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Toni Rikkonen c, Heikki Kröger d, Timo Lähivaara a, Sami P. Väänänen a,b 

a Department of Applied Physics, University of Eastern Finland, POB1627, 70211 Kuopio, Finland 
b Department of Clinical Radiology, Kuopio University Hospital, POB1777, 70211 Kuopio, Finland 
c Institute of Clinical Medicine, University of Eastern Finland, POB1627, 70211 Kuopio, Finland 
d Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, POB1777, 70211 Kuopio, Finland   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Dual-energy X-ray absorptiometry 
Degeneration 
Fracture risk 
Lumbar spine 
Scoliosis 
Trabecular bone score 

A B S T R A C T   

Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in 
clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density 
(BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic fractures. In this study, 
we used deep learning to identify lumbar scoliosis and structural abnormalities that potentially affect BMD but 
are often neglected in lumbar spine DXA analysis. In addition, we tested the approach’s ability to predict frac-
tures using only DXA images. A dataset of 2949 images gathered by Kuopio Osteoporosis Risk Factor and Pre-
vention Study was used to train a convolutional neural network (CNN) for classification. The model was able to 
classify scoliosis with an AUC of 0.96 and structural abnormalities causing unreliable BMD measurement with an 
AUC of 0.91. It predicted fractures occurring within 5 years from the lumbar spine DXA scan with an AUC of 
0.63, meeting the predictive performance of combined BMD measurements from the lumbar spine and hip. In an 
independent test set of 574 clinical patients, AUC for lumbar scoliosis was 0.93 and AUC for unreliable BMD 
measurements was 0.94. In each classification task, neural network visualizations indicated the model’s pre-
dictive strategy. We conclude that deep learning could complement the well established DXA method for oste-
oporosis diagnostics by analyzing incidental findings and image reliability, and improve its predictive ability in 
the future.   

1. Introduction 

Osteoporosis is a disease of decreased bone mineral density which 
increases the risk for low energy fractures, particularly in the elderly. 
Low energy fractures are associated with high morbidity and high 
mortality. Osteoporosis has been estimated to affect more than 200 
million people worldwide (Cooper, 1999). Improving diagnostics may 
enable early intervention which can affect the patient’s quality of life 
and save costs to society (World Health Organization, 2003). Currently, 
the diagnosis of osteoporosis is based on measuring bone mineral den-
sity (BMD) using Dual-energy X-ray absorptiometry (DXA). DXA scan is 
performed while the patient lies supine. It uses low-intensity X-ray 
beams reducing the radiation dose to about one-twelfth compared to 
conventional lumbar radiography (Messina et al., 2016). This results in 
lower image quality but sufficient to approximate bone mineral density 

for the areas of interest (Fig. 1). However, the morbidity of osteoporosis 
arises not from the loss of bone itself but the associated fractures. 

Osteoporotic fractures are fragility fractures, typically caused by a 
fall from no greater than standing height. These fractures usually occur 
in the hip, spine, forearm, and humerus (Seeley et al., 1991). Bone 
mineral density alone is only a moderate predictor of fractures. In fact, 
most of the patients who sustain fragility fractures do not fall below the 
osteoporosis BMD threshold defined by the World Health Organization 
(WHO) (World Health Organization, 2003; Unnanuntana et al., 2010). 
This has created a demand for more advanced prediction methods that 
look beyond the bone density. 

Several clinical risk factors, independent of BMD, have been identi-
fied for fragility fractures. Statistical methods like The Fracture Risk 
Assessment Tool (FRAX) (Kanis et al., 2008) can be used to predict 
fracture probability based on variables such as age, fracture history, 
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demographic and physical characteristics, medication, and many life-
style factors (Unnanuntana et al., 2010). It has been shown that clinical 
risk factors and BMD together provide better fracture predictions than 
either alone (Kanis et al., 2007). The prediction models could potentially 
be improved even further by extracting more fracture risk-related in-
formation from the images. 

