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Abstract

Background: Gene co-expression analysis has previously been based on measures that include correlation coefficients
and mutual information, as well as newcomers such as MIC. These measures depend primarily on the degree of
association between the RNA levels of two genes and to a lesser extent on their variability. They focus on the similarity
of expression value trajectories that change in like manner across samples. However there are relationships of biological
interest for which these classical measures are expected to be insensitive. These include genes whose expression
levels are ratiometrically stable and genes whose variance is tightly constrained. Large-scale studies of relatively
homogeneous samples, including single cell RNA-seq, are experimental settings in which such relationships might
be especially pertinent.

Results: We develop and implement a ratiometric approach for detecting gene associations (abbreviated RA). It is
based on the coefficient of variation of the measured expression ratio of each pair of genes. We apply it to a collection
of lymphoblastoid RNA-seq data from the 1000 Genomes Project Consortium, a typical sample set with high overall
homogeneity. RA is a selective method, reporting in this case ~1/4 of all possible gene pairs, yet these relationships
include a distilled picture of biological relationships previously found by other methods. In addition, RA reveals
expression relationships that are not detected by traditional correlation and mutual information methods. We also
analyze data from individual lymphoblastoid cells and show that desirable properties of the RA method extend to
single-cell RNA-seq.

Conclusion: We show that our ratiometric method identifies biologically significant relationships that are often
missed or low-ranked by conventional association-based methods when applied to a relatively homogenous dataset.
The results open new questions about the regulatory mechanisms that produce strong RA relationships. RA is scalable

Mutual information, Pearson correlation, RA

and potentially well suited for the analysis of thousands of bulk-RNA or single-cell transcriptomes.
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Background
Analyses of gene co-expression that use measures of
association, such as the Pearson and Spearman correlation
coefficients, the squared Pearson correlation coefficient
(R?, and mutual information, are ubiquitous in modern
biology. These measures of association are the basis for
the most widely used clustering techniques [1], and are
also used for a diversity of network motif and inference
algorithms ([2-4] and references therein).

They effectively highlight relationships between genes
whose expression levels co-vary across a set of heteroge-
neous samples, and the results they produce are quite
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similar [5]. And while newer approaches, such as the
maximum information coefficient (MIC) [3], have been
presented, their novelty relative to existing measures has
been disputed [6].

The properties and similarities among current methods
raise two related issues. First, there is a rapidly growing
repertoire of transcriptome studies that each consist
of large numbers of homogeneous samples, including
single-cell RNA-seq studies. Is there an effective way to
detect biological relationships from these expression
data that will not depend heavily on sample heterogen-
eity? Second, are there classes of relationships of poten-
tial biological importance that have been persistently
missed or undervalued by the existing methods?

To address these questions we sought a measure that
would detect previously missed relationships, while

© 2014 Abelin et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:woldb@caltech.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Abelin et al. BMC Bioinformatics 2014, 15:331
http://www.biomedcentral.com/1471-2105/15/331

including known ones. Others have pointed to limita-
tions in the standard methods, although they are widely
unappreciated (see [7]). Relevant to the current study is
the fact that variability affects the usual measures of gene
co-expression in sometimes unexpected ways, including
causing some genes to score as not co-expressed, even
though scrutiny of the evidence suggests that they are.

In this study we develop and implement a conceptually
different approach, termed the ratiometric method (RA),
which ranks each gene pair A and B based on the stabil-
ity of the ratios of their expression values A/B and B/A
across samples. The more stable the ratio is, the more
strongly the relationship will score. From a biological
point of view, the objective is to be sensitive to gene
pair relationships in which the relative expression levels
are constant, irrespective of whether the absolute levels
differ widely. Further, we are interested in finding and
scoring expression patterns that are highly constrained
within and between the components of different cellular
pathways and structures. These hypothesized tight quan-
titative relationships at the RNA level are of interest,
because they may reflect novel regulatory strategies and
constraints. By applying RA as a first step, we find that
such relationships can be detected and ranked for their
ratiometric stability.

We use a previously published large B-cell RNA-seq
dataset from the 1000 Genomes Project Consortium [8]
to characterize the ratiometric method. These data
represent a rapidly growing class of RNA-seq data, in
which many samples are biologically similar to each
other. We reasoned that such datasets are incompletely
served by the classical methods that focus on sample
differences/perturbations to identify gene-sets that are
co-regulated or otherwise function jointly. Among highly
similar samples, we postulated that a hallmark of shared
regulation and/or function would instead be constancy
of relative expression levels (detected here pair-wise).
We reasoned that this measure would be robust in a
way that the usual measures would not be for both tech-
nical and biological reasons.

We revaluate that results from RA and find they are
markedly different from correlation- and mutual
information-based methods. RA captures relationships
ignored by other measures and also assigns different
rankings to many relationships detected by all methods.
Expression relationships uniquely or preferentially detected
by RA include important biological processes such as RNA
processing. Compared with the traditional methods, RA
also identifies a larger number of relationships that are
annotated as KEGG pathways. Mere expression level
similarity-by-chance did not explain this collection of
functional relationships. We consider possible regula-
tory implications for ratio-stable genes and pathways
and show that for RNA processing, which was the most
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RA-preferential pathway, many of the driving genes
have been previously shown to be highly sensitive to
quantitative variation or to be in a known ratiometric
relationship. Finally, we perform a pilot test on single-
cell RNA-seq data collected from a lymphoblastoid cell
line, and show that RA performs more robustly than do
conventional measures. We discuss how RA could make
a unique contribution to emerging high throughput
single-cell studies.

