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Like other pathogenic bacteria, Yersinia and Aeromonas species have been continuously
co-evolving with their respective hosts. Although the former is a bonafide human
pathogen, the latter has gained notararity as an emerging disease-causing agent.
In response to immune cell challenges, bacterial pathogens have developed diverse
mechanism(s) enabling their survival, and, at times, dominance over various host immune
defense systems. The bacterial type three secretion system (T3SS) is evolutionarily
derived from flagellar subunits and serves as a vehicle by which microbes can directly
inject/translocate anti-host factors/effector proteins into targeted host immune cells. A
large number of Gram-negative bacterial pathogens possess a T3SS empowering them
to disrupt host cell signaling, actin cytoskeleton re-arrangements, and even to induce
host-cell apoptotic and pyroptotic pathways. All pathogenic yersiniae and most Aeromonas
species possess a T3SS, but they also possess T2- and T6-secreted toxins/effector
proteins. This review will focus on the mechanisms by which the T3SS effectors Yersinia
outer membrane protein J (YopJ) and an Aeromonas hydrophila AexU protein, isolated
from the diarrheal isolate SSU, mollify host immune system defenses. Additionally, the
mechanisms that are associated with host cell apoptosis/pyroptosis by Aeromonas T2SS
secreted Act, a cytotoxic enterotoxin, and Hemolysin co-regulated protein (Hcp), an A.
hydrophila T6SS effector, will also be discussed.
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INTRODUCTION
Intricate host-pathogen interactions are constantly evolving as the
latter has to combat formidable host immune defenses, result-
ing in expression/de-repression of genes and molecular mimicry.
In some instances, strong immune responses to microbes select
for escape mutants with the latter further honing the immune
response to that variant pathogen, leading to an ongoing bat-
tle, as can be seen typically in human immunodeficiency virus
escape mutants (Akahoshi et al., 2012; Yagita et al., 2013) and in
Chlamydia trachomatis (Nunes et al., 2010). One classic exam-
ple of this paradigm is programmed host cell death (caused by
apoptosis, pyroptosis, and necrosis) which could benefit the host
immune system (if clearing an intracellular pathogen) or could be
co-opted by the pathogen as a means of eliminating undesirable
host cells (e.g., innate immune cells) (Ulett and Adderson, 2006).

Whereas apoptosis is a “self-contained” event that does
not stimulate a robust inflammatory response, both pyropto-
sis and necrosis of host cells release pro-inflammatory cytokines
and their cytoplasmic contents into the extra-cellular milieu
(Lamkanfi and Dixit, 2010). Apoptosis is a caspase-dependent

process that drives embryonic development and is largely
characterized by nuclear fragmentation and condensation, bleb-
bing of the plasma membrane, and cell shrinkage. Since all of
these physiological consequences occur intracellularly, no host
cell cytoplasmic content is released into the extracellular environ-
ment, thereby preventing inflammation (Strasser et al., 2000).

Necrosis, by contrast, is a caspase-independent process that
results in host cell swelling, disorganized and extensive chro-
matin hydrolysis, and cytoplasmic leakage (Berghe et al., 2010).
Finally, caspase-1-dependent pyroptosis leads to secretion of
pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18.
Caspase-1, interestingly, is not involved in apoptosis and is acti-
vated by one of four inflamasomes, which contain a member of
the nucleotide-binding oligomerization domain-containing pro-
tein (Nod)-like receptor family, during pyroptosis (Lamkanfi and
Dixit, 2009). Surprisingly, the pathogenic yersiniae can induce
apoptosis, necrosis, and pyroptosis depending on the host-cell
type infected (Monack et al., 1997; Ruckdeschel et al., 1997,
1998, 2001; Bergsbaken and Cookson, 2007; Zheng et al., 2012).
Similarly, Aeromonas species are also able to induce apoptosis
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(through various caspase activation) (Galindo et al., 2004b,
2006a,b; Martins et al., 2007; Su et al., 2007; Sierra et al., 2007,
2010).