In addition to BMD, DXA images also hold anatomical and patho-
logical information. Scoliosis and degenerative changes are common 
findings in lumbar spine imaging. Scoliosis is defined as a spinal 
deformity consisting of lateral curvature and rotation of the vertebrae 
(Janicki and Alman, 2007). Degenerative changes in the spine are 
responsible for the loss of normal structure and function. Radiographic 
features of degeneration include loss of intervertebral disc space, end-
plate sclerosis, osteophytes, and facet joint arthrosis (Bogduk, 2012). 
Although DXA imaging is not used for diagnosing scoliosis or degener-
ation in clinical practice, these conditions should be considered when 
evaluating the scans (American College of Radiology (ACR), 2018). 
Degenerative changes have been shown to elevate BMD values measured 
from the lumbar spine (Salo et al., 2014). Scoliosis, in turn, can 
complicate segmentation and setting of the vertebra levels, which may 
affect the BMD values (Watts, 2004). These confounders with other 
abnormalities such as fractures, previous surgery, or artefacts can 
hamper the analysis and cause discrepancy in DXA interpretation among 
observers (Hansen et al., 2005). A method taking them into account 
could support the diagnostics. 

To assess the quality of bone, methods extracting additional infor-
mation from DXA images have been proposed. Hip Structural Analysis 
(HSA) (Beck et al., 1990) measures geometric parameters associated 
with bone strength whereas Trabecular Bone Score (TBS) (Pothuaud 
et al., 2008) analyzes grey-level variations in bone texture claimed to 
reflect bone microarchitecture. These methods have been shown to serve 
as independent predictors of fracture (Maquer et al., 2016; LaCroix 
et al., 2010; Pulkkinen et al., 2004). However, their clinical relevance 
and ability to improve fracture prediction are not completely clear 
(Maquer et al., 2016; Kaptoge et al., 2008). A possible limitation is that 
they focus on very specific features instead of analyzing the bone as a 
whole. In addition to the known factors, the images may contain visual 
evidence of fracture risk that is not yet known, or even too difficult for 
the human eye to detect. 

Deep learning is a set of machine learning techniques that can 
automatically discover the features needed to predict certain outcomes 
from data. It uses deep artificial neural networks that have multiple 

layers between the input and output (Bengio, 2009). The last layers 
learn complicated concepts by building them out of simpler ones iden-
tified in the first layers. The key aspect of deep learning is that these 
layers are not designed by human engineers. Instead, they are learned 
from data using a learning procedure such as supervised learning. In 
supervised learning, a high number of input samples with known out-
comes are fed into the network. The network learns the relationship 
between input and output by iteratively predicting and adjusting its 
connective weights according to prediction error. Once trained, the 
network produces deterministic predictions from new input data in real- 
time (Goodfellow et al., 2016). 

A commonly recognized challenge in neural networks has been their 
poor interpretability. The model’s predictive strategy is often unclear 
failing to provide explanations on the predictions. This has led to the 
emerge of neural network visualization as its own branch in machine 
learning research (Simonyan et al., 2014; Erhan et al., 2009). Visuali-
zation methods can reveal the shape and size of the extracted features, as 
well as their relative importance to the prediction. Improving the 
transparency of prediction models can help build trust in machine 
learning based diagnostics. 

Deep learning has produced promising results in medical image 
analysis including detection of scoliosis (Horng et al., 2019; Yang et al., 
2019) and degenerative changes in different bone sites (von Schacky 
et al., 2020; Tiulpin et al., 2018) from other image modalities than DXA. 
Many studies have exploited conventional radiography, magnetic reso-
nance imaging, and computed tomography (CT) (Cabitza et al., 2018; 
Burns et al., 2020). Automated fracture risk assessment based on CT of 
the chest has been proposed as an alternative to FRAX analysis (Dagan 
et al., 2020). Full body DXA images have been used to identify scoliosis 
in children (Jamaludin et al., 2020) whereas lateral DXA images of the 
lumbar spine have been used to identify existing vertebral fractures 
(Derkatch et al., 2019). 

