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The aim of this study was to gain information about disease prevalence and to identify the responsible genes for inherited retinal
dystrophies (IRD) in Japanese populations. Clinical and molecular evaluations were performed on 349 patients with IRD. For
segregation analyses, 63 of their family members were employed. Bioinformatics data from 1,208 Japanese individuals were used as
controls. Molecular diagnosis was obtained by direct sequencing in a stepwise fashion utilizing one or two panels of 15 and 27 genes
for retinitis pigmentosa patients. If a specific clinical diagnosis was suspected, direct sequencing of disease-specific genes, that is,
ABCA4 for Stargardt disease, was conducted. Limited availability of intrafamily information and decreasing family size hampered
identifying inherited patterns. Differential disease profiles with lower prevalence of Stargardt disease from European and North
American populations were obtained. We found 205 sequence variants in 159 of 349 probands with an identification rate of 45.6%.
This study found 43 novel sequence variants. In silico analysis suggests that 20 of 25 novel missense variants are pathogenic. EYS
mutations had the highest prevalence at 23.5%. c.4957 4958insA and c.8868C>A were the two major EYS mutations identified in
this cohort. EYSmutations are the most prevalent among Japanese patients with IRD.

1. Introduction

Retinitis pigmentosa (RP) is themost common formof inher-
ited retinal dystrophies (IRD) and is clinically and genetically
heterogeneous. At least 50 genes have been identified for non-
syndromic RP [1] (RetNet; http://sph.uth.tmc.edu/RetNet/
provided in the public domain by the University of Texas
Houston Health Science Center, Houston, TX). They include
genes required for phototransduction, visual cycle, cilial
transportation in photoreceptors, and maintenance of pho-
toreceptor structure [2, 3]. RP patients commonly display a
disease progression profile beginning with rod photoreceptor
degeneration followed by cone photoreceptor death; hence
patients with RP present clinically with night blindness
and progressive restriction of the visual field followed by

impairment of central and color vision.The prevalence of RP
has been reported at 1 in 3,000-4,000 individulas worldwide
[2] and a similar rate is expected in Japanese populations.
Autosomal dominant (adRP), autosomal recessive (arRP),
and X-linked (xlRP) patterns of inheritance are common
in RP. Within Japanese populations identifiable inheritance
patterns are recognized in nearly 50% of all RP cases with
35%, 10%, and 5% in arRP, adRP, and xlRP, respectively.
The remaining 50% of cases are considered simplex or
sporadic. In the clinic, gaining information about a mode
of inheritance is limited due to recent social trends includ-
ing decreasing family size and increasing social isolation.
Therefore, establishment of molecular diagnoses for patients
with unknown disease inheritance is critical. We reported
in 2008 the first comprehensive molecular diagnosis for RP

Hindawi Publishing Corporation
Journal of Ophthalmology
Volume 2015, Article ID 819760, 10 pages
http://dx.doi.org/10.1155/2015/819760

http://dx.doi.org/10.1155/2015/819760


2 Journal of Ophthalmology

in Japanese patients with known and unknown inheritance
and identified 26 mutations in 28 of 209 probands (203
of RP, 2 of areolar atrophy, 3 of cone dystrophy, and 1 of
Stargardt disease) [4]. To accomplish this study, we employed
a method which combined an efficient denaturing high
performance liquid chromatography (dHPLC) based assay
with 108 exons of 30 RP-causing genes and confirmative
direct DNA sequencing.

In the present study, we further increased the screen-
ing number of the genes and exons, and another cohort
of 349 Japanese patients was examined to gain additional
information about disease prevalence and to identify the
responsible genes for IRD in Japanese populations. For this
purpose, direct sequencing of stepwise analyses utilizing one
or two panels of 15 and 27 genes was conducted for RP cases.
Disease-specific genes were also analyzed on patients with
other IRD.