Gram-positive pathogens have also been shown to induce
apoptosis in various cell types by disparate mechanisms. Non-
secreted lipotechoic acids (LTAs), well-conserved surface antigens
on a wide variety of Gram-positive organisms, are such exam-
ples that induce apoptosis by distinct mechanisms in various cell
types (Ulett and Adderson, 2006). Beyond LTAs that induce host
cell apoptosis, Bacillus anthracis employs its lethal factor exotoxin
(Park et al., 2002; Popov et al., 2002), Listeria monocytogenes uti-
lizes listeriolysin, a cytolysin (Carrero et al., 2004), while the strep-
tococci employ hemolysins (Ring et al., 2002; Liu et al., 2004).
Ultimately, Gram-positive pathogens’ apoptosis-inducing mech-
anisms are very diverse; they can typically be either intrinsic (e.g.,
mitochondrial dysfunction) or extrinsic whereby death domains
are activated (Ulett and Adderson, 2006). Of the 27-members that
belong to the Aeromonadaceae family, A. hydrophila, A. veronii,
and A. caviae are frequently isolated as human pathogens, with
most infections contracted via the fecal-oral route or through
wounds (Altwegg et al., 1991; Kirov, 1993; Palu et al., 2006;
Edberg et al., 2007). Aeromonas hydrophila is also a fish pathogen
that can negatively impact the fishing industry. The majority of
human Aeromonas infections result in self-limiting gastroenteritis
or superficial skin infections. However, more threatening systemic
infections include bacteremia, cellulitis, peritonitis, hemolytic-
uremic syndrome, and necrotizing fasciitis (Chopra et al., 1993,
1996; Janda et al., 1994; Merino et al., 1995; Kuhn et al., 1997;
Chopra and Houston, 1999; Minnaganti et al., 2000; Brouqui and
Raoult, 2001; Galindo et al., 2006a,b; Sha et al., 2013). Alarmingly,
it seems as though instances of Aeromonas-induced necrotizing
fasciitis are on the rise (Huang et al., 2011; Chang et al., 2012;
Kao and Kao, 2012; Wu et al., 2012).

Of the 11 known Gram-negative Yersinia species, only
Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis are human
pathogens. Strikingly, while Y. pseudotuberculosis and Y. enetro-
colitica cause self-limiting gastroenteritis (Galindo et al., 2011),
Y. pestis (transmitted by the bite of an infected flea) causes
radically different diseases (bubonic, septicemic, or pneumonic
plague) which have resulted in three major human pandemics
as well as the great plagues of London in the mid-late 1600s
(Inglesby et al., 2000). Currently, the plague-causing bacterium
can be treated with various antibiotics (Rosenzweig et al., 2011a),
with levofloxacin recently being approved by the Food and Drug
Administration against all forms of plague. However, there is no
vaccine against this deadly pathogen (Rosenzweig et al., 2011b;
Rosenzweig and Chopra, 2012).

As earlier mentioned, representatives of both the Yersinia and
Aeromonas species are capable of causing gastroenteritis follow-
ing the fecal-oral route of infection, and they similarly possess
a type three secretion system (T3SS). The T3SS multiprotein
complex/hyperstructure (Norris et al., 2012) is evolutionarily
related to the bacterial flagella (Nguyen et al., 2000; Gophna
et al., 2003) and enables rapid translocation of effector proteins
directly into the targeted host cell cytoplasm, resulting in a
number of anti-host consequences. Interestingly, whereas the
yersiniae possess well-studied T3SS weaponry, Aeromonas species
harbor well-defined T3- and T6-secretion systems (derived from

phage injection machinery) along with its two identified effector
protein substrates, Hemolysin co-regulated proteins (Hcps) and
Valine glycine repeat G proteins (VgrGs) (Sierra et al., 2007,
2010; Vilches et al., 2009; Bergh et al., 2013; Sha et al., 2013).
Interestingly, hemolysins in Streptococcus agalactiae, a Group B
streptococci, have also been shown to induce apoptosis in phago-
cytic cells (Ulett and Adderson, 2006 and references therein).
The yersiniae T6SSs have not been as extensively characterized;
however, in Y. psuedotuberculosis, it is regulated by the transcrip-
tional factor OmpR and appears to play a role in stress responses,
quorum sensing, and maintenance of internal pH homeostasis
(Zhang et al., 2011, 2013; Gueguen et al., 2013). In Y. pestis, the
T6SS was found to secrete an Hcp-like autoagglutination factor
(Podladchikova et al., 2011). Finally, Aeromonas species also
employ the general secretory T2SS pathway to export cytotoxic
enetrotoxin Act (with hemolytic, cytotoxic, and enterotoxic activ-
ities) into the extracellular milieu (Chopra and Houston, 1999).
Within the yersiniae, the T3SS injects into the host 7 Yersinia
outer membrane protein (Yop) effector proteins that have been
identified as YopP/J, -H, -E, YopO/YpkA, YopT, YopK, and
YopM; these Yops counteract host immune defenses by various
mechanisms (Viboud and Bliska, 2005). Upon first encountering
a Gram-negative pathogen, like Y. pestis, innate immune cells
(e.g., macrophages and/or dendritic cells) recognize non-specific,
pathogen-associated molecular patterns/microbe-associated
molecular patterns (PAMPs/MAMPs), like lipopolysaccharide
(LPS), lipoprotein, or flagellin. When PAMPs/MAMPs associate
with their recognition receptors, e.g., Toll-like receptors (TLRs),
various mitogen-activated protein (MAP) kinase (MAPK) and
nuclear factor Kappa B (NF-κB) signaling pathways are activated
resulting in the upregulation of IL-12, -18, and tumor necrosis
factor alpha (TNF-α) proinflammatory cytokine production
(Matsumoto and Young, 2009).