We investigate the use of deep learning to identify scoliosis, detect 
BMD measurement unreliability caused by structural abnormalities, and 
predict fractures from DXA images of the lumbar spine. Furthermore, we 
aim to explain the models’ predictive strategy in each classification task 
through visualizations. 

Fig. 1. Dual-energy X-ray absorptiometry images of the spine. In DXA measurement, the bone mineral density is calculated for each semi-automatically segmented 
vertebra (L1-L4). (a) The subject on the left demonstrates a normal lumbar spine. (b) The subject on the right shows scoliosis and severe degenerative changes. 
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2. Material and methods 

2.1. Data 

The primary research material was collected by Kuopio Osteoporosis 
Risk Factor and Prevention Study (OSTPRE) (Rikkonen et al., 2010) and 
its side study OSTPRE Fracture Prevention Study (OSTPRE-FPS) (Salo-
vaara et al., 2010). OSTPRE is a population-based prospective cohort 
study aimed to investigate factors associated with bone mineral density, 
bone loss, falls, and fractures in peri- and postmenopausal women. It 
originally included 14,220 women aged 47 to 56 years who lived in 
Kuopio region in February 1989. Every five years, a subset of the pa-
tients have also undergone DXA scans. 

We used the DXA images from OSTPRE 15-year follow-up mea-
surements from 2004 to 2007 and OSTPRE-FPS measurements from 
2003 to 2007 (Fig. 2). They were produced with a Lunar Prodigy DXA 
scanner (GE Healthcare, Madison, WI) using a pixel size of 1.05 × 0.60 
mm (height x width) and an effective radiation dose of 4 μSv. Measured 
X-ray attenuation was calibrated daily using a BMD phantom to match 
g/cm2 values of hydroxyapatite. The BMD values were measured for the 
lumbar spine and hip according to standard procedures of the device. 
The BMD T-scores, meaning the number of standard deviations (SD) 
from the reference mean, were calculated according to Finnish female 

population reference values (hip mean: 0.98 g/cm2, hip SD: 0.12 g/cm2, 
lumbar spine mean: 1.20 g/cm2, lumbar spine SD: 0.12 g/cm2) (Kröger 
et al., 1992). In clinical use, the DXA device produces a report including 
the segmented images and measured BMD values. With the help of the 
device provider GE Healthcare, we exported the pixel-wise DXA-images 
from the scanner in MATLAB binary format. 

The OSTPRE dataset consisted of 2949 female patient cases. At the 
time of imaging, the average age of the patients was 68 years varying 
from 62 to 75 years with a standard deviation (SD) of 2 years. The 
fracture data were collected in the follow-up questionnaires in 1994, 
1999, 2004, 2009, and 2014. The fragility fractures were identified 
based on the site of the fracture (lumbal spine, thoracal spine, proximal 
humerus, distal forearm, and proximal femur). Clear cases of high en-
ergy fractures, like the ones caused by traffic accidents, were excluded. 
All the fractures reported by the participants were verified from the 
patient records. Also, a complete history for hip fractures was checked 
from the national registers, but other types of fracture depended on the 
patient’s own reporting (Honkanen et al., 1999). To make the classifi-
cation task binary, the count of fractures was discarded, and the output 
variable was defined merely as occurrence. We defined two different 
fracture labels. One stating whether the patient had suffered a fragility 
fracture at some point during the 25-year follow-up period from the start 
of the OSTPRE study (14.4% positives). This label, indicating a realized 

Fig. 2. Data selection flowchart. The OSTPRE study originally involved 14,220 elderly females from Kuopio region. 2497 participants from the OSTPRE study and 
614 non-overlapping participants from a side-study OSTPRE-FPS had DXA scans taken between 2003 and 2007. These subsets were combined and linked with the 
fracture data from postal enquiries in the years 1994, 1999, 2004, 2009, and 2014. The fractures reported by the participants were verified from the national patient 
registers. Some participants were excluded due to lost or corrupted measurement data. The DXA images of the final dataset were labelled for scoliosis and unre-
liability by two radiologists. This resulted in 2949 labelled DXA-images in the OSTPRE dataset. An external non-overlapping dataset of 574 random patients was 
gathered from Kuopio University Hospital (KUH) and labelled for scoliosis and unreliability by three radiologists. The number and proportion of positive (1) and 
negative (0) samples in each case are shown in the final dataset boxes. 
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risk of fracture, was used in training the network. For validating the 
network’s ability to predict future fractures, we defined another label 
stating whether the patient had suffered a fracture within 5 years after 
the scan (3.9% positives). This approach of two labels enabled a higher 
positive rate to boost the training while still being validated in the 
prediction of future fractures. 

