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Feasibility of the deep learning method for estimating the
ventilatory threshold with electrocardiography data
Kotaro Miura 1,2,3, Shinichi Goto1,3, Yoshinori Katsumata 1,2✉, Hidehiko Ikura1,2, Yasuyuki Shiraishi1,2, Kazuki Sato2 and
Keiichi Fukuda1

Regular aerobic physical activity is of utmost importance in maintaining a good health status and preventing cardiovascular
diseases (CVDs). Although cardiopulmonary exercise testing (CPX) is an essential examination for noninvasive estimation of
ventilatory threshold (VT), defined as the clinically equivalent to aerobic exercise, its evaluation requires an expensive respiratory
gas analyzer and expertize. To address these inconveniences, this study investigated the feasibility of a deep learning (DL)
algorithm with single-lead electrocardiography (ECG) for estimating the aerobic exercise threshold. Two hundred sixty consecutive
patients with CVDs who underwent CPX were analyzed. Single-lead ECG data were stored as time-series voltage data with a
sampling rate of 1000 Hz. The data of preprocessed ECG and time point at VT calculated by respiratory gas analyzer were used to
train a neural network. The trained model was applied on an independent test cohort, and the DL threshold (DLT; a time of VT
estimated through the DL algorithm) was calculated. We compared the correlation between oxygen uptake of the VT (VT–VO2) and
the DLT (DLT–VO2). Our DL model showed that the DLT–VO2 was confirmed to be significantly correlated with the VT–VO2 (r=
0.875; P < 0.001), and the mean difference was nonsignificant (−0.05 ml/kg/min, P > 0.05), which displayed strong agreements
between the VT and the DLT. The DL algorithm using single-lead ECG data enabled accurate estimation of VT in patients with CVDs.
The DL algorithm may be a novel way for estimating aerobic exercise threshold.
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INTRODUCTION
Adequate regular physical activity is paramount to maintaining
good health1,2 and preventing cardiovascular diseases (CVDs)3,4. In
contrast, an unexpected high-intensity exercise could be a cause
of deterioration or hospitalization in patients with CVDs5,6; current
clinical practice guidelines and expert statements recommend
aerobic exercise for patients with CVDs7,8. Although cardiopul-
monary exercise testing (CPX) is an essential examination for
noninvasively detecting the ventilatory threshold (VT), that is,
defined as clinically equivalent to aerobic exercise, its assessment
requires an expensive respiratory gas analyzer and expertize. In
this context, expansion of the exercise therapy with a simple,
versatile methodology to facilitate its introduction and persistency
is warranted to improve clinical outcomes of patients with CVDs.
Advancement of high-performance computer technology and

deep learning (DL) technology has enabled generation of models
that accurately predict outcomes, detect diseases, and automati-
cally classify or quantitate measurements from various modalities
including electrophysiological and imaging data9 (e.g., electro-
cardiography [ECG]10, echocardiography11, computed tomogra-
phy12, single-photon emission computed tomography13, and
magnetic resonance imaging14) in cardiovascular medicine. In
addition, DL aids in the interpretation of clinically important
findings from imaging data to support clinical judgment by
physicians15. However, there is limited evidence for estimating the
threshold of aerobic exercise with DL algorithms combined with
neural networks. Herein, we aimed to investigate the feasibility of
a DL algorithm with single-lead ECG during incremental exercise
for estimating the aerobic exercise threshold in patients
with CVDs.

RESULTS
Patients’ selection
From April 2014 to May 2019, 404 patients underwent CPX in Keio
University Hospital (Fig. 1). Among patients who were eligible for
screening, we extracted 327 patients who had CVDs (chronic heart
failure, coronary artery disease, pulmonary hypertension, or
arrhythmias). The exclusion criteria of this study were patients
with missing data, patients whose CPXs were terminated at the
physician’s discretion before peak exercise load, and patients with
pacing rhythm due to implantation of a pacemaker or a cardiac
resynchronization therapy device. Two hundred sixty individuals
who had CVD with eligible data were included in the final analysis.