The yersiniae counteract the aforementioned inflammatory
response when YopP/J acetylate I kappa B kinase (IKK) and
MAPK kinases (MKKs), preventing their phosphorylation and
subsequent activation. The disruption in these signaling events
results in innate immune cells undergoing apoptosis (Orth, 2002;
Mittal et al., 2006; Mukherjee et al., 2006). A more detailed
description of Yersinia outer membrane protein J (YopJ) mech-
anisms of mollifying host defenses is discussed in a later sec-
tion. YopE, -H, -T, and YopO/YpkA all operate to disrupt actin
cytoskeleton re-arrangements and phagocytosis, albeit by attack-
ing unique and distinct targets. YopE is a GTPase-activating
protein (GAP), while YopT targets Rac-1, RhoA and Cdc-42, and
YopH, which is a tyrosine phosphotase, primarily targets focal
adhesion complexes. YopO/YpkA, through its kinase activity, also
targets Rac-1 and RhoA as well as actin directly. YopM localizes
to the target cells’ nuclei and disrupts cytokine IL-15 production
by targeting ribosomal S6 protein kinase 1 (RSK1) and possi-
bly protein kinase C-like 2 (PRK2) (Matsumoto and Young, 2009
and references therein). Finally, YopK was found to associate with
the translocation pore and is believed to modulate inflammation
(Brodsky et al., 2010).

As mentioned earlier, many Aeromonas species also possess a
T3SS. In fact, within the fish pathogen A. salmonicida, four T3SS-
associated effectors have been identified: AexT, AopP, AopH, and
AopO (Braun et al., 2002; Dacanay et al., 2006; Fehr et al., 2006).
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Our laboratory recently identified an AexT-like protein (a novel
T3SS effector, AexU) in a diarrheal isolate SSU of A. hydrophila
(Sha et al., 2007). While Aeromonas outer protein P (AopP) dis-
rupts NF-κB signaling downstream of IKKB, unlike YopJ in the
yersinaie, it does not disrupt the MAPK signaling pathway (Fehr
et al., 2006). On the contrary, AexT and AexU both possess
highly cytotoxic ADP-ribosyltranferase activity for host proteins
(Braun et al., 2002; Sha et al., 2007). AopO and AopH remain
poorly understood and are homologues of yersiniae YopO/YpkA
and YopH, respectively (Sha et al., 2007). Interestingly, we also
demonstrated that an A. hydrophila �aopB deletion mutant,
unable to translocate effector Aops into host cells, exhibited
greatly reduced virulence in a murine model of infection (Sha
et al., 2005).

T3SS EFFECTOR YopJ’S MECHANISMS OF ANTI-HOST ACTIVITY
The yersiniae T3SS effector YopJ is an acetyltransferase as well as
a de-ubiquitinase. Its anti-host activity involves blocking MAPK
signaling and NF-κB activation (Table 1). This aberrant signaling
leads to significantly reduced production of both proinflamma-
tory and anti-apoptotic host cytokines (Monack et al., 1997; Orth
et al., 1999, 2000; Mukherjee et al., 2006). Shedding more light on
the mechanism of YopJ anti-host activity, a report from Shrestha
et al. (2012) identified that YopJ reduced the induction of eukary-
otic initiation factor 2 (eIF2) in both yeast and mammalian cells,
and that eIF2 signaling was required for YopJ-mediated inhibi-
tion of NF-κB activation as well as pro-inflammatory cytokine
production.