Results and discussion

A ratiometric approach for evaluating pairwise gene
expression relationships

Considering a gene pair A and B, we define the ratio-
metric relationship as a function of the relative disper-
sion of the ratios A/B and B/A. This relative dispersion
is measured by the coefficient of variation (CV), which is
the standard deviation of the ratio divided by the mean
of the ratio. The rationale for this choice is given in the
Methods and Additional file 1: Supplemental Method
section. To determine how well a ratiometric equation
describes a gene pair’s expression pattern, we calculate
the stringency of a fit to a ratiometric relationship as
follows:

Acv = |CV(A/B)-CV(B/A)|

We use Acy to explicitly model the variability in ex-
pression values for a given gene pair (A,B), which may
affect traditional measures of co-expression differently
than RA. This arises when variability is lowered because
the range of values for A and B is restricted. Below we
outline how Acy relates to restriction in the variability
of A and B and discuss why this can be important. We
also note that value of Ay is the same no matter what
the order of the genes A and B is, as are the correlation
coefficient and mutual information measures. Additional
variability and its relationship to Acy is discussed in
Methods and Additional file 1.

Two genes are defined as following a ratiometric pro-
file if Acy < 0.01. We selected this value based on prior
analysis of the data structure by looking at the sensitivity
of the results when changing the Ay (Additional file 1:
Figure S1), in addition to a simulation that examined the
degree to which two independently expressed hypothet-
ical genes would produce a false positive gene pair rela-
tionship (Additional file 1: Figures S2 and S3). Within
the tested Acy -range there was little or no change in
RA gene ranking and the increased gene pair incorpor-
ation was mainly observed at the lower end of the stabil-
ity range. The robust results in gene ranking were
combined with the theoretical justification of a Acy close
to O (set stringently to reduce false negative gene pair
associations). In any use, the Acy would be adjusted to
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accommodate data with different characteristics based
on the observed incorporation profile at different Acy
settings. Once gene pairs were selected by this criterion,
further analyses were based on CV(A/B) and CV(B/A)
that are below a specified value. It is convenient to spe-
cify these two ratios together as CV, as when Acy is set
close to 0 the two CVs are approximately the same. The
smaller the CV, the stronger the ratiometric association
(RA). In figures and tables, we abbreviate the ratiometric
approach as RA (corresponding to the resulting gene
pairs after first applying the stringency of fit, Acy and
then reporting the stability, CV, for those selected gene
pairs, as described above), mutual information as MI (with
mutual information statistic I), and the squared Pearson
correlation coefficient as PE (with R? as the statistic). We
confine most analyses in the rest of the study to these
three major models, though we note that the Spearman
correlation coefficient was also tested for many of the ana-
lyses and behaved very similarly to Pearson R

Variability and association

In addition to directly seeking ratio-based relationships
the RA approach, as we have developed it, also focuses on
variability. An underappreciated property of the standard
statistical measure of association (correlation) is that it
combines elements of both association and variability.
This was noted by Bland and Altman [7], when they
explored how restrictions in the range of gene expres-
sion leads to reduction in the correlation coefficient.
They note that

“Correlation coefficients are a property of the variables
and also the population in which they are measured.
If we look at a restricted population, we should not
conclude that there is little or no relation between the
variables because the correlation coefficient is small.”

This observation is consistent with results from the
statistical literature, as it is known that truncation
(which changes the “population” referred to above), can
alter the correlation coefficient of the bivariate normal
[9]. While truncation (in their words, “restricted popu-
lation”) is sufficient to cause the problem, it is not
required, because simple narrowness of the range of
expression can be enough to reduce the correlation coef-
ficient. In principle, this condition would be expected in
some biologically important parts of gene expression
space, especially for high-quality data from samples that
are quite similar to each other, where that similarity is
driven by biological constraint and functional affiliation.

We illustrate this with a “toy case” and a simulation
(Figure 1A). A plausible pattern for 4 distinct genes
across 5 samples, showing all possible relationships be-
tween them, is shown together with PE (R?) and RA
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(CV) analyses. PE evaluates the gene pairs based on the
degree of covariance, while RA measures the stability of
each ratio. In this hypothetical case, only gene pair (Z,2)
has a sufficiently high R*> to be considered correlated
and these genes are also identified to be in a ratiometric
expression relationship. However, an additional pair of
genes (3,4) is also in a ratiometric relationship, but it is
not detected using R® This shows how, in principle,
gene pairs can be undetected by the traditional PE
method, but be detected by RA. The most notable differ-
ence between gene pair (3,4) and gene pair (1,2) in the
above example is the narrow expression range of the
former two genes compared to the latter two. We note
that this is a situation one might especially anticipate
among samples of similar type, such as similar individual
cells, and that these underlying relationships might be
biologically pertinent (see below).

Following this reasoning, we next examined the
expression range sensitivity of PE, MI and RA by carry-
ing out a simulation of expression data for two hypo-
thetical genes, A and B. The expression levels of A are
generated from B by the following equation for every
sample i:

a; = 2b; + u;

where u; ~N(0, 50). For each run, we varied the ex-
pression range of B by increasing the standard deviation
of B from 0 to 25% of the mean expression level of B.
Setting E[B]=500, the expression level of B is thus nor-
mally distributed following B~ N(500, s, where s is
standard deviation ranging from 0 to 125 of the expres-
sion level. Each run was repeated 10 times with n=100,
and for each iteration we calculated Pearson and Spear-
man R” values, mutual information, CV(B/A), CV(A/B)
and Acy (Figure 1B). The Pearson and Spearman R* and
the mutual information index are very low at low s, and
they only approach 1 (for PE and SP) and 2 (for MI) as
s increases. In contrast, the CV(A/B) measures were
constant throughout the whole range of s, and thus
accurately described the underlying generative relation-
ship of a constant association between the two genes. If
we take “restriction” to mean, more generally, limited
variation in one of the genes, these results confirm Bland
and Altman’s concern and argue in favor of alternative
approaches.

