, 
especially lacunar infarcts, are also rising in frequency. Numerous in-
vestigations examined the relationship between brain atrophy caused by 
diabetes and cortical or subcortical atrophy, or both (Knopman et al., 
2005). According to certain theories, those with T2DM may experience 
hippocampal atrophy. According to numerous studies, the hippocampus 
in the medial temporal lobe, in particular, is thought to atrophy as a 
marker of neurodegeneration (Brundel et al., 2014). 

Potential mechanisms underlying hyperglycemia-induced 
cognitive impairment 

Apoptosis 

A considerable rise in apoptotic markers including Bcl-2, Bcl-xl, Bax, 
and caspase 3 has been observed in the hippocampus environment of 
diabetic mice in several preclinical studies (Li et al., 2002). In the hip-
pocampus of STZ-induced diabetic rats, Jafari et al. reported that Cas-
pases 3 is the most important member of the caspases family, showed a 
significant increase in activity. In these diabetic rats, Bax expression was 
dramatically raised at both the mRNA and protein levels, whereas Bcl xL 
and Bcl 2 expression was significantly reduced, implying that 
hyperglycemia-induced apoptosis in the hippocampus of diabetic rats 
could be mediated by mitochondria (Jafari Anarkooli et al., 2014). 

Fig. 1. Structural changes in the diabetic brain. Diabetic patients have a 
number of structural alterations in the brain and these changes progress with 
time. These changes include atrophy, changes in white matter microstructure, 
hippocampal injury, and reduced gray matter density. 
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Several other in vitro and in vivo investigations have found that diabetic 
mice suffer from hippocampus cell loss, which could be a vital 
contributor to memory and learning problems (Fig. 3) (Li et al., 2002). 

Oxidative stress 

Oxidative stress has been related to the onset and progression of 
diabetes, as well as the problems that come with it. Hyperglycemia leads 
to the formation of reactive oxygen species (ROS), other oxidative stress 
markers and reactive nitrogen species (RNS) (Cheong et al., 2020). 
Furthermore, hyperglycemia is linked to a reduction in antioxidant 
levels in the brain (Valko et al., 2007). In diabetic rats, increased 
oxidative stress has been linked to the development of cognitive deficits 
(Fukui et al., 2002; Comin et al., 2010). 

Circulating microRNAs (miRNAs) can be used as biomarkers of T2D 
(Zampetaki et al., 2010; Prattichizzo et al., 2016; Kato et al., 2013). 
miRNAs are a class of non-coding RNAs which interact with the 3′ un-
translated region (3′ UTR) of target mRNAs to induce mRNA degrada-
tion and translational repression (Bartel, 2009). The two candidate 
miRNAs (miR-192 and miR-193b) were reported as markers of 
pre-diabetes by Parrizas et al. in a cohort study (Párrizas et al., 2015). 
Furthermore, de Candia et al. reported a unique miRNA signature link to 
prediabetics with respect to disease progression (De Candia et al., 2017). 

La Sala et al. demonstrated the association between circulating miR- 
21 and glycaemic dysfunctions and provided novel and valuable insights 
into the molecular characterization of impaired glucose tolerance (IGT) 
status (La Sala et al., 2019). An increase in levels of circulating miR-21 
was observed in IGT subjects. In addition, results showed a positive 
correlation of miR-21 and postprandial glucose levels with ROS and 
insulin resistance index. It has also been reported that miR-21 could be 
an important modulator of ROS homeostasis and antioxidant pathways, 
and defective antioxidant response is one of the major causes of cellular 
damage (La Sala et al., 2016). 

Hyperglycemia is one of the major risk factors of AD (Shieh et al., 
2020; Li et al., 2017; An et al., 2018; Jash et al., 2020). High blood 
glucose levels increase oxidative stress leading to the production of lipid 
peroxidation byproducts, such as 4-hydroxynonenal (HNE), which 
lowers the antioxidant defense mechanism in AD patients. AD patients 
may have increased levels of HNE in the brain and blood, thereby, 
enhancing the production of Aβ (Arimon et al., 2015; Di Domenico et al., 
2017; Liou et al., 2019). Sanotra et al. showed that this could be a result 
of both HNE adducts and Aβ being neutralized by associated 

autoantibodies. When HNE adducts and levels of Aβ continue to in-
crease, it may deplete these crucial neutralizing antibodies and promote 
a cellular environment for neurodegeneration, leading to pathologic 
states such as AD (Sanotra et al., 2022). Further research on HNE im-
mune responses is needed to get more insight of the pathogenesis from 
hyperglycemia to AD. 

It is well known that hyperglycemia-induced neurotoxicity is mainly 
due to increased production of advanced glycation end-products (AGEs), 
increased polyol pathway flux, activation of protein kinase C (PKC) 
isoforms, and increased hexosamine pathway flux, (Brownlee, 2001) all 
of which leads to an increase in oxidative damage and vascular com-
plications shown in Fig. 2. Few studies suggest that blood-brain barrier 
(BBB) permeability is reduced in diabetic animal models due to degen-
eration of the cerebral vasculature (Prasad et al., 2014; Ueno et al., 
2016). However, there is conflicting information about cerebral micro-
circulation and BBB disruption in diabetic rodent models with chronic 
hyperglycemia (Weiss et al., 2009; Huber et al., 2006; Rom et al., 2019; 
Xu et al., 2013). 