2. Materials and Methods

2.1. Patients and Families. We performed mutation analy-
sis in a cohort of Japanese patients with IRD, who vis-
ited the RP/Genetic Counseling Clinic in the Institute of
Biomedical Research and Innovation Hospital, Kobe, Japan,
from October 2008 to May 2014. A total of 412 individ-
uals, 349 probands, and their 26 affected and 37 unaf-
fected family members were involved in this study. The
Human Genetic Variation Database from 1,208 Japanese
individuals provided by Japanese genetic variation consor-
tium, Kyoto University, Kyoto, Japan, was used as controls
(http://www.genome.med.kyoto-u.ac.jp/SnpDB/) [5]. None
of the patients in this cohort were enrolled in our previous
study [4]. Informed consent was obtained from all patients
and family members after the genetic screening procedures
had been fully explained. Research protocols were approved
by the institutional review boards of the RIKEN and the local
research ethics committees, and the study was conducted
in accordance with the principals of the Declaration of
Helsinki.

2.2. Mutation Analysis. Genomic DNA was extracted from
peripheral lymphocytes using standard procedures.Mutation
screening was performed by a stepwise direct sequencing
utilizing one or two panels of genes listed in Supplemental
Tables S1(A) and S1(B) in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/819760 for patients
with RP (Figure 1). Only patients whose sequence variants
were not detectable underwent additional screening with
the 2nd panel. If a specific clinical diagnosis was suspected,
direct sequencing of disease-specific genes was conducted by
analyzing the following genes for mutations (Supplemental
Table S1(C)): ABCA4 and RDS/PRPH2 for Stargardt disease,
CHM for choroideremia, CYP4V2 for Bietti crystalline
dystrophy, SAG for Oguchi disease, VMD2 for Best disease,
USH2A for Usher syndrome, RS1 for retinoschisis, RDS/
PRPH2 for central areolar choroidal dystrophy, and RDH5
and RLBP1 for fundus albipunctatus. In silico analysis
was performed to evaluate the potential deleterious effects
of novel missense mutations utilizing the following four

RP cases
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15 genes, 177 exons

(Supplemental Table S1(A))

Validation, in silico analysis, and segregation analysis

Identified mutations

Novel candidate 
mutations

Direct sequence
27 genes, 559 exons
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Direct sequence 
Disease-specific genes

(Supplemental Table S1(C))
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Figure 1: A stepwise screening for patients with IRD. Molecular
diagnosis was performed with a stepwise screening methodology.
Patients withRPwere initially screenedwith 15 genes, and additional
27 genes were sequenced when the initial screening failed to detect
mutations. Disease-specific genes were sequenced for patients with
other IRD.

computational prediction algorithms: PolyPhen2 (http://
genetics.bwh.harvard.edu/pph2/index.shtml), SIFT (http://
sift.jcvi.org/), PMut (http://mmb2.pcb.ub.es:8080/PMut/
PMut.jsp), and SNAP (https://rostlab.org/services/snap/).
Variants were determined to carry potential deleterious
effects when 50% and higher rates of the programs predict
their pathogenicity. Segregation analysis was also applied to
families with newly identified mutations.

2.3. Clinical Diagnosis. Fullmedical and family histories were
taken, pedigrees were drawn, and ophthalmologic examina-
tions were performed for each patient. Clinical evaluation
included best correct visual acuity (BCVA) according to
projected Snellen charts, slit-lampbiomicroscopy, and dilated
indirect ophthalmoscopy. Retinal imaging using a Topcon
TRC-NW7SF retinal camera (Topcon Corporation, Tokyo,
Japan), optical coherence tomography, and retinal autoflu-
orescence imaging using a SPECTRALIS Spectral domain
optical coherence tomography (OCT) scanner (Heidelberg
Engineering, Heidelberg, Germany) were conducted. Full-
field electroretinogram (ERG) was also performed. The ERG
protocol complied with the standards published by the Inter-
national Society for Clinical Electrophysiology of Vision.
Visual fields were examined with Goldmann perimetry.

3. Results and Discussion

3.1. AHighRate of Clinical Diagnosis as RP inThis IRDCohort.
The summary of clinical diagnoses in our cohort is shown in
Figure 2, and 313 of 349 (89.6%) patients were diagnosed as
nonsyndromic RP. The fraction of Stargardt disease patients
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Figure 2: Retinal dystrophies included in this study. Clinical
diagnosis of each retinal disease is shown. Nonsyndromic RP was
found in 313 of 349 cases at the rate of 89.6%.We revised the clinical
diagnosis in one case after genotyping: the patient diagnosed with
cone dystrophy was revised to autosomal recessive enhanced S-cone
syndrome (ESC) due to compound heterozygous NR2E3mutations:
c.419A>G and c.488T>C.