TLR-2, NF-κB, and Nod2 signaling pathways all targeted by the
versatile YopJ
By using recombinant YopJ (rYopJ), it was determined that
TLR-2 in murine macrophages was involved in YopJ-mediated

apoptotic signaling by increasing production of caspases 3 and
8, IL-1 receptor associated kinase (IRAK)-4, Fas-associated pro-
tein with death domain (FADD), and phosphorylation of IκB
and MAPK (Pandey and Sodhi, 2011). Together with this TLR-
2 apoptotic signaling, the ability of YopJ to target macrophage
eIF2 signaling pathway required for inhibition of NF-κB activa-
tion as well as pro-inflammatory cytokine production ultimately
leads to host cell apoptosis (Shrestha et al., 2012). In a sepa-
rate study employing a Drosophila model system, transforming
growth factor (TGF)-β-activated kinase (TAK1), which is part of
the immune NF-κB signaling pathway independent of the TLR-2
signaling, was identified as the YopJ serine/threonine acetyla-
tion target (Paquette et al., 2012). Following YopJ acetylation of
serine/threonine residues in the active site of Drosophila TAK1,
its phosphorylation was blocked preventing activation of this
kinase. Corroborating Drosophila studies, YopJ similarly mod-
ified and inhibited TAK1 in mammalian cells (Paquette et al.,
2012).

Despite an earlier study demonstrating rYopJ activation of
TLR-2 signaling in macrophages (Pandey and Sodhi, 2011),
in vivo studies employing both Drosophila and macrophage mod-
els of infection clearly demonstrated that native YopJ indeed
activated the NF-κB signaling but not the TLR-2 signaling path-
way (Paquette et al., 2012). It was proposed that following
acetylation of key serine/threonine residues in the active sites of
both RIP (receptor interacting protein 1)-like interacting caspase-
like apoptosis regulatory protein kinase (RICK) and TAK1, YopJ
prevented the interaction of RICK and Nod2, a NACHT-leucine-
rich repeats (NLRs) recognition receptors. Further, Nod2 inter-
acted with caspase 1, promoting increased expression/production
of IL1-β and dissemination of Y. psudeotuberculosis through
the gut epithelium (Meinzer et al., 2012). Perhaps this seem-
ing contradiction of YopJ not signaling through TLR-2 during

Table 1 | The mechanisms of action of yersiniae effectors YopJ and YopK.

Effector Secretion system Mechanisms of pathogenesis References

YopJ T3SS Acetyltransferase and deubiquitinase that blocks MAPK and NF-κB signaling, causing
reduced production of pro-inflammatory and anti-apoptotic cytokines.

Monack et al., 1997; Orth
et al., 1999, 2000; Mukherjee
et al., 2006

Reduced induction of eukaryotic initiation factor 4. Shrestha et al., 2012

Signals through TLR-2 to increase production of Caspase-3, -8, IRAK-4, FADD. Pandey and Sodhi, 2011

Serine threonine acetylation of TAK1 in Drosophila preventing its phosphorylation. Paquette et al., 2012

Blocks interaction of RICK and Nod2 acetylation of RICK and TAK 1; Nod2 then
interacts with caspase-1 to increase expression of IL1-β which promotes bacterial
dissemination through the gut.

Meinzer et al., 2012

YopK T3SS Regulates pyroptosis (via caspase-1). Brodsky et al., 2010

Regulates YopJ-mediated apopotosis in macrophages and facilitates bacterial
dissemination.

Peters et al., 2013

MAPK, mitogen-activated protein kinases; NF-κB, nuclear factor Kappa B; TLR-2, toll-like receptor 2; IRAK 4, interleukin 1 receptor associated kinase; FADD, Fas-

associated death domain; TAK1, tumor growth factor β-activated kinase; RICK, receptor interacting protein 1-like interacting caspase-like apopotosis regulatory

protein kinase; Nod2, nucleotide-binding oligomerization domain-containing protein 2; IL 1-β, interleukin 1 Beta; T3SS, type three secretion system; Yop, Yersinia

outer protein.
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in vivo studies while rYopJ was shown to signal through TLR-2
in vitro underscores one very important point. Different cell types
and/or organisms likely possess disparate/specialized receptors
used to recognize threatening pathogens. Viewed in this light,
one can envision how within one cell type there could exist
several unique receptors that could detect the same (or differ-
ent products) derived from one pathogen. In the very delicate
host-pathogen paradigm, every potential detection mechanism
must be employed if the host is to successfully subvert the
pathogenic threat. Collectively, YopJ has been observed disrupt-
ing TLR-2, Nod2, and the NF-κB signaling pathways, making
the T3SS-acetyltransferase a potent weapon for the pathogenic
yersiniae.