All the DXA images were visually evaluated by two radiologists. They 
agreed on the medical standards on which the labels were based, but 
performed the actual work independently. Scoliosis was labelled by the 
visual estimation of lateral curvature as positive (Cobb angle more than 
10◦) or negative (no scoliosis or Cobb angle less than 10◦). The inter- 
rater agreement in scoliosis labelling was 92.5% (Cohen’s kappa k =
0.73). The label for the unreliability of BMD measurement was based on 
the level of structural changes that might compromise the BMD analysis. 
According to the American College of Radiology (ACR) (American Col-
lege of Radiology (ACR), 2018) and the International Society for Clinical 
Densitometry (ISCD) (The International Society for Clinical Densitom-
etry (ISCD), 2019) recommendations, DXA interpretation should be 
based on a minimum of two (regular) vertebrae. Therefore, a sample was 
classified as positive if it had 3–4 vertebra between L1-L4 affected by 
degeneration or other focal structural abnormalities such as fractures, 
previous surgery, or artefacts. Any degenerative changes that visibly 
affected X-ray attenuation, vertebral boundaries, or disk space were 
noted. In unreliability labelling, the radiologists reported a significant 
number of borderline cases, which was reflected in the moderate inter- 
rater agreement of 78.8% (k = 0.58). For training and evaluation of the 
deep learning models, we combined the annotations of the two radiol-
ogists. Only the cases with agreed positive labels between both radiol-
ogists were considered positive and all other negative. 

For the assessment of generalizability, we gathered an external 
dataset of 574 random patients from Kuopio University Hospital (KUH). 
Ethical permission was granted by Ethics Committee of Hospital District 
of Northern Savo (1298/13.02.00/2019). These images had been pro-
duced with a different device of the same type operated by different staff 
compared to the OSTPRE dataset. It had no overlapping patients and no 
preselected age group or gender. 459 (80%) of the patients were female 
and 115 (20%) were male. The average age was 64 years ranging from 
20 to 96 years with a standard deviation of 10 years. Fracture 

information was not available for this dataset, but three radiologists 
labelled it for scoliosis and unreliability by the same labelling principles. 
Two of these radiologists were the same as in OSTPRE dataset labelling. 
In this external dataset, the combined labels were based on the majority 
opinion among the three experts. The inter-rater agreements in scoliosis 
labelling among the pairs were 75.6% (k = 0.44) for radiologist 1 and 
radiologist 2, 92.3% (k = 0.74) for radiologists 2 and 3, and 78.4% (k =
0.51) for radiologists 1 and 3. In unreliability, the respective inter-rater 
agreements were 80.7% (k = 0.61), 79.3% (k = 0.59), and 76.3% (k =
0.53). To estimate the intra-rater reliability, the radiologists labelled the 
same set of images again after some days. In scoliosis, the intra-rater 
reliabilities were 92.9% (k = 0.85) for radiologist 1, 94.1% (k = 0.79) 
for radiologist 2, and 94.6% (k = 0.82) for radiologist 3. In unreliability, 
they were 89.2% (k = 0.78), 85.9% (k = 0.71), and 86.6% (k = 0.71), 
respectively. 