Patient characteristics
Tables 1 and 2 show the baseline characteristics and respiratory
gas data during CPX of the train and test cohorts. Overall, the
patients were predominantly men (73.1%), with an average age of
58.9 ± 14.6 years, and mean body mass index was 23.5 ± 3.9 kg/m2.
Comorbidities included hypertension (46.5%), diabetes mellitus
(18.1%), and dyslipidemia (40.4%). Medical history of CVD included
chronic heart failure (46.5%), coronary artery disease (38.4%),
pulmonary hypertension (15.8%), and arrhythmias (14.2%). The
details of each medical history are provided in Supplementary
Table 1. Twenty-five (9.6%) patients had atrial fibrillation (AF)
during CPX. There were no significant differences in patients’
backgrounds among the two cohorts (the train cohort and the test
cohort). In respiratory gas analysis data, there was significant
difference of the oxygen uptake at VT (VT–VO2) in the train and
test cohort (14 ± 4.5 vs. 15.7 ± 5.8 mL/kg/min; P= 0.041, Table 2).
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Evaluation of the DL algorithm to estimate the threshold of
aerobic exercise
The VO2 estimated from a single-lead ECG using DL algorithm (DL
threshold, DLT–VO2) was compared with the VT–VO2 manually
detected from a respiratory gas analyzer during CPX. The
relationship between the VT–VO2 and the DLT–VO2 of the train
cohorts showed a satisfactory result (derivation cohort: r= 0.873,
P < 0.001, and validation cohort: r= 0.749, P < 0.001, Fig. 2a, b).
Further, the relationship between the VT–VO2 and the DLT–VO2 of
the test cohort indicated that our DL algorithm was a clinically
effective tool for estimating the threshold (r= 0.875, P < 0.001, Fig.
2e). The Bland–Altman plot revealed that the mean difference
between the VT–VO2 and the DLT–VO2 in all three cohorts
(derivation cohort: −0.14 mL/kg/min, validation cohort: −0.38 mL/
kg/min, and test cohort: −0.05mL/kg/min) was nonsignificant
(P > 0.05, Fig. 2b, d, f). Therefore, these findings demonstrated that

there was no bias between the mean values, which displayed
strong agreements between the VT and the DLT.

Subgroup analysis
The correlation coefficient between the VT–VO2 and the DLT–VO2

as the test cohort when stratified by patient characteristics was
assessed (Supplementary Fig. 1). The correlation coefficients (r)
were >0.7 in all the subgroups, and there were no major
differences among stratified characteristics (P interaction > 0.05
for all).

DISCUSSION
In the present study, we found that the DL algorithm constructed
with neural networks from single-lead ECG data during exercise
enabled estimation of the VT in patients with CVDs. This study is
unique in that we focused on the fact that electrical activity of the
heart is dynamic during exercise and that the changes derived
from hidden big data might resemble the feature of the VT.
DL is bringing a paradigm shift to healthcare, which is powered

by increasing availability of healthcare data and rapid progress of
analytic techniques. In recent years, the application of DL to
cardiovascular medicine has advanced rapidly. Especially since the
learning method called neural network has spread, we have made
remarkable progress in precision. In the area of cardiovascular
medicine, there are many applications of DL using neural
networks; however, few reports are available in the area of
cardiac rehabilitation. Myers et al.16 reported that deep neural
networks could have application in the context of CPX for
detecting cardiovascular outcome in patients with heart failure.
Hearn et al.17 also described that harnessing neural networks with
CPX data improved the prognostication of outcomes compared
with the conventional prognostic method in patients with heart
failure. These two studies implemented DL for the detection of

Fig. 1 Patient flow chart. CPX cardiopulmonary exercise testing.

Table 1. Baseline characteristics stratified by the train or test cohort.

All patients
(n= 260)

Train cohort
(n= 169)

Test cohort
(n= 91)

P value*

Age, years 58.9 ± 14.6 58.6 ± 14.5 59.4 ± 14.9 0.720

Male sex 190 (73.1%) 122 (72.2%) 68 (74.7%) 0.660

Height, cm 165.6 ± 8.6 165.4 ± 8.5 165.8 ± 8.7 0.552

Weight, kg 64.7 ± 13.8 64.2 ± 14.0 65.7 ± 12.8 0.289

BMI, kg/m2 23.5 ± 3.9 23.3 ± 3.9 23.8 ± 3.8 0.272

Hypertension 121 (46.5%) 78 (46.2%) 43 (47.3%) 0.865

Diabetes mellitus 47 (18.1%) 33 (19.5%) 14 (15.4%) 0.532

Dyslipidemia 105 (40.4%) 75 (44.4%) 30 (33.3%) 0.074

Chronic heart
failure

121 (46.5%) 78 (46.2%) 43 (47.3%) 0.865

Coronary artery
disease

100 (38.4%) 70 (41.4%) 30 (33.0%) 0.181

Pulmonary
hypertension

41 (15.8%) 22 (13.0%) 19 (20.9%) 0.097

Arrhythmias 37 (14.2%) 14 (15.4%) 23 (13.6%) 0.696

Prescription of a
β-blocker

177 (68.1%) 122 (72.2%) 55 (60.4%) 0.142

AF rhythm
during CPX

25 (9.6%) 17 (8.8%) 8 (10.1%) 0.741

Values are presented as a mean ± standard deviation or number
(percentage).
*Difference between the train cohort and the test cohort for each item.
BMI body mass index, AF atrial fibrillation, CPX cardiopulmonary exercise
testing.