in our cohort was 1.2%.The estimated prevalence of Stargardt
disease is 1 in 8,000–10,000 individulas in North America [6]
and that of RP is 1 in 3,000-4,000 individulas [2]. The esti-
mated prevalence of RP in Japan is also 1 of 3,000-4,000 indi-
vidulas; however, our data indicates a higher rate of RP and
a lower prevalence of Stargardt disease in Japanese IRD pop-
ulations. Additionally choroideremia, in which we identified
5 genetically unrelated patients in this study, has a reported
prevalence of 1 in 50,000–100,000 individulas in North
America (http://ghr.nlm.nih.gov/condition/choroideremia).
Usher syndrome was found in 5 unrelated patients and
was the only syndromic disease identified. Bietti crystalline
dystrophy (BCD) is known to be more common in people
with East Asian ancestry [7], and 11 unrelated BCD patients
were identified in this cohort. Although the high RP and low
Stargardt disease prevalence might be associated with patient
referral bias to our clinic, the RP/Genetic Counseling Clinic,
the current study clearly demonstrates differential disease
profiles between racial backgrounds. We revised the clinical
diagnosis in one case after genotyping: the patient diagnosed
with cone dystrophy was revised to autosomal recessive
enhanced S-cone syndrome (ESC) due to compound het-
erozygous NR2E3mutations: c.419A>G and c.488T>C.

3.2. High Prevalence of EYS Mutations in Japanese Cases.
Genetic testing is recommended for patients with IRD,
because the results gained can make a positive impact on
both patients and their families [8]. Identification of the
causative genes leads to improved accuracy of diagnoses,
providing patients prognostic information and better genetic
counseling, and can facilitate further research in the develop-
ment of mechanism-specific care. In this study we analyzed
genetic mutations using the stepwise direct sequencing of the
majority of coding sequence in genes which are known to
cause RP and other IRD (Figure 1 and Supplemental Tables
S1(A) and S1(B)). Only patients whose sequence variants
were not detectable underwent additional screening with
the 2nd panel. If a specific clinical diagnosis was suspected,
direct sequencing of disease-specific genes was conducted by

Table 1: Inherited patterns and diagnostic rates.

Inheritance Tested (𝑛) Detected (𝑛) Detected (%)
Autosomal dominant 35 21 60.0
Autosomal recessive/simplex 303 134 44.2
X-linked 11 4 36.3

349 159 45.6

analyzing the following genes for mutations (Supplemental
Table S1(C)).

Inherited patterns of IRD in this cohort are summarized
in Table 1. A total of 205 changes in 26 genes were detected
as summarized in Table 2. These 205 sequence variants were
found in 159 of 349 probands (45.3%). These patients carried
between 1 and 4 sequence variants. Surprisingly, 134 of 303 or
44.2% of autosomal recessive or simplex cases were identified
to carry sequence variants, and this rate was higher than
that of X-linked retinal dystrophies with the detection rate of
36.3%. The identification rate of xlRP was reported as 35% in
cohorts of North American populations [9]. This study was
designed and conducted as a continuation of our previous
study which utilized a dHPLC based assay [4], and we also
expanded the members of genes and exons examined. These
changes successfully contributed to a better identification rate
as compared to our previous study from 13.4% to 45.3%.

Sequence variants in EYS were the most frequent in our
cohort and were detected in 82 of 349 probands (23.5%).
The second most frequently mutated gene in our cohort was
RDS/PRPH2 and accounted for 4.6% of cases. Mutations
in EYS were found in 32.8% [10] and 16% [11] of Japanese
arRP patients. Patients with compound heterozygous EYS
mutations were summarized in Supplemental Table S2. EYS
was identified in Spanish patients with arRP in 2008 [12],
and indeed EYS was not tested in our 2008 study. The
detection rate of this current study would drop to 20.6% if
EYS was excluded from our current analysis. As compared to
recently published Japanese cohort studies [13, 14], this study
displayed a lower detection rate of USH2A. This is probably
due to our two-panel screening methodology. Since USH2A
is included in the 2nd panel, this gene was not examined if
the 1st panel detected sequence variation(s). Therefore, data
interpretation needed to be performed cautiously and special
consideration had to bemade to the strengths and limitations
of each method.