2.2. Deep learning approach 

Convolutional neural network (CNN) was chosen as the deep 
learning model. It has been used for a wide variety of image analysis 
applications including face recognition (Taigman et al., 2014) systems, 
self-driving cars (Hadsell et al., 2009), and segmentation of microscopic 
images (Ning et al., 2005). CNN is based on an artificial neural network 
consisting of multiple layers of neurons that have learnable weights. In 
addition, it introduces three architectural ideas: local receptive fields, 
shared weights, and spatial downsampling (Lecun and Bengio, 1995). 
With local receptive fields, neurons can extract basic visual features such 
as edges, endpoints, and corners. These features are then combined in 
the following layers. To simplify the model, similar feature detectors 
with shared weights are used across the entire image. This limits the 
capacity of the network, but more importantly, improves its general-
ization ability. The set of weight sharing units is called a convolutional 
kernel. Each kernel produces a feature map as an output. Pooling layers 
are used to downsample these feature maps by summarizing the pres-
ence of features in certain areas. This makes the model more robust to 
changes in the exact position of the features in the image (Lecun et al., 
2015). 

Generating a neural network model that works for certain data is 

Fig. 3. Deep learning architecture overview. The grayscale DXA images are preprocessed and automatically cropped to 150 × 150 pixels before feeding as input for 
the convolutional neural network. Convolutional layers (conv1-conv4) with pooling layers (pool1-pool4) extract features of different abstraction levels gradually 
reducing the size of the feature maps. The extracted features are passed on to classification by a fully connected layer. The output layer of the network is a single 
neuron producing the classification output value between 0 and 1. The Number of kernels is shown below each layer and the size of the resulting feature map next to 
each layer. 
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highly experimental. The best performing architecture is case dependent 
and finding the parameters is often by trial and error (Curry and Morgan, 
2006; Bergstra and Bengio, 2012). Automated hyperparameter tuning is 
the set of processes to find the best performing parameters of a model 
automatically. We utilized two of such processes: Random search 
(Bergstra and Bengio, 2012) and Hyperband (Li et al., 2018). Random 
search repeatedly picks the parameter values randomly from predefined 
ranges, trains the model, and evaluates its performance. Hyperband is a 
variation of random search that introduces a form of early stopping for 
bad runs. This enables allocating computational resources for more 
promising parameter combinations. In this study, the initial search for 
sufficient depth (number of layers) and width (number of kernels) of the 
network architecture was performed by automated tuning. Further ad-
justments were made based on manual experiments, which are 
described in more detail in the supplementary material. Experimenta-
tion on different architectures for the classification tasks resulted in a 
conclusion that the model is determined primarily by the input data 
rather than the output label. To demonstrate that CNN can extract 
diverse features without task-specific modification we used the same 
architecture and hyperparameters for all three classification tasks. 

The final model consisted of 4 convolutional layers, 4 pooling layers, 
and 1 fully connected layer (Fig. 3). The raw images of 300 pixels in 
width and 150–178 pixels in height were automatically cropped to an 
input size of 150 × 150 pixels. This was done by searching the centre line 
of the spine and including 75 pixels on both sides to the final input image 
(see supplementary material for details). The training data was 
augmented by generating horizontally flipped versions of the original 
images. All the convolutional layers used a kernel size of 5 × 5 pixels, 
‘same’ padding, and rectified linear unit (ReLU) (Nair and Hinton, 2010) 
activation function. Downsampling was performed by a max-pooling 
layer, with a pooling size of 2 × 2 pixels, after each convolutional 
layer. The output from the last pooling layer was flattened and fed to a 
fully connected layer for classification. L2 regularization (Tikhonov and 
Glasko, 1965) was applied on all the convolutional layers and Dropout 
regularization (Srivastava et al., 2014) on the fully connected layer. The 
output layer contained a single neuron with a sigmoid activation func-
tion to produce the prediction output in the range of 0 to 1. 

To address the challenge of transparency, we utilized several visu-
alization techniques suited for convolutional neural networks. They 
enabled us to qualitatively assess the performance of our models. 
Heatmaps highlighting the important regions of the image for prediction 
were generated by Gradient-weighted Class Activation Mapping (Grad- 
CAM) (Selvaraju et al., 2017). The method uses the gradients of the 
target class flowing into the last convolutional layer to produce a coarse 
localization heatmap. Vanilla gradients method (Simonyan et al., 2014) 
was employed to indicate the shapes and textures the network extracts. 
It uses backpropagation going all the way to the input layer to track 
which pixels need to be changed the least to affect the output value the 
most. Such pixels can be expected to correspond to the objects recog-
nized by the prediction model. 