Simulations also showed that the correlation coeffi-
cient can remain the same in situations where the ratio-
metric score varies, with the ratiometric measure once
again being more sensitive in cases of low variability.
Figure 2 shows results of a supporting simulation for a
bivariate normal distribution with E[A]=E[B]=200 with a
fixed Pearson correlation coefficient r=0.47, with the
standard deviations of both A and B allowed to vary
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Figure 1 (See legend on next page.)
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(See figure on previous page.)

Figure 1 Schematic illustration of the differences between the ratiometric analysis and correlation metrics. A) For five samples (A-E), the
expression levels of genes 1-4 are measured (top graph). The box on the right shows the analysis of expression relationships using a Pearson
correlation. Only gene pair 1:2 is identified as a significant interaction, (R? = 0.99). In contrast, the ratiometric method (box on the left) identifies
both pairs 1:2 and 3:4 as significant. The PE method does not capture the second relationship (3:4) as the FPKM ranges of the two genes are too
narrow for a regression line to be stable. On the other hand, the RA model assesses only the FPKM fold-change across samples, is much less sensitive
to narrow FPKM ranges, and identifies both pairs. B) Shown is simulated expression data for two genes, A and B. The expression levels of A were
generated from those of B as follows: a;= 2b, + u;. For each dataset, the expression range of B was varied by increasing CV(B) from 0 to 25% of
the mean level of B(ug, = 500). The expression level of B is thus normally distributed B~ N(500, % B). For each value of CV(B), 10 datasets with
100 samples each were generated. The Pearson and Spearman R? the entropy, mutual information, and the CV(A/B), CV(B/A) and Ay -values
were calculated for each dataset, and the mean and standard error are shown. Note that the gene pair association does not change along the
x axis and the expression of gene B can be used to predict the expression of gene A equally well in all runs. As the expression range for B narrows, the

between the expression levels of the two genes is always recovered.

Pearson and Spearman R’-values decrease, along with the mutual information index. In contrast, the ratiometric CV is constant and the relationship

from 10 to 80 while always being equal to each other.
Agreement with the ratiometric selection criteria falls off
rapidly once the standard deviation exceeds 30, while the
correlation coefficient remains constant. Additional file 1:
Figure S4 shows an example from the 1000 Genomes data-
set of a pair of genes that has a low R* but meets the RA
criteria.

Dataset collection and processing

To test the ratiometric method on a representative
contemporary homogeneous sample group, we used a
panel of RNA-seq datasets for lymphoblastoid cell
lines derived from 462 human individuals from the
1000 Genomes Project [8]. This is a good test case
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Figure 2 Simulation for a bivariate normal distribution. The
fraction of observations (1000 runs of 1000 observations each for
each value of the standard deviation) meeting the ratiometric
definition (with a stability of 0.135) is shown as a function of the
average correlation coefficient for each standard deviation. The
constant correlation coefficient in this figure under the assumptions
of equal changes in the standard deviation can be shown (using
probability calculus) to be a property of the multivariate

normal distribution.

because it consists of high-quality datasets over a large
number of biologically similar samples. In this setting,
we reasoned that biologically important gene pair
relationships, driven by either direct or indirect co-
regulation relationships, would display a low degree of
expression fluctuation, since only one cell type and
growth condition is represented in the study. However,
we did not know what fraction of already known path-
ways and cellular structures would be identifiable by
our criteria.

Raw sequencing reads were downloaded and quantified
in a uniform way using eXpress [10] (see the Methods sec-
tion for details). Genes with very low expression values
were excluded so that only genes with FPKM values >1
in at least 95% of samples were included (Methods,
Additional file 1: Figure S5). We note that in cells of this
type, we have previously measured the number of tran-
scripts per cell [11] and the threshold selected here is
below the level that corresponds to one transcript per
cell. Subsequent analysis was carried out on the result-
ing dataset.

Relationships between RA, PE and MI

We examined the distributions of the Pearson correl-
ation coefficient r, R?, Acy and mutual information, I,
and found them to have the same general shape, with
the exception of the correlation coefficient (Additional
file 1: Figure S6). This similarity in shape, however, does
not extend to a similarity in the variation of these mea-
sures. As Table 1 reveals, I and R are very similar, with
a correlation coefficient between the two >0.9. This is
not unexpected as R* can be interpreted as the fraction
of variation explained, and mutual information as a like-
lihood ratio and hence goodness of fit. The simple Pear-
son r is moderately correlated with the I and R* values.
However, while Acy is highly correlated with CV(A/B)
and CV(B/A), none of these three measures is meaning-
fully correlated with the more usual measures of associ-
ation. This suggests that the RA method is identifying a
substantially different kind of relationships.
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Table 1 Correlation between measures

| R? r Acy CV(A/B) CV(B/A)
[ 1 09125 0451  -00833 -0152  —0.139
R’ 09125 1 0631  —00587 -0.121  —0117
r 04509 06308 1 0053  -0144  -0.136
Acy —00833 00587 —0053 1 0.705 0723
QV(A/B) 01519 —0.1212 -0.144 07052 1 0.126
QV(B/A)  —01394 —01171 -0.136 07230  0.126 1

Finally, while reduction of variability is one way to
meet our criteria for ratiometric behavior, it can also
arise by following the ratiometric relationship A/B = c. It
is shown in the Additional file 1 (section “Analytical
Analysis of the CV”) that a reduction of expected vari-
ation agrees with some intuitive definitions of ratio-
metric behavior (such as those found in [12]). An
example of that type of reduction from a pair of genes
from the 10000 Genomes project is shown in Additional
file 1: Figure S7.