Nerve cells are particularly susceptible to hyperglycemia because 
neuronal glucose uptake is highly dependent on external glucose con-
centration, which is 4–5 times greater in diabetics. It has been shown 
that the levels of neurotrophic support factors, such as nerve growth 
factor and insulin-like growth factor, are decreased in diabetic patients, 
leading to nerve malnourishment. As shown in Fig. 2, all of these 
pathways function together to provide a platform that leads to neuronal 
dysfunction and nerve injury in diabetic animals (Sims-Robinson et al., 
2010). 

Impaired neuronal insulin signaling 

Insulin plays an important role in neuroprotection. Insulin activates 
insulin receptor substrates 1 and 2 by binding to the insulin receptor 
(IR). IRS1 is generally located in the cerebral cortex, while IRS2 is 
mostly found in the hypothalamus (Mullins et al., 2017; Arnold et al., 
2018). Insulin attaches to IR/IRS and activates a variety of secondary 
messengers through three main mechanisms: 

a. The IR-Shc-MAP kinase (MAPK) pathway is activated, which 
promotes synaptic plasticity, protein expression for cell growth and 
maintenance (Yao et al., 2004). Insulin also regulates protein tran-
scription, translation, and post-translational modification via the MAPK 
pathway (Kelly et al., 2003; Dou et al., 2005). 

b. By regulating neuronal transmission via cyclic nucleotide 

Fig. 2. Mechanisms underlying diabetes-associated cognitive decline. Abnormally high levels of blood glucose can lead to the activation of numerousmetabolic 
pathways like polyol pathway, advanced glycation end products (AGE) pathway, protein kinase C (PKC) pathway, and hexosamine pathway which in turn leads to 
neuronal damage. 
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phosphodiesterase 3B, the phosphatidylinositol 3-kinase (PI3K) 
pathway influences cognitive function, and memory (cPD3B) and in-
formation processing. Inhibition of neuronal apoptosis is also linked to 
the PI3K-Akt pathway (Zhao et al., 2004). Glycogen synthase kinase 3 
(GSK3), forkhead box O1 (FOXO1), mammalian target of rapamycin 
(mTOR) and nuclear factor B (NFkB) are some downstream effectors of 
PI3K-Akt. Memory and learning are directly influenced by these 
effectors. 

c. Direct activation of NMDA glutamate receptors to increase the 
opening of calcium channels at synapses to mediate neurotransmission 
(Wan et al., 1997). Increased calcium uptake promotes NMDA-mediated 
neurotransmission, which increases the recruitment of functional GABA 
receptors to postsynaptic sites and enhances GABA transmission, regu-
lating synaptic inhibition for learning and memory tasks (Fig. 4) 
(Cheong et al., 2020). 

Suppressed insulin activity 

Despite the fact that the brain is not an insulin-dependent organ, 
insulin crosses the BBB and binds to receptors on glial cells and neurons. 
Although it is unknown whether insulin resistance exists in the CNS, 
emerging research revealed that insulin insensitivity may play a role in 
the development of obesity and T2DM. Insulin has multiple functions in 
the brain, and causes increased glucose uptake in the neurons of the 
hippocampus and frontal lobes, two of the most important regions 
involved in memory regulation. Insulin also aids in the formation of new 
memories by increasing synaptic connections between brain cells. In-
sulin also controls the metabolism and release of acetylcholine, a 
neurotransmitter that is important for cognition. Finally, insulin plays a 
role in blood vessel formation (Arnold et al., 2018). 

Insulin increases the production of insulin degrading enzymes (IDE) 
and generates the extracellular release of the β-amyloid peptide (Aβ) 

Fig. 3. Pathway through which hyperglycemia leads to cognitive impairment. Hyperglycemia leads vascular damage, BBB impairment, mitochondrial dysfunction, 
increased oxidative stress, IR, neuroinflammation, synaptic failure resulting in oxidative damage and neuronal injury. 

Fig. 4. Insulin signaling pathway. Insulin activates IRS1 and 2 by binding to the IR. Insulin attaches to IR/IRS and activates a variety of secondary messengers 
through three main mechanisms:PI3K/AKT pathway, MAPK pathway, NMDA glutamate receptor activation pathway. 

M. Gupta et al.                                                                                                                                                                                                                                  



IBRO Neuroscience Reports 14 (2023) 57–63

61

(Young et al., 2006). Insulin deficiency leads to the buildup of Aβ. There 
is a reduction in insulin receptors and insulin in the brain when there is 
hyperinsulinemia or insulin resistance (Kawamura et al., 2012). Because 
IDE degrades insulin, high insulin levels causes IDE consumption, which 
leads to an increase in Aβ deposition. As a result of the increased Aβ 
buildup, cognitive impairment occurs (Biessels et al., 2006; Kodl and 
Seaquist, 2008; Craft, 2005). 