Table 2. Cardiopulmonary exercise testing data of patients in the
train and test cohorts.

Rest VT Peak

Train cohort (n= 169)

HR, bpm 75 ± 13 103 ± 18 136 ± 27

SBP, mmHg 118 ± 18* 146 ± 26 167 ± 36*

DBP, mmHg 74 ± 13 80 ± 12 83 ± 17

VO2, mL/kg/min 3.9 ± 0.8 14.0 ± 4.5* 21.8 ± 7.4

WR, W – 56 ± 26 106 ± 45

RQ – 0.97 ± 0.70 1.17 ± 0.11

VE-VCO2 slope 30.2 ± 5.8 – –

Test cohort (n= 91)

HR, bpm 76 ± 13 107 ± 18 138 ± 27

SBP, mmHg 123 ± 20* 151 ± 29 173 ± 41*

DBP, mmHg 77 ± 13 83 ± 13 83 ± 16

VO2, mL/kg/min 4.0 ± 0.8 15.7 ± 5.8* 23.1 ± 8.0

WR, W – 62 ± 28 114 ± 47

RQ – 0.91 ± 0.12 1.16 ± 0.12

VE–VCO2 slope 29.7 ± 5.3 – –

Values are presented as a mean ± standard deviation.
*P < 0.05, difference between the train cohort and the test cohort for
each item.
VT ventilatory threshold, HR heart rate, SBP systolic blood pressure, DBP
diastolic blood pressure, VO2 oxygen uptake, WR work rate, RQ respiratory
quotient, VE–VO2 slope ventilation–carbon dioxide production slope, bpm
beats per minute.
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prognosis. The strong point of our study is that our DL algorithm
could recognize hidden features from single-lead ECG and
estimate the VT, which was a clinically essential parameter for
determining the level of exercise.
Our network structure combining one-dimensional convolution

(1D-conv) and long–short term memory (LSTM) efficiently learned
the complex time-series pattern of voltage in an ECG record and
effectively estimated the time point of VT without the need for a
respiratory gas analyzer. This combination of 1D-conv and LSTM
has been shown to be effective in learning 12-lead ECG in our
previous investigation18. The two-dimensional convolution net-
work is useful in extracting information from a still image19. This is
done by abstracting local information within the special axis of the
images. The 1D-conv network does the similar abstraction but on
only a single axis; in our case, it was a time axis. The LSTM is an
improved version of the recurrent neural network, which is
effective in learning time-series data. However, this network

expands the steps of back propagation as the length of the input
data increases. This causes the problem of vanishing gradient and
makes the training computationally expensive. The combination
of 1D-conv and LSTM may have been powerful for dealing with
long time-series data by allowing abstraction of complex ECG
patterns by 1D-conv and reducing the complexity of the data that
the LSTM should learn. However, in order to deal with a larger
number of voltages recorded in a single dataset, our study
modified the network to form a more complex structure but was
based on the same principal of the previously reported combina-
tion. We applied an ECG data length of 30 s to run our network
structure combining 1D-conv and LSTM. We did not compare the
model performance using other ECG length. A systematic research
of the best ECG length may have further improved the model. Our
study again shows that the combination of 1D-conv and LSTM is a
powerful tool for dealing with time-series data of voltage
recordings from ECG.