The gene expression connectivity landscape

To investigate how the ratiometric approach evaluates
gene pair relationships differently than the PE and MI
methods, we ranked all gene pairs according to their
association strength calculated by each method in the
1000 Genomes dataset. We then divided each ranking
list into a series of 100 steps according to its stringency
range (for PE: R*[1—0], for MI: I[2—0], and for RA: Acy
[0—1]). Each step or set of relationships was drawn as
an interaction graph, where the nodes are genes and the
edges the gene pair relationships. We denote the graphs
as G; (where i is the stringency level index, with 1 corre-
sponding to the most stringent set), the set of undirected
edges in each graph (i.e. detected relationships between
genes) as E(G;) and the number of such edges as |E(G))|.
We excluded all genes with a vertex degree dg(v=0) (no
relationship detected) from each graph and denoted the
size of the remaining vertices as |V(G,)| (see Additional
file 1: Figure S8 for further details).

We first examined the number of individual genes par-
ticipating in a RA, PE or MI relationship as a function
of the ratio stability CV, R* and I, respectively (Figure 3A,
solid lines). Naturally, more genes are identified as the
thresholds are relaxed (by increasing the CV and de-
creasing the R? and I inclusion cut-off). The RA method
displays a 2-stage inclusion profile, in which the majority
of genes are included within a short interval at high
stringency and inclusion then quickly levels off. The
few remaining genes are spread out over a much larger
range, as the stringency level decreases (gray filled curve
in Figure 3A). PE differs, having an inclusion profile that
is roughly bell-shaped, while MI behavior falls some-
where between the other two.
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The distinction between the RA method and PE or MI
is even more striking when the interactions among gene
pairs are analyzed (Figure 3A, dashed lines). RA again
displays rapid inclusion followed by a leveling off. In
contrast, both the PE and MI methods exhibit exponen-
tial increases of interaction inclusion, but only at very
low stringency levels that are much lower than the strin-
gency at which the majority of genes had been identified
as participating in at least one interaction. The implica-
tion is that when new genes are incorporated in RA
clusters they form, to a greater extent, interactions with
preexisting genes, and the number of new interactions
identified increases rapidly relative to PE or MI clusters.
When 95% of the genes (|V(G)| = 9244) are incorporated
in a graph (Figure 3A, black vertical line), RA identifies
~5-fold and ~4-fold more gene interactions compared
with the PE and MI approaches, respectively. Hence the
bulk of the gene pair interactions are included in PE and
MI clusters long after most genes are already added,
while in RA the bulk of interactions are incorporated
into the graphs together with genes.

The different RA inclusion profile would be of little
biological relevance if the different methods produced
identical gene and/or gene pair ordering. To investigate
whether this is the case, we first generated Venn
diagrams using same-sized graphs from the three
methods for several different graph sizes, first using
genes, |V(G)ral = |V(G)pe| = |VIG)pul, and then using
gene pairs, |E(G)ral|=~ |E(G)pe|~|E(G)aul, as size
measures (Figure 3B, Additional file 1: Table S5 and
Table S6). As expected, we observed a high degree of over-
lap between both gene sets and gene-pair sets produced
by PE and ML In contrast, RA found large numbers of
genes and gene pair interactions per graph (and accord-
ingly, per stringency level) that are unique relative to PE
and MI. We therefore conclude that a separate set of gene
expression relationships exist that are not identified as
strong associations by traditional measures but are cap-
tured by RA.

Invariant gene expression does not automatically lead to
stable ratios

Some genes in our dataset are expected to, display con-
stant ratios and so thus have a favorable RA-score, be-
cause they are invariantly expressed in the sample set,
without reflecting any underlying biological relationship.
To test if such constancy-by-chance relationships are
prominent and could account for most of the ranking
order produced by RA, each gene expression variation
was plotted against its most stable ratio (Additional file 1:
Figure S9). Invariant gene expression alone does not
correlate strongly with high RA-ranking, R*=0.35,
when including the top 7000 RA-ranked genes. Thus,
RA rankings do not mainly reflect the general gene
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expression homogeneity in the dataset, but instead identify
certain gene pair relationships based on more specific ra-
tio stability.

Characterization of gene pair relationships highly ranked
only by PE and MI

To further assess the differences between the different
methods, we carried out a GO term analysis of gene
pairs that do not fit a ratiometric relationship (i.e.
Acy >0.01) and are hence not RA-ranked at all, but are
highly ranked by PE and MI. It revealed that they are
enriched for genes involved in apoptosis, regulation of
cell death and caspase activity (Additional file 1: Figure
S$10). Among the gene relationships highly ranked by PE
and ML, ~40% display a 2-regime pattern in which a

smaller subgroup is highly expressed and drives the high
ranking, while the majority of the data points indicate a
low expression with little correlation. No 2-regime gene
pair relationships where discovered among those highly
RA-ranked.