The yopK “switch” for YopJ activity
Importantly, YopJ seems to function in concert with another Yop,
YopK, which regulates YopJ activity (Table 1). Studies have shown
that YopK appeared to regulate pyroptosis (via caspase 1) by
Y. pseudotuberculosis (Brodsky et al., 2010) and YopJ-dependent
apoptosis specifically in RAW 264.7 monocytic cells, thereby facil-
itating bacterial dissemination in a murine model of pneumonic
plague (Peters et al., 2013). Despite YopK appearing dispensable
for Y. pseudotuberculosis to induce caspase-1 mediated pyropto-
sis (Brodsky et al., 2010), it was required for optimum virulence
of Y. pestis in a pneumonic murine model of infection (Peters
et al., 2013). Further, cell culture Y. pestis infection models have
also revealed that caspase 1 activation occurs downstream of
cell necrosis, is independent of mitochondrial driven apopto-
sis, but does require cathepsin B activity (Zheng et al., 2012).
Taken together, these data demonstrated that, at least in Y. pestis,

YopJ’s ability to induce apoptosis is regulated by a YopK “switch”
downstream of cell necrosis.

T3SS EFFECTOR AexU’s MECHANISMS OF ANTI-HOST ACTIVITY
Shortly after a T3SS was identified in both A. salmonicida and
A. hydrophila and implicated in their pathogenesis of both fish
and animal/human hosts (Burr et al., 2002; Yu et al., 2004; Sha
et al., 2005), we identified a novel T3SS-dependent AexT-like
protein, referred to as AexU, in A. hydrophila (Sha et al., 2007;
Sierra et al., 2007). AexT (Table 2), identified in the fish pathogen
A. salmonicida, is homologous to the Pseudomonas aeruginosa
ExoT/S and is also a bifunctional effector (Pederson et al., 1999;
Sundin et al., 2004). Its amino terminus has YopE-like activity of
yersiniae and can depolymerize actin by targeting RhoA, while
its carboxy-terminus has highly cytotoxic ADP-ribosyltransferase
(ADP-RT) activity for host proteins (Braun et al., 2002).

While the amino terminus of AexU from A. hydrophila SSU
maintained ∼67% sequence similarity to its AexT counterpart,
surprisingly, the AexU carboxy terminus had a unique sequence
which did not share similarity with any other known protein in
the NCBI database, despite full-length AexU maintaining ADP-
RT activity (Sha et al., 2007). Surprisingly, the purified full-length,
truncated amino terminus, or truncated carboxy terminus of
AexU all exhibited ADP-RT activity; however, the full-length
AexU and its amino terminus exhibited higher ADP-RT activ-
ity than did the carboxy terminus of AexU alone (Sierra et al.,
2007). Since the ADP-RT activity of the Pseudomonas homologue
(ExoT/S) resides in its carboxy terminus, the aforementioned
finding suggested a potentially unique evolution of AexU as an
Aeromonas T3SS effector.

Table 2 | Aeromonad effector proteins AexT, AexU, Act, and Hcp mechanisms of action.

Effector Secretion system Mechanism of pathogenesis References

AexT T3SS Amino terminal activity targets RhoA and promotes actin depolymerization; carboxy terminal
ADP-ribosyltransferase activity.

Braun et al., 2002

AexU T3SS Bifunctional-like AexT; activation of caspase-3 and -9 and induction of cell rounding, chromatin
condensation; also required for virulence in mice.

Sierra et al., 2007

GAP-activity (amino terminus) promotes apoptosis and disrupts the cell cytoskeleton as well
as NF-κB signaling; prevents signaling of c-Jun, JNK, IκBα, and inhibits IL-6 and IL-8 secretion.

Sierra et al., 2010

GAP-activity disruption of actin cytoskeleton mediated by down-regulating Rac-1; binding to
β4-integrin results in cytotoxicity.

Abolghait et al., 2011

Act 2 T2SS Induced upregulation of apoptosis-related genes. Galindo et al., 2003

Activates MEK1, JNK, ERK1/2, and c-Jun of the MAPK pathway; induces membrane blebbing
and increased production of mitochondrial cytochrome C, caspase-3, -8, and -9.

Galindo et al., 2004b

Hcp T6SS Caspase 3 activation. Suarez et al., 2008

Demonstrates anti-phagocytic properties. Suarez et al., 2010

Hcp-2 is part of the T6SS apparatus while Hcp-1 negatively regulates motility and protease
production.