Another significant finding is that this study found a
mutation c.469G>A (p.G157R) inGUCA1B in 4 patients with
RP. The mutation in GUCA1B was found only in 3 Japanese
adRP families [15] and no mutations in GUCA1B have ever
been found in 400 British patients with adRP [16]. A more
recent study failed to detect GUCA1B mutations in patients
with cone dystrophy and cone-rod dystrophy, and thus the
authors concluded that GUCA1B is a minor cause for IRD
in Europeans and North Americans [17]. Given the result
of 4 unrelated RP patients carrying the previously reported
c.469G>A mutation in this cohort, this mutation could be
frequent at least for the Japanese IRD populations.
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Table 2: Prevalence of mutations among 349 probands in this study.

Gene Location Probands (𝑛) Prevalence (%) Disease category
EYS 6q12 82 23.5 arRP
RDS/PRPH2 6p21.1 16 4.6 adRP, arRP, adMD*

RHO 3q22.1 7 2.0 adRP, arRP
CYP4V2 4q35.2 7 2.0 Bietti crystalline dystrophy
CRB1 1q31.3 5 1.4 arRP, LCA
RP11 19q13.42 4 1.2 adRP
GUCA1B 6p21.1 4 1.2 adRP
PROM1 11q12.3 4 1.2 adRP
RPGR Xp11.4 4 1.2 xlRP
ABCA4 1p22.1 3 0.9 STGD†

ROM1 11q12.3 3 0.9 adRP, arRP
CRX 19q13.32 2 0.6 adRP, CORD‡

CHM Xq21.2 2 0.6 Choroideremia
GUCY2D 17p13.1 2 0.6 arRP
RP2 Xp11.23 2 0.6 xlRP
RP9 7p14.3 2 0.6 adRP
TOPORS 9p21.1 2 0.6 adRP
USH2A 1q41 2 0.6 arRP
CNGB3 8q21.3 1 0.3 Cone dystrophy
IMPDH1/RP10 7q32.1 1 0.3 adRP
MAK 6p24.2 1 0.3 arRP
NR2E3 15q23 1 0.3 ESC§

RDH5 12q13.2 1 0.3 FA#

RP1 8q12.1 1 0.3 adRP, arRP
RLBP1 15q26.1 1 0.3 arRP
SAG 2q37.1 1 0.3 Oguchi disease
205 gene alterations were found in 349 probands.
*MD: macular dystrophy.
†STGD: Stargardt disease.
‡CORD: cone-rod dystrophy.
§ESC: enhanced S-cone syndrome.
#FA: fundus albipunctatus.

3.3. Novel Sequence Variants Identified in this Study. This
study revealed 43 novel sequence variants including 32
EYS mutations (Tables 3–5). A total of 11 novel sequence
variants were identified in the following genes: ABCA4,
CRX, PROM1, RDS/PRPH2, RHO, and RP11 (Table 3). The
same novel alteration, c.613 615delTAC in RP11, was found
in two unrelated families. As shown in Figure 3, segregation
analyses revealed that this novel mutation contributed to
adRP in this family with III-2 as a nonpenetrant. The same
novel c.1738A>C alteration was detected in PROM1 in three
unrelated families (this variant is described more in the
section of “Association of EYS, CRB1, and PROM1 in retinal
dystrophy”). This cohort also included a family with a novel
RHO sequence variant, c.36delC (Figure 4). II-5 in this
family carried the heterozygous mutation, and her clinical
phenotype was relatively mild with late onset at the age of 62.
III-2 showed only marginal clinical signs of RP when she had
underwent clinical evaluations at the age of 44. A possible
carrier of this mutation, I-1, died before the age when III-2
presented RP symptoms. This truncating variant is located

in exon 1 and it is likely to contribute to adRP. A total of 13
novel truncating EYS sequence variants were found in 21 RP
patients in 13 families (Table 4) and 19 missense changes in
EYS were also recognized (Table 5). Two novel EYS muta-
tions, c.8439 8442dupTGCA and c.5202 5203delGT, were
found in a single family (Figure 5). Affected family members
II-2 and II-4 carried the compound heterozygous mutations.
In silico analysis suggests that 20 of 25 novel missense
mutations identified here harbor potential deleterious effects
(Table 5), and further segregation analyses are essential to
conclude their pathogenesis.