GO category enrichment among ratiometrically related
genes

A major question raised by these observations is the
biological significance of ratiometric expression relation-
ships, especially those that were not identified or were
ranked as weak by standard PE and MI methods. We
compiled the set of genes V(G;) in each RA, PE or MI
graph G; at varying vertex set sizes i = 1,...,5 (Additional
file 1: Table S5 and Table S6) and used DAVID (http://
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david.abcc.nciferf.gov, [13,14]) to assess GO category
enrichment for each set, with the following modifica-
tions. Because a number of GO categories are function-
ally highly similar, we merged categories by grouping the
genes in all branches in the GO tree hierarchy up to the
level at which the resulting aggregated GO category
contained more than 200 genes among the 9752 genes
included in our lymphoblastoid RNA-seq data analysis.
We consider an aggregated GO category to be enriched
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if the Bonferroni-corrected p-value < 10™*. For easy ref-
erence the aggregated GO categories are further grouped
into more general biological categories, e.g. “ribosome”
and “cell cycle”.

Results of the GO analysis are summarized in Figure 4.
The sets of genes in RA relationships were enriched for
more GO categories than the sets identified using PE or
ML In addition, in cases where GO categories were
enriched for all three, ratiometrically-constructed graphs
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generally exhibited enrichment at higher stringency levels
(i.e. smaller |V(G;)| and lower i). RA displayed higher
enrichment for ribosomal genes, genes involved in tran-
scription and RNA processing, translation, and ubiquiti-
nation. By contrast, PE and MI sets were more highly
enriched for only one function, the aggregated cell
cycle-related terms.

KEGG pathway analysis

We further explored the biological relevance of the
ratiometric relationships by using the pathway annota-
tions in the Kyoto Encyclopedia of Genes and Genomes
database (KEGG, (www.kegg.jp, [15]). We calculated
the percentage of edges in each graph that are between
genes both of which are annotated in a KEGG pathway,
at similar graph vertex set sizes |V(G)| for RA, PE and
MI. This analysis revealed first, that ratiometric rela-
tionships are more enriched in KEGG interactions, and
second, that the strongest enrichment differences be-
tween the methods are at high-inclusion stringency
levels (i.e. small |V(G)|) (Figure 5). The ratiometric
analysis discovered more validated biologically relevant
interactions than PE and MI among the top-ranked
gene pairs.

Next, we analyzed the recovery of individual KEGG
pathways by the three methods, using a similar frame-
work. We calculated the number of edges within a
KEGG pathway identified as a function of |V(G)|. Only
KEGG pathways for which at least 25% of the genes were
part of at least one of the three graphs at |V(G)|=3100
were considered. The ratiometric analysis identified more
interactions than PE or MI for most KEGG pathways
(Figure 6).
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Figure 5 Fraction of gene pair relationships between annotated
and non-annotated genes in KEGG detected by each method.
The percentage of gene pair relationships (GPR) between two annotated
genes in KEGG of the total number of relationships reported for each
graph size (given in number of genes included). The RA method detects
to a higher degree than PE and MI gene pair relationships that are
within the KEGG annotated database.
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We then investigated the possible reasons for the
observed differences in pathway recovery by the three
methods. As suggested above, a potential strength of
the RA approach compared to PE and MI is the ability
to identify relationships between genes having narrow
expression ranges. We therefore examined the gene
expression ranges for genes involved in each pathway
(Additional file 1: Figure S11). We divided pathways into
four groups: 1) pathways that the RA approach recovers
better than PE or MI by a wide margin; 2) pathways
recovered similarly by all methods, but slightly better
by the RA analysis; 3) pathways for which the three
methods identify an approximately equal number of
genes; and 4) pathways better recovered by PE and MI,
Figure 7A. The CV(FPKM) values are lowest, on average,
for pathways in the first group, and highest for pathways
that are better recovered by PE and MI, in agreement
with prior theoretical considerations and simulation
results (Figure 1B). In the Additional file 1, in the
section “Statistical test of CV(FPKM) groupings” we
show that group 1 has a significantly smaller (at less
than the .001 level) average CV(FPKM) than either
group 2, 3 or 4 and that group 4 is significantly larger
(at less than the .005 level) than either group 1, 2 or 3
(groups 2 and 3 are indistinguishable statistically from
each other). The results show that the pathways unique
to the RA approach correspond to pathways with the
lowest intrinsic variability across samples.

We further investigated the relationship between the
expression ranges of genes within a given pathway and the
interaction recovery rate. We began by comparing two
major KEGG pathways: 1)“Ribosome”, which belongs to
the group recovered equally well by all three methods, and
2) “Spliceosome”, which is recovered best by ratiometric
analysis, Figure 7B. For the “Ribosome pathway”, all three
CV(FPKM) distributions of the captured genes overlap. In
contrast, the few genes in the “Spliceosome” recovered by
PE and MI had broader expression range distributions
compared with the spliceosome genes detected by RA.