Sha et al., 2013

RhoA, Rat sarcoma homolog gene family member A; GAP, GTPase activating protein; NF-κB, nuclear factor Kappa B; JNK, c-Jun N-terminal kinase; IL, interleukin;

Rac-1, Rac GTPase activating protein 1; MEK1, MAP/ERK kinase 1; ERK1/2, extracellular signal-regulated kinase 1/2; MAPK, mitogen-activated protein kinases.
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Supporting this view, findings from a comprehensive genomic
study evaluating an A. veronii group collection (derived from both
clinical and environmental isolates) revealed that all 20 bacterial
isolates possessed a functional T3SS as well as both AexU and
AexT effectors. However, whereas AexU had a nucleotide substi-
tution rate of ∼17% in its carboxy terminal region, AexT was
much better conserved and demonstrated only a ∼4% substi-
tution rate (Silver and Graf, 2009). Perhaps, the AexU carboxy
terminus is evolving independently from its amino terminus
allowing for not only the possibility of producing varying alleles
but also producing a variety of AexU effectors capable of adapting
to changing environments within the host (Figure 1)?

Immunogenicity of AexU and its contribution to overall virulence
In a cell culture infection model, our laboratory found that
A. hydrophila AexU (Table 2) caused actin reorganization and cell
rounding, chromatin condensation, and the activation of caspase
3 and 9, all hallmark features of apoptosis (Sierra et al., 2007).
Furthermore, we reported that A. hydrophila AexU also possessed
GAP activity which strongly promoted apoptosis and disrupted
actin cytoskeletal rearrangements of the host cells (Sierra et al.,
2010). Additionally, it was noted that A. hydrophila AexU pre-
vented phosphorylation of c-Jun [a component of the activator
protein 1 (AP-1) transcription factor], c-Jun N-terminal kinase
(JNK) and IκBα (thereby disrupting their signaling cascades), and
inhibited IL-6 and -8 secretion from HeLa cells. Ultimately, AexU
inhibited NF-κB and inactivated Rho GTPases in the host cell
(Sierra et al., 2010). For reasons unclear at this time, an AexU
variant devoid of both GAP and ADP-RT activities, when pro-
duced from an aexU null mutant of A. hydrophila, induced higher
mouse mortality and increased pro-inflammatory cytokine pro-
duction (Sierra et al., 2010). As was noted with YopJ, perhaps, to
increase overall bacterial virulence through inflammation, evo-
lutionary deactivation of AexU’s activities provides a valuable
“switch” for responding to various hosts?

FIGURE 1 | The bifunctional AexU effector protein. The two independent
activities of AexU are localized on either the NH2- or the COOH-termini.
This allows for the possibility of an independently evolving COOH-terminal
activity.

In P. aeruginosa, it has been shown that the maturation of IL-
1β is negatively regulated by ExoS and is dependent on its ADP-
RT activity. In other words, ExoS devoid of this enzymatic activity
when produced from the bacteria led to increased IL-1β produc-
tion and pyroptosis of the host cells. However, AexU seemed to
behave differently compared to ExoS as the former without the
enzymatic activities was unable to alter IL-1β levels (Sierra et al.,
2010). A. veronii AexU, in a GAP-dependent manner, was able
to similarly disrupt actin cytoskeleton by down-regulating Rac-
1 in HeLa cells (Abolghait et al., 2011). Additionally, A. veronii
AexU was found to co-localize with β4-integrin resulting in
cytotxicity for the host cells (Abolghait et al., 2011). Collectively,
these data strongly demonstrated AexU’s versatility as an effector
protein by virtue of its ability to disrupt cell signaling, para-
lyze the host cell, activate caspases (initiating apoptosis), and
interact with β4-integren promoting host cell cytotoxicty. When
evaluating AexU’s contribution to mouse virulence and immuno-
genicity, we found that an A. hydrophila �aexU deletion mutant
caused significantly less mortality (40% compared to 90–100%)
in intraperitoneally-challenged mice than did infection with the
isogenic parental strain (Sha et al., 2007). Importantly, rAexU
provided protective immunity to mice when subsequently chal-
lenged with A. hydrophila (Sha et al., 2007). Additionally, the
A. hydrophila �aexU deletion mutant was unable to dissemi-
nate within infected mice leaving their lungs, liver, and spleens
relatively sterile (Sierra et al., 2010). The aforementioned find-
ings raise the possibility of developing potential subunit and/or
live-attenuated vaccine candidates for A. hydrophila, which is an
emerging human pathogen.