Fig. 2 Validity testing of the VO2 at the ventilatory threshold of the derivation, validation, and test cohorts in patients with
cardiovascular diseases. The graphs in the left panel show the relationship between the VT–VO2 and the DLT–VO2 for each cohort (a, c, e).
The graphs in the right panel show the Bland–Altman plots (b, d, f), which indicate the respective differences between the VT–VO2 and at the
DLT–VO2 for each cohort (y-axis) against the mean of the VT–VO2 and at the DLT–VO2 for each cohort (x-axis). The thinner horizontal lines in
each Bland–Altman plot represent a ±1.96 SD. VO2 oxygen uptake, DLT deep learning threshold, VT ventilatory threshold, SD standard
deviation.
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Cardiac rehabilitation defined by multidisciplinary professionals
plays an important role in the disease management program for
patients with CVDs, leading to improved exercise tolerance and
quality of life, and reduced hospitalization20. Nevertheless, the
application of cardiac rehabilitation for patients with CVDs is
extremely low, especially in the outpatient setting21–23. Some
factors contribute to such situations: complexity of CPX, time
conflicts, and patients’ disinterest and uncertainty about the
management of aerobic exercise in daily life24. Alternative
methods are needed to facilitate the estimation of aerobic
exercise thresholds and expand exercise therapy to the outpatient
setting. We have previously demonstrated that a real-time
evaluation of the HR variability (HRV) with single-lead ECG during
CPX could be helpful for detecting the aerobic exercise thresh-
old25. The study targeted patients who had myocardial infarction
and sinus rhythm on ECG but not arrhythmia, such as AF, because
the HRV analysis is not applicable in patients with irregular R–R
intervals on ECG. In contrast, the method combined with the DL
algorithm in the present study could be expanded to a wide range
of CVDs patients, including those with AF during CPX. Further, if
the algorithm of this study is mounted on wearable devices that
can record ECGs, it can improve the persistence of cardiac
rehabilitation programs in outpatients and relocate their bases
from hospitals to other institutions, such as commercial fitness
clubs or even patients’ homes.
Our findings should be interpreted in light of the following

limitations. Firstly, the current analysis was performed in a single
university hospital in Japan. The selection of patients who
underwent CPX in the hospital may be biased. Further validation
analyses using external datasets are necessary to establish the
validity of our DL model. Second, variables of neural networks
contained age, sex, and exercise time in addition to ECG data.
Previous studies have suggested a correlation between VT, and
age, sex, and peak VO2

26,27. We also tested model excluding ECG
data by training the same DL architecture with dummy ECG (all
voltage for ECG was 0 for this analysis) to demonstrate the validity
of the present study. In the model, there was also a correlation
between DLT–VO2 and VT–VO2 of r= 0.771 (Supplementary Fig.
2). However, the correlation coefficient in the full model was
significantly higher than that in the model without ECG data (the
full model, r= 0.875 vs. the model without ECG data, r= 0.771, P
< 0.05). These results suggest that ECG plays a crucial role in
improving the accuracy of our model to achieve a good
estimation for the VT. Third, the model requires the exercise
time as an input. Therefore, it is not applicable to patients who
cannot complete the CPX until exhaustion. Fourth, we could
estimate the VT using DL including cardiac rhythm abnormalities
(e.g., AF), and there was no significant deference in the DL model
regardless of whether patients had AF (Supplementary Fig. 1). The
number of patients with AF was limited (n= 25); therefore,
further studies should be performed to assess the efficacy of our
model in such patients. Finally, if used practically, the DL
algorithm can estimate HR and work rate (Supplementary Fig.
3), but cannot calculate the values of VO2 or metabolic
equivalents without a respiratory gas analyzer. Thus, it cannot
replace the respiratory gas analyzer but may serve as a support
system of CPX. Thus, our study is not yet an established method,
and further proven experiences are needed to be used as a new
estimating method in clinical practice.
In conclusion, this is the first study to show that the DL

algorithm with neural networks using single-lead ECG data during
CPX can estimate the VT in patients with CVDs. Given the difficult
situation of estimating the VT, this method with DL could be
helpful in estimating the VT.

METHODS
Exercise testing protocol
The patients performed the test in the upright position on an electronically
braked ergometer (Strength Ergo 8; Mitsubishi Electric Engineering
Company, Tokyo, Japan). At first, the patients rested for 2 min on the
ergometer until their heart rate (HR) and respiratory condition slowed
down. Following a 2-min rest (rest phase), the patients performed a 2-min
warm-up pedaling at 0W (warm-up phase). The intensity was increased
with a RAMP protocol ergometer (10–15W/min), depending on the
exercise capacities of each patient (exercise phase). The patients exercised
with a progressive intensity until they could no longer maintain the
pedaling rate (volitional exhaustion). After the exercise tests were
terminated, the patients were instructed to stop pedaling and to stay on
the ergometer for 3 min (recovery phase). The blood pressure was
measured every minute with an indirect automatic manometer. Single-lead
and 12-lead electrocardiograms were continuously recorded during whole
test from the beginning of the rest phase to the end of the recovery phase.