To ascertain that the KEGG enrichments reported by
RA were not generated mainly by random pairing of genes
that exhibit invariant expression across the samples,
we performed a perturbation analysis. We generated
randomly permuted models of each KEGG pathway,
mimicking the number of genes in the pathway and its
their RNA expression levels. We then calculated the
detection rates by RA, PE and MI (Figure 6, dashed
lines). We never observed a RA detection rate as high
as that for known biological pathways, although some
relationships are identified that are without an under-
lying KEGG pathway relationship. These results support
the conclusion that RA relationships detected in our study
often reflect known biological pathways, including some
missed by the major existing approaches.
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graph size, given in gene number. The RA method, red, MI, blue, PE, green. Only pathways with gene % =25 for at least one method at graph
size ~3000 genes are included in the figure. Pathways detected early in the graphs are: ribosome, proteasome, spliceosome, RNA transport.
Pathways picked up by the RA method more strongly than PE and MI are both basic cell function pathways as well as disease related ones, such
as: spliceosome, RNA transport, mRNA surveillance, and citrate cycle TCA cycle. Slightly stronger: proteasome, ubiquitin mediated proteolysis,
Parkinson’s disease, oxidative phosphorylation, and Huntington's disease. Pathways picked up equally well by all three methods are ribosome,
ribosome biogenesis in eukaryotes, and Alzheimer's disease. Where PE and MI methods do better than the RA model is in pathways protein
processing in ER, mismatch repair, and DNA replication. Dashed lines represent the perturbed runs simulating the actual pathway.
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(See figure on previous page.)

Figure 7 Distribution of FPKM CVs per KEGG pathway. A) The kernel density, per pathway, of FPKM CVs for the pathway's genes found in our
data set. The Top graph show pathways detected much more strongly by the RA method than by the PE and MI. The second graph show pathways
picked up slightly more strongly by RA. The third graph show pathways detected equally well by all three methods. The bottom graph contains
pathways better picked up by PE and MI compared to the RA method. The better the RA method detects a pathway compared to the other two, the
further left its curve sits. The dotted purple lines indicate how the distributions shift towards the left as one goes up the graph series. B and C, Two
pathways, one from the top graph, and one from the third graph, showing the densities for the subgroup of genes that each method detects at

V(G)s = 2220. The pathway CV(FPKM) density (gray), RA (red), MI (blue), PE (green).

IntPath gene pair relationship enrichment

To further verify the biological relevance of the gene
pair relationships detected by RA, we used gene pair
relationships annotated in the IntPath database (sapien-
sIntPathGenePairs, downloaded 16™ of May 2014) [16].
Again, RA produced a higher enrichment in IntPath-
gene pair relationships among top-ranked genes com-
pared to PE and MI (Figure 8). There was an overlap of
pathways detected using KEGG and IntPath, with the
two best identified being the ribosomal genes and the
spliceosomal genes, with the latter annotated in KEGG
as “Spliceosome” and in IntPath as “mRNA processing”.

Application of RA to single-cell RNA-seq data

Single-cell RNA-seq is an emerging area in which many
similar samples (soon hundreds or even thousands of
similar cells per study) will be the norm. We therefore
performed a pilot study to determine RA’s utility for ana-
lyzing this type of data compared to PE and ML We
applied it to two single-cell data sets of 10 RNA-seq
libraries each from one of the 1000 genomes lympho-
blastoid lines [11] as a pilot study (Acy=0.025). We
compiled a list of 782 genes expressed in at least 18 of
the 20 cells (allowing one non-expression per data set)
and then analyzed the two sets of single cells separately
in order to measure the degree of consistency between
the results for each method. First we analyzed ranking
congruency of each method between the two sets,
recognizing that these data are first-generation and
that they display significant levels of known technical
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Figure 8 Enrichment of IntPath-gene pair relationships at various
stringency levels for the three methods. The enrichment is given in
percentage of gene pairs at a given stringency level that are annotated
in the sapiensintPathGenePairs database. RA shows a higher
enrichment than Pearson correlation and mutual information.

stochasticity [11]. RA displayed a higher degree of ranking
consistency, >40%, between data sets (Figure 9A) than PE
and ML The RA associations were also more highly
enriched by KEGG annotated genes compared to PE and
MI (Figure 9B). When examining the individual pathways,
the only one sufficiently represented among the 782 genes
used for evaluation was the ribosome. Compared to bulk-
RNA cell line data, where the “Ribosome” was easily de-
tected by all three methods, only RA detected it in the
single-cell data (Figure 9C). Thus RA dealt best with the
considerable technical weaknesses of first-generation
single-cell data [11]. At present, RA proved to be the
most robust method by the criterion of ranking con-
sistency and by its ability to identify relationships
known from the larger bulk RNA data.

Conclusions
The ratiometric approach developed here was able to
extract gene expression relationships from a large set of
RNA-seq samples from a single homogeneous cell type.
These gene pair relationships were mainly not identified
or highly ranked by the more traditional methods. We
did this by using the relative dispersion of the expression
ratios between pairs of genes to detect gene pair rela-
tionships. The ranking produced by RA is distinct from
R* (PE) and Mutual information (I), which produce
results similar to each other. A striking result is that
when comparing the top-ranked gene pair relationships
across a large set of lymphoblastoid samples, the ones
identified by RA were more highly enriched for biologic-
ally validated interactions than PE and ML

RA has a straightforward biological interpretation, as
it evaluates all possible gene pair interactions based on
the stability of the ratio between their expression levels,
regardless of the degree of dispersion of absolute expres-
sion values among the samples. In this sense RA is a
simple and general interpretation of a gene (or tran-
script) pair association. PE and MI both conform to a
notion of coordinated gene expression changes across
samples, but they do it in a way that is insensitive to
genes with narrow expression ranges. This means that
certain ratiometrically constrained relationships would
be missed. To the extent that many studies have expli-
citly or implicitly “cared” only about genes and pathways
whose absolute levels differ substantially within a set of
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samples, PE and MI have clearly been very effective.
They are at their best when variation between samples
in the analysis is large. The resulting expression relation-
ships, along with their gene network structures and
regulatory mechanisms, have received much attention.
RA’s particular strengths, on the other hand, are in
detecting relationships between genes having by low
dispersion, across a sample set. They have not received
similarly intense attention.