The previously mentioned methods depict the prediction process of 
the whole network. To visualize the function of specific layers and 
kernels we used two different approaches. One is to render the feature 
maps for a single input sample (Yosinski et al., 2015). This gives a rough 
view on how the neural network sees the image in different phases of 
feature extraction. The method is very simple but informative since the 
output of a kernel is rendered as it is. Another approach is to generate an 
artificial input sample by using the activation maximization method 
(Erhan et al., 2009). An input sample is initialized with random noise 
and fed to the trained network with the target class label. As the sample 
most likely produces a prediction error, the gradients for the kernels are 
calculated like in the training phase. But, instead of changing the 
weights of the kernel, the input image is transformed towards a better 
prediction result. As we repeat these steps, the image begins to take the 
form that maximizes the activation of the convolutional kernel. This 
visualization can indicate the purpose and variability of the learned 

kernels, irrespective of the input image. The kernels in the last con-
volutional layers usually extract human-recognizable features and are 
therefore the most interesting to visualize (Erhan et al., 2009; Lecun 
et al., 2015). 

The deep learning models were built using Python 3.6 and the GPU 
supported version of TensorFlow 2.1 (Abadi et al., 2015) machine 
learning framework. Data selection and preprocessing, statistical anal-
ysis, and graphs were implemented using scikit-learn 0.19.1 (Pedregosa 
et al., 2011), Statsmodels 0.11.1 (Seabold and Perktold, 2010), and 
Matplotlib 3.1.2 (Hunter, 2007). Keras-Tuner 1.2 (Keras Team, 2019) 
was used for automated hyperparameter tuning. The experiments were 
executed in a Linux server equipped with Intel Core i5–6600 3.3GHz 
CPU, 16GB RAM, and Tesla P100 GPU with 16GB of display memory. 

2.3. Statistical analysis 

The deep learning models were evaluated using 10-fold cross- 
validation. The OSTPRE dataset was split into 10 random subsets 
using stratified sampling to retain the same class distribution across all 
subsets. To obtain predictions for the whole dataset, the model was 
trained 10 times holding out different subset for validation each time. 
This process was again repeated 100 times using different random seeds. 
Mean performance measures and confidence intervals were calculated 
from the resulting 1000 iterations. The method ensures that, during 
these iterations, the validation patients are never present in the 
respective training set. Using repeated 10-fold cross-validation aims at a 
better estimation of the model skill independent of the split to training 
and validation samples. 

The performance results are reported with accuracy (proportion of 
correct predictions), the receiver operating characteristic curve (ROC) 
and the area under the ROC curve (AUC) (Fawcett, 2006), confusion 
matrix, sensitivity (proportion of correctly identified actual positives), 
and specificity (proportion of correctly identified actual negatives). The 
95% confidence intervals were calculated using Student’s t-distribution. 
We show the learning curves by plotting model performance (average 
error) over training epochs (iterations over the training set). Reviewing 
the plots can be used to identify problems with learning, such as over-
fitting or underfitting (Goodfellow et al., 2016). The ROC curves and 
confusion matrices are shown for the complete dataset from the 10-fold 
cross-validation producing the median AUC value. The learning curves 
and visualization results were taken from the cross-validation subset 
that produced the median AUC value. 

In scoliosis and unreliability detection, the models’ generalizability 
was tested with the external KUH dataset. The ten models that produced 
the median AUC value in the repeated 10-fold cross-validation with the 
OSTPRE dataset were used to predict on the external test set. We report 
the mean, minimum, and maximum performance results from these 
tests. 

For benchmarking the deep learning approach in fracture prediction, 
we built logistic regression models based on one or more predictor 
variables. The selected variables were the lumbar spine BMD T-score 
(the minimum of vertebrae L1-L4), the hip BMD T-score (the minimum 
of the femoral neck or femoral total), the minimum BMD T-score (from 
spine or hip), TBS (the average of vertebrae L1-L4), and the age of the 
patient. In addition, the fracture prediction outputs from the deep 
learning model were included as one variable. This enabled us to 
analyze the deep learning output’s significance when used together with 
the other predictors. 