Aeromonas T2SS CYTOTOXIC ENTEROTOXIN (ACT) AND T6SS HCP
EFFECTOR
In addition to a functional T3SS, Aeromonas species also possess
a T6SS (Suarez et al., 2008) as well as secrete a potent enterotoxin
Act (Table 2) via the T2SS (Chopra and Houston, 1999). In efforts
to better understand the host cell response to Act, our labora-
tory obtained transcriptome profiles of Act-exposed murine RAW
264.7 cells. Not surprisingly, of the 76 differentially expressed
genes identified in Act-treated macrophages, many were involved
in immune responses, including inflammation (Galindo et al.,
2003). Additionally, several apoptosis-related genes were also
found to be up-regulated including (but not limited to) Bcl-10
(promotes activation of NF-κB and maturation of pro-caspase 9),
BimEL (involved in p38 and JNK-associated apoptosis), and TNF
receptor associated factor 1 (TRAF1, which regulates activation
of NF-κB and JNK). These transcriptome results with respect to
apoptosis-related genes were confirmed by performing real-time
PCR as well as functional assays for apoptosis (Galindo et al.,
2003).

Since primary host cells may vary in their responses to a stim-
ulant compared to the transformed cell lines, our laboratory
evaluated transcriptome profiles of primary murine peritoneal
macrophages after treatment with Act. We observed 66% differen-
tial gene expression, mirroring our results seen with Act-exposed
RAW 264.7 cells (Galindo et al., 2004a,b). However, differen-
tial expression of 28 genes unique to primary macrophages
was also observed. The pro-apoptotic B-cell leukemia/lymphoma

Frontiers in Cellular and Infection Microbiology www.frontiersin.org October 2013 | Volume 3 | Article 70 | 5

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Rosenzweig and Chopra Microbial toxin-mediated apoptosis and pyroptosis

2 (Bcl-2) and Myeloid differentiation primary response 116
(MyD116) genes were upregulated, while interferon consen-
sus binding proteins 8 (IRF-8—involved in immune responses)
was downregulated in Act-treated primary cells (Galindo et al.,
2004a). When the effect of Act on human HT-29 colonic epithelial
cells’ transcriptome profiles was evaluated, we noted upregulation
of genes involved in immune responses (e.g., IL-8) and apoptosis
(e.g., Bcl-2-like genes) as well as phosphorylation of MAPKs (e.g.,
p38 kinase, extracellular signal-regulated kinase 1/2 [ERK1/2],
and JNK) (Galindo et al., 2005), mirroring what was observed
earlier in our mouse macrophage studies (Galindo et al., 2003,
2004a,b). Further, through proteomic analysis, we determined
that Act increased phosphorylation/activation of cyclic AMP-
response element binding protein (CREB), c-Jun, protein kinase
C, and signal transducer and activator of transcription 3 (STAT3)
(Galindo et al., 2005).

Realizing that Act induces apoptosis in both cultured and
primary macrophages, we elucidated the molecular mechanisms
and specifically interrogated the MAPK signaling pathway. We
found that, in various cell types, Act exposure resulted in acti-
vation of JNK and ERK1/2. Furthermore, Act induced acti-
vation/phosphorylation of MAPK upstream factors MKK3/6,
MKK4 and MAP/ERK kinase 1 (MEK1) as well as down-
stream transcription factor c-Jun (Galindo et al., 2004b). With
regards to apoptosis, Act induced classical membrane bleb-
bing, increased production of mitochondrial cytochrome c and
apoptosis-inducing factor, in addition to caspase-3, -8, and -9
activation (Galindo et al., 2004b). When we screened for inter-
actions between Act and both human and yeast proteins (using
proArrays), Act was found to bind 9 human proteins (out of
∼1800 proteins screened). Of the 9, synaptosomal-associated
protein 23 (SNAP23), galectin-3, and guanylate kinase 1 (GUK-1)
were knocked down in murine macrophages and HT-29 epithelial
cells (using small inhibitory RNA), with the former two result-
ing in reduced induction of apoptosis following Act exposure
(Galindo et al., 2006a,b). Interestingly, we also observed that DNA
adenine methyltransferase (Dam) and Glucose inhibited division
protein (GidA) both work to positively influence act gene expres-
sion and its associated hemolytic activity (Erova et al., 2012).
Interestingly, the Gram-positive pathogen, Staphylococcus aureus,
also secretes a potent, pro-apoptotic enterotoxin, the superanti-
gen enterotoxin B. The aforementioned enterotoxin specifically
targets T-cells and activates FAS receptor signaling (Ulett and
Adderson, 2006 and references therein).