Across the 1000 Genome B-cell RNA-seq data, GO
category, KEGG pathway, and IntPath analyses showed
enhanced recovery of known biological gene interactions
by RA compared to PE and MI. This was most obvious
for biological processes and complexes containing genes
with low expression dispersion. By specifically compar-
ing genes encoding components of the “Ribosome” and
the “Spliceosome”, we explored the relationship between
decreased detection power by PE or MI and narrower
FPKM ranges. Genes in the ribosome pathway showed a

wider range of relative expression values. The ribosomal
pathway was identified equally well by RA, PE and MI,
but the specific gene pairs responsible for RA enrich-
ment differed from those responsible for PE or MI
enrichment. In contrast, the genes in the spliceosome
pathway displayed narrower expression ranges, leading
this pathway to be scored as largely “non-associated” by
PE and MIL RA analysis showed that a substantial set of
spliceosomal genes displays an especially constrained
relative expression pattern across these samples. This
is consistent with previous literature suggesting that
relative constancy may be important for defining a cellu-
lar state and that deviation from it may be important in
some cancers [17-19]. Of particular relevance to our
study is evidence that the relative levels of some RNA
splicing factors determine alternative splicing patterns
[20,21]. RA assigned top-rankings to components of the
RNA processing machinery that include HNRNPK [22],
SRSFs1, 3, and 7 [17], TRA2B [23] and RBMX [24].
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Although the relevant gene pairs have yet to be system-
atically perturbed, individual studies in various cell systems
suggest quantitative sensitivity. For example TRA2( and
RBMX are reported to regulate alternative splice site
choices according to their ratio [24], and their protein
products interact with each other [25] and with SRSF1.
The SR and HnRNP classes are widely understood to com-
pete to set isoform choice [26], and a recent example
showed that the SRSF1 ratio relative to HNRNPA1 governs
specific splice site choice in vivo [27]. Other high ratio-
metric rankings might be due to functional relationships
other than RNA splicing among some of these genes. Thus
RBMX can also function in homologous recombination
initiated by DNA-damage [27], and it pairs strongly by RA
rank with HNRNPK, which functions in the p53/TP53
DNA damage response [28].

Combining RA with either PE or MI revealed ex-
pression subdivisions within the sample group. In this
specific case, the division appeared to correlate with
apoptosis and regulation of cell death, suggesting that a
small set of the cell line cultures were probably stressed.
More broadly, we imagine that for the majority of data-
sets the optimal analysis will first use one of the trad-
itional metrics as well as RA to distinguish potentially
existing subgroups within the dataset. Based on those
results, one might then move to RA for the entire set if
it proves highly homogeneous, or instead parse it into
informative sample subsets for RA: these sample subsets
can then be reanalyzed by RA as individual groups
(for example, specific cell types that have come from a
diverse admixture sample of unknown starting compos-
ition). This stratified approach would focus RA analysis
on internal relationships that meet useful ratiometric
and associated variability criteria. This Such an approach
would allow RA to identify gene pair relationships present
across different cell conditions that have gone undetected
by the major methods (three examples are given in
Additional file 1: Figure S12).

In summary, RA allowed us to analyze homogeneous
datasets and successfully identify in them expression
relationships that are strongly invariant between individ-
ual samples. The relationships recovered were strongly
enriched for biologically meaningful pathways and gene
groups, based on GO, KEGG, and IntPath enrichment.
We found that some of these relationships are ignored
or low-ranked by conventional correlation and mutual
information-based methods. This raises major questions
for the future about the mechanistic basis of narrow-
variance control, and about its possible implications for
gene network structure and circuit function. Single-cell
studies, now in their infancy, present additional ques-
tions about dynamic variation and stochasticity that
were previously obscured in population data and for
which RA may be especially well suited.
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Methods

Data processing, gene expression quantification and gene
set filtering

We downloaded publicly available lymphoblastoid cell
line RNA-seq datasets generated by the 1000 Genomes
Project Consortium (http://www.ebi.ac.uk/arrayexpress/
experiments/E-GEUV-1/samples.htm, [8]). We aligned
reads against the refSeq [29] transcriptome (generated
using custom-written scripts for the hgl9 version of the
human genome) using Bowtie 0.12.7 [30]. The two ends of
paired end datasets were aligned jointly with the following
settings: \verb|’-aS -X 800 e —200 —offrate 1 —best —strata’|
settings. The alignments were quantified using eXpress,
version 1.3.0 [10]. In cases where multiple isoforms are
annotated for the same gene, the expression values for all
isoforms were summed to derive the final gene-level quan-
tification estimate.

We filtered the list of genes to be included in the ana-
lysis by expression values in order to eliminate potential
artifacts due to the inclusion of genes with very low
expression levels. We included all genes having an
FPKM value >1 for at least 95% of the samples, a total of
9752 genes. Setting the FPKM cut-off differently (0.1
and 5 respectively) altered the set of gene pairs reported
to a lesser extent for the RA method compared to PE
and MI, see Additional file 1: Figure S5. For example,
the stringency level at which the most stringent FPKM
cut-off 25 FPKM includes 225,093 gene pair relation-
ships applying PE, includes 410,168 with the most leni-
ent FPKM cut-off of 0.1, an increase of 82%. For MI the
same calculations give an increase of 82%, while for the
RA method the increase is only 12%. The RA method is
therefore less sensitive to inclusion or exclusion of genes
with low FPKM values.