Respiratory gas analysis during CPX
The expired gas flows were measured using a breath-by-breath automated
system (Vmax; Nihon Kohden, Tokyo, Japan). The respiratory gas exchange,
including the ventilation, VO2, and carbon dioxide production, were
monitored continuously and measured using a 30-s average. This system
was subjected to a 3-way calibration process, involving a flow volume
sensor, gas analyzer, and delay time calibration. VT was determined
conventionally using the procedures described by Gaskill et al. (i.e., the
ventilatory equivalent, excess carbon dioxide, and modified V-slope
methods)28. The peak VO2 was calculated as the average oxygen
consumption during the last 30 s of exercise. The ventilation/carbon
dioxide (ventilator efficiency) slope (VE–VCO2 slope) was based on data
from the onset of exercise to the respiratory compensation point, and it
was obtained by performing a linear regression analysis of the data
acquired throughout the entire period of exercise29,30. The respiration
quotients at VT and peak exercise were measured.

Electrocardiographic sampling, preprocessing data, and
construction of the DL model
Among 260 cardiovascular patients, 97 (37.3%), 72 (27.7%), and 91 (35.0%)
patients were randomly assigned to derivation, validation, and test
cohorts, respectively. A combination of the derivation and validation
cohorts were grouped with the train cohort (Fig. 1). The overall process of
this study is illustrated in Fig. 3. The single-lead ECG data were stored as
measurements of time-series voltage with a sampling rate of 1000 Hz by
the LRR-03 (Crosswell, Yokohama, Japan). The conversion of ECG data to
matrices was done using a previously published method with slight
modification18. The ECG data from the beginning to the end of exercise
phase (the ECG data painted yellow in Fig. 3) were extracted, and divided
into multiple sections of 30 s. Each section was labeled independently as
before VT (0) and including or after VT (1). Each labeled section of the 30 s-
series of ECG data along with the patients’ demographic data (age and sex)
and exercise time (duration) was independently fed into the network for
training. The network structure of the DL model is shown in Fig. 4. We
constructed the structure with a combination of one-dimensional (1D)
convolution and LSTM to deal with the time-series data points in single-
lead ECG data, converted to a one-dimensional matrix containing the
recorded voltage for each 1 ms. The neural network was constructed and
trained using the Keras framework (https://keras.io) with TensorFlow31 as
backend. The neural network was trained using the back-propagation
supervised training algorithm. The loss function of binary cross entropy
was minimized using the RMSprop optimizer (https://www.coursera.org/
learn/neural-networks/home/welcome). The network was trained for 60
epochs, and the model that performed best with the validation cohort was
selected as the final model (Fig. 5). The performance of the final model was
tested only once on the test dataset to confirm that the model was not
over-fitted.

DL threshold
The DLT was defined as an initial time zone of 30 s-series including the VT
estimated by the DL model. We validated the relationships between
VT–VO2 and DLT–VO2 as the derivation, validation, and test cohorts to
confirm that the DLT was the good threshold for clinically estimating the
VT (Fig. 3).
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Statistical analyses
The results are represented as the mean ± standard deviation for
continuous variables and as a percentage for categorical variables, as
appropriate. The relationships between the studied methods of the VT and
the DLT as derivation, validation, and test cohorts were investigated by
using the Pearson correlation coefficient test. The Bland–Altman technique
was applied to verify the similarities between the different methods (VT

and DLT)32. This comparison was a graphical representation of the
difference between the methods and the average of these methods. In
addition, we stratified patients into groups based on disease history
(chronic heart failure, coronary artery disease, and pulmonary hyperten-
sion), left ventricular ejection fraction, rhythm of AF during CPX, and
prescription of a β blocker, and estimated the relationship between the
subgroups in the test cohort. Correlation coefficients between the full

Fig. 4 Structure of the neural network in our deep learning model. Schematic illustration of the neural network model. The details of each
cell in the network are shown in the left panel, and the overall network structure is shown in the right panel. Con convolution, ECG
electrocardiography, 1D Conv one-dimensional convolution, LSTM long short-term memory, 1D max pooling one-dimensional max pooling.

Fig. 3 Data conversion and deep learning for the estimation of VT from single-lead electrocardiography data. Schematic illustration of the
pre-processing of electrocardiography and application of deep learning. ECG electrocardiography, VT ventilatory threshold, DLT deep learning
threshold, DL deep learning, VO2 oxygen uptake, CPX cardiopulmonary exercise testing.
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model and the model without ECG were compared using the correlation
coefficient difference test. All probability values were two-tailed, and P
values < 0.05 were considered to be statistically significant. All statistical
analyses were performed with SPSS version 25.0 software (IBM Corp.,
Armonk, NY).

Ethics and registration
The study protocol was approved by the Institutional Review Board of Keio
University School of Medicine (permission number: 2014023) and
conducted in accordance with the Declaration of Helsinki. All patients
provided written informed consent.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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