The Aeromonas T6SS has two identified effector protein sub-
strates, Hcps and VgrGs (Sha et al., 2013). A. hydrophila’s Hcp
(Table 2) is a powerful effector substrate and once translo-
cated into the targeted host cell cytoplasm, apoptosis ensues
following caspase 3 activation (Suarez et al., 2008). We also
demonstrated that Hcp paralyzes macrophages thereby pre-
venting phagocytosis (Suarez et al., 2010). Curiously, multiple
copies of Hcp are present in T6SS-possessing bacteria sug-
gesting either redundancy of function and/or dosage-related
functional influences (Mougous et al., 2006). The Aeromonas
gene duplications and various alleles are likely a byproduct of
co-evolution occurring in both bacterial pathogens and their
respective hosts.

In A. hydrophila SSU, the 2 Hcp paralogs cluster to two
regions of the chromosome and influence virulence-associated
properties differently, demonstrating little functional redundancy
(Seshadri et al., 2006; Suarez et al., 2008; Sha et al., 2013). Hcp-2,
located inside the T6SS cluster appeared to function structurally
in forming the T6SS apparatus while Hcp-1, located at a dis-
tal chromosomal site functioned more as an effector (Sha et al.,
2013). More specifically, only Hcp-1 worked to negatively reg-
ulate bacterial motility and protease production (both required
for optimal virulence) whereas both paralogs were required for
optimal virulence and dissemination to peripheral organs in a
murine model of infection (Sha et al., 2013). When considering
the impressive arsenal available to A. hydrophila that includes a
T3SS, a T6SS as well as a potent T2SS secreted Act, it becomes
less surprising that human infections caused by this emerging
pathogen are on the rise.

CONCLUSION
In context of an intricate host-bacterial pathogen co-evolutionary
paradigm, at times it become difficult to determine whether the
resulting outcomes better benefit the host or the pathogen. For
example, following inhibition of NF-κB and MAPK signaling
pathways, Yersinia species through their generic PAMP/danger
signals (e.g., LPS or flagellin), can induce pyroptosis a specialized
inflammation-associated apoptosis that involves the activation
of caspase 1 (Philip and Brodsky, 2012 and references therein).
Inflammation is, in reality, a double-edged sword. If of short
duration and localized, it can serve to reduce extent of bacterial
infection preventing systemic spread of the pathogen. However,
if persistent and/or systemic, inflammation can damage host
tissue and potentially promote bacterial spread contributing to
bacterial pathogenesis. These two scenarios underscore the intri-
cacies of the host-pathogen interaction as well as reveal how
co-evolution can be shaped. The yersiniae T3SS effector, YopJ,
is a perfect example of such an ambiguity. Despite its potent
immunomodulatory capabilities, YopJ was largely dispensable for
virulence in a rat model of bubonic plague (Lemaitre et al., 2006).
Further, there has been evolutionary selective pressure against
excessive YopJ secretion in order to achieve maximal virulence
during plague infections (Zauberman et al., 2006; Brodsky and
Medzhitov, 2008). What does this all mean? Does YopJ’s pow-
erful ability to induce inflammation benefit the pathogen or the
host? Perhaps viewed in this light, the cost to benefit ratio nears
“1” making YopJ a “circumstantial virulence factor” depending
on the Yersinia pathogen in question, the route of infection, the
immunodisposition of the host, etc.

The T3SS is a powerful vehicle of effector protein deliv-
ery shared by many Gram-negative pathogens. The pathogenic
Aeromonas species also possess a functional T3SS that delivers
4 effector proteins into targeted host cells. The YopJ homolog,
AopP disrupts NF-κB signaling downstream of IKKB but, unlike
YopJ in the yersinaie, does not disrupt the MAPK signaling path-
way (Fehr et al., 2006). AexU, is an extremely versatile Aeromonas
T3SS bifunctional effector that possesses both GAP activity (like
the yersiniae YopE) as well as ADP-RT activity. Like YopJ, AexU
induces apoptosis and targets NF-κB signaling. However, unlike
in the yersinaie which lack clearly defined T6SS-virulence factors,
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Aeromonas species possess well-defined T6SS-associated virulence
factors and even a T2SS-secreted toxin (Act) creating a much
wider arsenal. The T6SS Hcp paralogs sharing limited functional
redundancy suggest that co-evolution might have shaped the
gene duplication event as well as provide the necessary selection
pressure that maintains the multiple copies in the chromo-
some. Taken together, T3SSs effectors in both the yersiniae and
Aeromonas species as well as T2- and T6SS effectors in Aeromonas
species converge on modulating the host immune response to
promote bacterial virulence.
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