Ratiometric behavior from a statistical perspective

We refer to the model we present here as “ratiometric”
because it is based on the ratios A/B and B/A. As
described above, this method handles well low variation
in the range of input gene expression values. There is
another type of reduced variation that is picked up by
our method, which is reduction of variation relative to
what would otherwise be expected. As described above,
if we have two genes A and B, if these genes are ratiome-
trically related by A/B=c, any paired set of observations
from one sample (call them a and b) would seem to be
related by the Equation a/b=c, where ¢ is a constant.
Similarly, under this assumption, b/a=d=1/c.

The analysis of the distribution of ratios is widespread
in the statistical literature ([31,32] and their use is also
not new in the biological literature [33]). It is, on the
other hand, difficult to find studies in the statistical
literature that attempt to test whether the relationship
of two variables is in fact ratiometric, as even survey
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articles of models for the relationships of one variable to
another tend not to include specifications of this form
(see [34] and [35], for example).

One attempt to model the ratiometric behavior of two
variables and offer statistical tests for the presence of such
behavior was presented by Schnute [12]. The Schnute
model assumes that every pair of observations of two vari-
ables is generated from a bivariate normal distribution
where the mean of the first variable is equal to a constant
times the mean of the second variable. This means that
E[A] = cE[B], or rewriting, E[A]/E[B]=c, which is similar
to our ratiometric specification above. In fact, in the
Additional file 1: Supplemental Methods section we show
that E[A]/E[B] = E[A/B] implies that the limit of A, =0
under some conditions, so that there is a direct connection
between the Schnute model and our ratiometric model.

The Schnute model is a statistical model; that is, it has
an error structure, and in the Schnute model the error
structure comes from an assumption of the distribution
of any particular realization of the two variables being
bivariate normal (the overall distribution of the A and B
may not be bivariately normal, since the means may
vary). The Schnute model is not identified, unless one or
both of the gene pairs is non-normal, in which case
methods for finding a ¢ which allows the linear combin-
ation A-cB to be distributed normally allow identifica-
tion of the ¢ (a similar identification condition relying
on non-normality exists for the errors in variables prob-
lem, a fact that Schnute notes).

Most gene pairs in the 1000 Genome dataset, though,
are in fact normal or transformable to normal, so that in
most cases the Schnute model does not apply. As noted
above, a statistical model has an error structure, and
A/B=c, which is our working definition of a ratiometric
distribution, does not. An obvious step to take is to
minimize the sum of squares of the observations, that
is, S (a;/bi—c)*, where the subscript indicates individual
observations. In addition, if A and B are assumed to be
in a ratiometric relationship, there is no particular rea-
son to prefer one ratio (A/B) to the other (B/A), and so
we would like to also minimize Y(b,/a; - d)*.

To compare these two minimizations, note that both
of these expressions are simply the variance of (A/B)
and (B/A). To make these variances comparable to
each other, we note (described in further detail in the
Additional file 1: Supplemental Method section) that
there is reason to believe that these standard devia-
tions, divided by their respective means (E[A/B] and
E[B/A]), should be close to one another if the ratio-
metric relationship holds. The smaller the variation of
the ratio with respect to the mean, the closer it is in a rela-
tive sense to the relationship A/B=c. We do not adopt a
formal error structure on this problem. Rather, we use
the criteria of varying the stability (the magnitudes of
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CV=(A/B) and CV=(B/A)) and making comparisons with
other measures (such as the PE and RA). The criteria
used for the actual gene pair selections in RA are thus
based both on the theoretical behavior of the CV’s and
on our empirical experience from analyzing the datasets.
In Additional file 1: Figure S7 we show an example from
the 1000 Genomes Project data which suggests how
the closeness of a gene pair to a ratiometric relationship
might be amenable to analysis through a statistical
model, although we do not develop this any further in
this paper.

We note that the coefficient of variation of the ratio
has been used before as a measure of variability of gene
expression, but only to test the difference of RNA values
for the same gene between samples [33] and under the
assumption of log-normality of the two genes. That dif-
fers from the use in this paper, since we use the various
ratiometric measures to classify gene pairs, creating an
alternate measure of co-expression.

GO category enrichment analysis

We used DAVID (http://david.abcc.nciferf.gov, [13,14])
to assess GO enrichment, with the modification that the
nodes of the GO tree were merged until the resulting
aggregated GO categories contained at least 200 genes
that were also part of the set of 9752 genes included in
analysis. We used a Bonferroni-corrected p-value of 10™*
as a significance threshold for enrichment.

KEGG pathway analysis

We downloaded the annotated gene lists for each KEGG
pathway from www.kegg.jp [15]. We calculated the enrich-
ment of KEGG pathway interactions in Figure 5 by count-
ing the number of graph edges in each graph G; for which
both genes were annotated in a pathway in the KEGG data-
base. The same approach was used to calculate the percent-
age of genes recovered at increasing graph size |V(G)| in
Figure 6 for each KEGG pathway. Only KEGG pathways
with a gene percentage result of 25% or more at |V(G)| =
3100 are shown.

IntPath analysis

We downloaded the IntPath database sapiensintPath-
GenePairs (16™ of May 2014) [16]. We calculated the
enrichment of IntPath-relationships in Figure 8 by tak-
ing the percentage of graph edges in each graph G; that
are annotated in sapiensintPathGenePairs.
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