3.4. c.4957 4958insA and c.8868C>A Are the Two Major
EYS Mutations in Japanese Patients with RP. EYS alterations
were detected in 126 alleles in 82 probands with the highest
prevalence in this Japanese cohort of IRD (Table 2). All
EYS sequence variants were found in patients with non-
syndromic RP. We found 4 major EYS variants which were
detected in unrelated families. Mutations of c.4957 4958insA
in exon 26 and c.8868C>A in exon 44 were the two highest
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Table 4: Novel truncating and nonsense EYSmutations found in this study.

Mutation DNA variant Protein variant Diagnosis
1 c.179delT p.L60W fs*3 RP
2 IVS27-3 4insT — RP
3 IVS38-1G>T — RP
4 c.2380C>T p.R794* RP
5 c.4557delA p.A1520P fs*30 RP
6 c.5202 5203delGT p.F1735Q fs*6 RP
7 c.6869 6896delCCATATTCCTGCAAATGTTCAAATTGATAAGAAAG p.P2290Q fs*12 RP
8 c.6897 6902dupAGGTCC p.G2300 P2301dup RP
9 c.6976C>T p.R2326* RP
10 c.7836 7837delTC p.P2613L fs*18 RP
11 c.8196 8200delCTTTC p.F2733C fs*33 RP
12 c.8439 8442dupTGCA p.E2815C fs*19 RP
13 c.8921C>A p.S2974* RP
*Truncating and nonsense variants.

Table 5: In silico analysis for novel missense mutations.

Gene Protein variant DNA variant Prediction
for damage

CRX p.R40W c.118C>T 4 of 4
EYS p.K4E c.10A>G 2 of 4
EYS p.R26Q c.77G>A 2 of 4
EYS p.M12T c.35T>C 2 of 4
EYS p.E47D c.141A>T 3 of 4
EYS p.Q76H c.228G>C 2 of 4
EYS p.C211Y c.632G>A 4 of 4
EYS p.I256M c.768A>G 2 of 4
EYS p.G484R c.1450G>A 3 of 4
EYS p.N1205T c.3614A>C 2 of 4
EYS p.K1633E c.4897A>G 2 of 4
EYS p.L1655M c.4963 T>A 2 of 4
EYS p.L1802F c.5404C>T 2 of 4
EYS p.G2186E c.6557G>A 2 of 4
EYS p.I2188T c.6563T>C 1 of 4
EYS p.R2604C c.7810C>T 2 of 4
EYS p.T2683I c.8048C>T 0 of 4
EYS p.D2767H c.8299G>C 3 of 4
EYS p.L2784R c.8351T>G 2 of 4
EYS p.I3091T c.9272T>C 2 of 4
PROM1 p.N580H c.1738A>C 3 of 4
RDS p.K15R c.44A>G 1 of 3
RDS p.A116S c.346G>T 0 of 4
RDS p.K154Q c.460A>C 0 of 4
RHO p.G101E c.302G>A 4 of 4
Bold indicates in silico analysis indicates pathogenic higher than 50% rates.

prevalent EYSmutations observed (Table 6). The frequencies
of c.4957 4958insA and c.8868C>A variants were 26.8%
(44 alleles in 82 probands with EYS mutations) and 13.4%

Affected

1 2

1 2 3 4

1 4 5

1 2

2 3

(I)

(II)

(III)

(IV)

RP11 ex7 c.613_615delTAC

[M];[=]

[M];[=] [M];[=]

[M];[=][M];[=]

[M];[=]

Figure 3: A pedigree of adRP with the novel RP11 mutation.
A family carrying a novel c.613 615delTAC mutation in RP11 is
presented. All of 6 family members who underwent molecular
diagnosis carried the heterozygous c.613 615delTAC mutation as
indicated with [M];[=]. Affected individuals are indicated as filled
symbols, and an arrow indicates the proband in this family.

(22 of 82), respectively. No c.4957 4958insA mutation has
been detected in 1,208 Japanese individuals without eye
symptoms. These data suggest that screening and developing
treatment options for these two mutations, c.4957 4958insA
and c.8868C>A, can greatly improve RP care in Japan.