For classification, the output values produced by the deep learning 
model needed to be converted to binary labels. The classification 
boundary in scoliosis and degeneration detection was set to 0.5 repre-
senting the model’s view on the most probable label for each sample. In 
fracture prediction, the classes were heavily imbalanced making the 
negative class almost always more likely. Thus, the threshold was low-
ered to make the model more sensitive to cases with increased risk, and 
comparable to the current T-score based diagnostics. The threshold was 
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adjusted to 0.15 to approximately match the sensitivity of the minimum 
BMD T-score fracture predictor. For the BMD T-score predictors, we used 
the osteoporosis threshold defined by WHO: 2.5 standard deviations 
below the reference mean value of a healthy young adult (World Health 
Organization, 2003). 

3. Results 

3.1. Scoliosis detection 

In the OSTPRE dataset, the model was able to detect scoliosis with an 
average AUC of 0.96, accuracy of 94.1%, sensitivity of 70.5%, and 
specificity of 97.6% (Table 1 and Fig. 4(a) and (b)). The heatmap and 
gradient visualizations indicate that the model is focusing on the overall 
curvature of the spine (Fig. 6(a) and supplementary material Fig. 8). 
This interpretation is supported by the feature maps from the last con-
volutional layer visualizing vertical contours. Also, the activation 
maximization method has generated different vertically oriented input 
patterns. This implies that the kernels have learned to detect bone 
texture at different angles. 

The learning curves (Fig. 7(a)) show that the model has sufficient 
capacity to learn from the training data. The training error drops steeply 
at first and then steadily approaches zero. The validation error follows 
the training curve before the model starts to slowly overfit after 40 
epochs of training. 

The models tested with the external KUH dataset produced an 
average AUC of 0.93 (range 0.92–0.95) (Table 2). Accuracy in the test 
set was 89.6%, sensitivity 74.5%, and specificity 93.7%. 

3.2. Unreliability detection 

In detecting unreliability of BMD measurement in the OSTPRE 
dataset, the model produced an average AUC of 0.91, accuracy of 82.4%, 
sensitivity of 78.3%, and specificity of 85.7% (Table 1 and Fig. 4(c) and 
(d)). The heatmap visualizations have notable variation between test 
samples (Fig. 6(b) and supplementary material Fig. 9), but a common 
factor seems to be the focus on individual vertebrae and intervertebral 
discs. The gradients visualization also indicates that the separability of 
vertebrae is one factor in the prediction. Different feature maps have 
activation at vertebral structures as well as more cohesive areas of the 
image. The activation maximization inputs show various patterns in 
several orientations suggesting a diverse set of learned feature 
extractors. 

The learning curves (Fig. 7(b)) show good convergence with both 
training and validation error decreasing at the same rate for the first 20 
epochs. The training curve continues to drop but the generalization 

ability of the model does not further improve. The model starts to overfit 
after 50 epochs of training. 

When tested with the external KUH dataset, the models were able to 
detect unreliability with an average AUC of 0.94 (range 0.94–0.95) 
(Table 2). Test accuracy was 82.8%, sensitivity 92.7%, and specificity 
72.9%. 

3.3. Fracture prediction 

The fracture prediction produced an average AUC of 0.63. With the 
classification threshold adjusted to match the sensitivity of the mini-
mum BMD T-score fracture predictor, the average accuracy was 52.0%, 
sensitivity 67.8%, and specificity 51.4% (Table 1 and Fig. 5). The 
benchmark predictors of the spine and hip T-score both produced 
average AUC values of 0.62. By using the minimum of these T-scores, the 
predictivity improved slightly (AUC 0.63). TBS performed with an AUC 
of 0.59 and age with an AUC of 0.55. 