Brain insulin resistance 
Insulin resistance is characterized as a decrease in the body’s sensi-

tivity to insulin (Goldstein, 2002). Insulin resistance is the inability of 
brain cells to respond to insulin. Insulin receptor downregulation, in-
sulin receptor inability to bind insulin, or improper insulin signaling 
cascade activation could all contribute to this lack of responsiveness. At 
the cellular level, this dysfunction impacts neuroplasticity, receptor 
modulation, and neurotransmitter synthesis, as well as processes 
directly engaged in insulin metabolism, such as neuronal glucose ab-
sorption in GLUT4-expressing neurons, and insulin homeostatic and 
inflammatory responses (Mielke et al., 2005). 

In the brain, insulin and related proteins are necessary for cell sur-
vival. A range of brain processes, including learning and memory, 
appear to be governed by glucose and insulin. Chronically high or low 
blood glucose levels can cause brain damage and cognitive impairment 
by disrupting insulin activity. Insulin insensitivity in our liver, fat, and 
muscle cells/tissues may also corresponds to insulin sensitivity in our 
central nervous system (insulin resistance at the level of brain), ac-
cording to new findings. The regions of the brain involved in cognition, 
memory, and learning are affected. Insulin plays a role in the cell-level 
memory formation process known as long-term potentiation. Insulin 
also regulates acetylcholine, a chemical messenger that plays a role in 
memory (Arnold et al., 2018; Cholerton et al., 2016). 

Neuroinflammation 

The expression of pro-inflammatory cytokines in the brain rises in 
diabetic individuals, resulting in neuronal damage (Gaspar et al., 2016). 
It’s thought that the transcription factor NF-kB is involved in cognitive 
function. BAY 11–7082 (BAY) is a pharmacological inhibitor of IkB 
(inhibitor of kappa B alpha) phosphorylation that reduces IL-6 and TNF 
levels while inhibiting NF-kB activation. BAY improves learning and 
memory in T2DM rats without compromising glycemic control (Kumar 
Datusalia and Sunder Sharma, 2016). Furthermore, microglial activity is 

enhanced in diabetic human postmortem hippocampus, indicating 
increased inflammation (Valente et al., 2010). 

TNF levels and microglia/macrophage activation were found to be 
higher in the brains of mice on a high-fat diet, indicating pro- 
inflammatory changes in the brain (Puig et al., 2012). The 
spatial-recognition memory of diabetic and obese db/db mice was 
reduced, which was connected to higher levels of pro-inflammatory 
cytokines (IL-1, TNF, and IL-6), implying a relationship between 
inflammation and memory impairment (Dinel et al., 2011). The rela-
tionship between oxidative stress and neuroinflammation is widely 
understood. NF-kB is a regulator of TNF and interleukins and a modu-
lator of reactive oxygen species (ROS). It is involved in the commence-
ment of the inflammatory cascade. Increased ROS production and 
cognitive impairment occur from TNF upregulation, which inhibits in-
sulin signaling (Fig. 5) (Kuhad et al., 2009). 

Synaptic dysfunction 

Synaptic damage is the most common cause of brain malfunction 
(Morrison and Baxter, 2012), and the severity of synaptic alterations is 
related to the severity of cognitive loss (Hawkins and Byrne, 2015). 
Amyloid plaques are the primary cause of synaptic dysfunction, but 
neuroinflammation and microglial activation also plays an important 
role (Moore et al., 2019). Mitochondria plays a role in synaptic degen-
eration because of a lack of ATP synthesis (energy failure), impaired 
production of neurotransmitter precursors and metabolites, increased 
production of reactive oxygen species (ROS), decreased Ca+ +

handling, dysregulation of mitochondrial dynamics, and mitochondrial 
dependent cell signaling transduction (Tait and Green, 2012; Guo et al., 
2017; Belenguer et al., 2019). The hippocampus, a part of the brain 
known to play a role in memory formation in animals, is severely 
compromised by diabetes, and electrophysiological studies show that 
diabetes decreases synaptic plasticity in hippocampal slices (Biessels 
et al., 2002; Trudeau et al., 2004; Duarte et al., 2019; Garcia-Serrano 
and Duarte, 2020). 

Conclusion 

Brain function is intimately linked to glucose metabolism. T2DM is 
now widely understood to be linked to poor cognitive performance. Free 
radicals and reactive oxygen species (ROS) have been identified as the 
primary drivers of neuronal death in diabetic mice. Studies have 

Fig. 5. Hyperglycemia leads to neuroinflammation. Hyperglycemia activates PKC pathway which in turn activates NF-kB pathway leading to neuroinflammation, 
increased vascular permeability, and BBB damage. 
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reported that ROS and the resulting oxidative stress play a pivotal role in 
apoptosis. The information provided in this review demonstrates the 
overlap between the biological pathways driving diabetes and cognitive 
impairment. Hyperglycemia causes dysregulation of several extracel-
lular and intracellular signaling cascades in the CNS, resulting in 
decreased neuronal and synaptic function and, as a result, an increase in 
neuronal death. An understanding of how each molecular pathway in-
tersects and affects the other is critical for the development of future 
drug intervention strategies for diabetes-associated cognitive 
dysfunction. 
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