EYS was previously known as the RP25 gene located at
a 16 cM region on chromosome 6p12.1–q15 [18], and linkage
to the same locus was reported in multiple families from
various ancestral origins including Spanish [18], Pakistani
[19], and Chinese [20]. The RP25 was identified as EYS in
Spanish patients with arRP in 2008 [12]. Additional studies
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Table 6: Frequency of major EYS variants in 82 probands with EYSmutations.

Exon DNA variant Protein variant Allele Frequency
EYS ex26 c.4957 4958insA p.S1653K fs*2 44 26.8
EYS ex32 c.6557G>A p.G2186E 7 4.3
EYS ex32 c.6563T>C p.I2188T 8 4.9
EYS ex44 c.8868C>A p.Y2956* 22 13.4
*Truncating and nonsense variants.

II-5
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1 32

2

1

4

2

5

(I)
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(III)

RHO ex1 c.36deLC hetero

[M];[=]

[M];[=]

Figure 4: A pedigree of probable adRP with a novel RHOmutation.
A family with a novel RHO mutation c.36delC is shown. II-5 in
this family carried the heterozygote mutation, and her clinical
phenotype was relatively mild with late onset at her age of 62. III-
2 showed only marginal clinical signs of RP when she underwent
clinical evaluations at the age of 44. A possible carrier of I-1 died
before the age when the III-2 presented RP symptoms. Affected
individuals are indicated as filled symbols, and an arrow indicates
the proband in this family. Bottom images are fundus pictures of II-
5.

found that mutations in EYS are the major cause of arRP
in Spanish [21], Chinese and British [22], and Israeli and
Palestinian populations [23]. In contrast, prevalence of EYS
mutations was lower in other ethnic groups, and they account
for approximately 5% of arRP patients of Western European
ancestry [24]. These two major mutations, c.4957 4958insA
and c.8868C>A, have been only found in Japanese and
Korean populations [11].

3.4.1. Association of EYS, CRB1, and PROM1 in Retinal
Dystrophies. EYS was identified in Drosophila mutants with

2

4321

1 3

21 Affected

a: EYS c.8439_8442dupTGCA
b: EYS c.5202_5203delGT

(I)

(II)

(III)

b: [=];[=]
a: [=];[=]
b: [M];[=]

b: [M];[=]

a: [M];[=]

a: [M];[=]
b: [M];[=]
a: [M];[=]

Figure 5: A pedigree of arRP with novel EYS mutations. A
family carrying two novel EYS mutations, c.8439 8442dupTGCA
(a) and c.5202 5203delGT (b), is presented. Affected II-2 and II-
4 carried compound heterozygous mutations. I-1 carried a het-
erozygous c.8439 8442dupTGCA mutation and I-2 did another
c.5202 5203delGT heterozygous mutation. Affected individuals are
indicated as filled symbols, and an arrow indicates the proband in
this family.

a compromised optomotor response [25] and characterized
as a molecule which plays an important role for producing
an interrhabdomeral space in the Drosophila retina [26].
Recent study with Drosophilamodels revealed that eys forms
a genetic network with chaoptin, prominin, and crumbs for
controlling the apical compartment of their photoreceptor
cells [27]. Interestingly, the same study reported that defi-
ciency of eys, prominin, or crumbs in flies displayed light-
induced photoreceptor degeneration. Furthermore, light-
induced photoreceptor death in these three mutants was
rescued by culturing under vitamin A deficient conditions.
Mutations of human homologs of these three genes, EYS
[12], PROM1 [28], and CRB1 [29], can cause RP. All of these
observations led us to speculate that RP caused by these
genes could share disease pathogenesis. Simultaneously such
observations also suggest possible digenic and polygenic
diseases due to combination(s) of their impairments as
observed in ROM1 and RDS/PRPH2mutations [30].

Therefore, we examined the association of these three
genes, EYS, PROM1, and CRB1, in 12 RP patients with a het-
erozygous EYS mutation and two family members (Table 7).
This additional screening found a novel heterozygous proba-
ble pathogenic PROM1 mutation c.1738A>C in two patients.
Notably, PROM1 mutations have been reported to cause
autosomal dominant cone dystrophy [31], and, indeed, the
heterozygous mutation was found in our autosomal domi-
nant cone dystrophy (Table 3). PROM1 mutations can cause
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Table 7: Association of EYS, PROM1, and CRB1 in retinal dystrophies.

EYS PROM1 CRB1 Diagnosis
c.768A>G (p.I256M) c.1738A>C (p.N580H) c.2306G>A (p.R769H) adRP
c.4957 4958insA c.1738A>C (p.N580H) c.2306G>A (p.R769H) adRP
c.1450G>A (p.G484R) n.d. c.2306G>A (p.R769H) adRP
c.8868C>A (p.Y2956*) n.d. c.2306G>A (p.R769H) adRP
c.4963T>A (p.L1655M) n.d. c.2306G>A (p.R769H) arRP
n.d. n.d. c.2306G>A (p.R769H) (Normal)
12 patients with RP were examined.
*Truncating and nonsense variants.
adRP indicates likely autosomal dominant retinitis pigmentosa.
n.d. indicates not detected.

arRP [32]. Furthermore, these two patients also carried a
CRB1 sequence variant c.2306G>A (rs62636287 in NCBI
database) whereas 1,208 control subjects did not. c.2306G>A
was also found in a healthy family member without carrying
a heterozygous EYS mutation. In the neighboring area of
c.2306G>A, c.2302C>T an unreported variant, c.2303G>A,
and c.2303C>T reported nonpathogenic variants were iden-
tified in 2, 6, and 3 control individuals, respectively.Moreover,
5 of 12 patients carried c.2306G>A in addition to a heterozy-
gous EYS mutation. These results suggest the possibility of
digenic and polygenic diseases due to combination(s) of EYS,
PROM1, and CRB1 mutations. It is worth noting that copy
number variants (CNVs) in EYS were reported in patients
with IRD [33], and, therefore, molecular diagnosis of EYS
should include analysis for CNVs. Our study observations
and the relatively high prevalence of known recessive RP
mutations in the general population [34] could produce
additional complexity and difficulty in genetic counseling for
arRP cases.

4. Conclusion

Molecular diagnosis of patients from different ethnic back-
grounds greatly contributes to our understanding of the
global spectrum of human disease-causing mutations and
helps to develop therapies. Considering the possible number
of therapeutic targets and relatively small number of patient
populations with IRD, it is essential to define which genes can
be the candidates for developing new therapies and which
genes could more efficiently bring benefits to more patients
worldwide. This study revealed different patterns of disease
and genetic prevalence in Japanese populations as compared
to European and North American populations. Most signifi-
cantly Japanese populations have a higher prevalence of EYS
mutations (23.5%) and less rhodopsinmutations (2.0%) com-
pared to European and North American populations. In our
Japanese cohort, we did not find themost common European
origin P23H of RHOmutation in adRP [35]. Additionally, we
found a higher rate of RP and a lower prevalence of Stargardt
disease in this Japanese cohort. Drawbacks of this study exist
including patient referral bias and the heterogeneous disease
presentation due to the wide range of clinical phenotypes
seen in Stargardt disease [36, 37] and other IRD; nevertheless

the data presented here demonstrates clear differences in
causative genetic mutations between racial backgrounds.

In order to further increase the rate of identification
of pathogenic mutations in IRD, other methods could be
employed, such as entire exome sequencing using next
generation sequencing (NGS), which utilizes a greater genetic
panel for screening. Currently, both targeted and whole
exome or genome analyses combinedwithNGS are becoming
prevalent and several analyzers on the market reduce both
time of analysis and cost of sequencing [38–40]. Because
such NGS can also be easily shifted to and combined with
RNA sequence analysis, understanding of pathogenesis due
to specific mutations can be vastly improved. Furthermore,
this study and other studies suggest that EYS screening for all
RP, RPGR, and RP2 for xlRP and male simplex RP [9] should
be included as first tier assessment for Japanese patients with
RP.

In summary, we performed the largest comprehensive
mutational analysis on IRD in a Japanese population cohort.
We identified 205 sequence variants in 349 probands and
found a high prevalence of mutations in EYS. Furthermore,
this is the first study examining a spectrumof IRD in Japanese
cases and it provided additional evidence of differential
disease prevalence among races.

Abbreviations

ABCA4: ATP-binging cassette transporter, family 4
CHM: Choroideremia gene
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PRPH2: Peripherin 2
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RLBP1: Retinol binding protein 1
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