The logistic regression model with the minimum BMD T-score 
together with TBS and age did not improve the performance (AUC 0.63) 
compared to the minimum T-score alone. The minimum T-score com-
bined with the prediction probabilities from the deep learning model 
improved the AUC to 0.64. The coefficient analysis showed that in this 
model the minimum T-score (p = 0.006) was statistically significant (p <
0.05) whereas the deep learning output (p = 0.158) was not. However, 
when the deep learning output (p = 0.041) was combined with the spine 
T-score (p = 0.028), they both remained significant. TBS did not 
improve the prediction and was not statistically significant when com-
bined with any of the BMD T-score predictors or deep learning output. 

The heatmap and gradient visualizations seem to focus on the 
vertebrae throughout the image area (Fig. 6(c) and supplementary 
material Fig. 10). The feature maps also show consistent patterns 
resembling vertebral structure. The activation maximization inputs 
appear somewhat blurry showing patterns in roughly horizontal orien-
tations. This suggests that instead of extracting detailed features, the 
model is assessing the overall consistency of the spine structure. 

The learning curves (Fig. 7(c)) show that the model slowly learns the 
optimal weights before heavy overfitting starts after 60 epochs. Further 
training fits the training data but is not able to generalize well on unseen 
samples. The overall decrease in the validation error is more restrained 
compared to the other classification tasks. 

4. Discussion 

In this paper, a deep learning approach to analyze spine DXA images 
was investigated. We conducted a series of experiments to find out if a 
convolutional neural network can be used to detect scoliosis and 

Table 1 
Repeated 10-fold performance results in scoliosis detection, unreliability detection, and fracture prediction using the OSTPRE dataset. In fracture prediction, also the 
benchmark results from logistic regression tests are reported. Values shown are averages over 1000 subsets with the 95% confidence intervals in parenthesis.  

Experiment Sensitivity (%) Specificity (%) Accuracy (%) AUC 

Scoliosis: Deep learning 70.5 (70.0, 71.0) 97.6 (97.5, 97.6) 94.1 (94.0, 94.2) 0.96 (0.96, 0.97) 
Unreliability: Deep learning 78.3 (78.1, 78.6) 85.7 (85.5, 85.8) 82.4 (82.2, 82.5) 0.91 (0.91, 0.91) 
Fracture prediction     
Deep learning 60.0 (59.0, 61.0)a 58.9 (58.3, 59.4)a 58.9 (58.4, 59.4)a 0.63 (0.62, 0.65) 
Spine T-score (min L1-L4) 58.3 (57.4, 59.1)b 59.0 (58.8, 59.1)b 58.9 (58.8, 59.1)b 0.62 (0.61, 0.64) 
Hip T-score (min neck/total) 10.4 (9.9, 11.0)b 95.8 (95.8, 95.9)b 92.5 (92.4, 92.6)b 0.62 (0.60, 0.63) 
Min T-score (min spine/hip) 60.0 (59.2, 60.8)b 58.2 (58.0, 58.3)b 58.2 (58.1, 58.4)b 0.63 (0.63, 0.64) 
Age 60.0 (59.1, 60.8)a 45.5 (45.3, 45.7)a 46.0 (45.9, 46.2)a 0.55 (0.54, 0.55) 
TBS (avg L1-L4) 60.0 (59.2, 60.9)a 49.6 (49.4, 49.8)a 50.0 (49.9, 50.2)a 0.59 (0.58, 0.59) 
Min T-score*+TBS + Age 60.0 (59.3, 61.0)a 61.7 (61.5, 61.9)a 61.6 (61.5, 61.8)a 0.63 (0.63, 0.64) 
Spine T-score*+Deep learning* 60.0 (59.1, 60.8)a 60.9 (60.7, 61.1)a 60.9 (60.7, 61.1)a 0.64 (0.63, 0.64) 
Min T-score*+Deep learning 60.0 (59.1, 60.9)a 60.4 (60.2, 60.6)a 60.4 (60.2, 60.5)a 0.64 (0.64, 0.65) 
Deep learning*+TBS 60.0 (59.1, 61.0)a 58.6 (58.4, 58.7)a 58.6 (58.4, 58.8)a 0.63 (0.62, 0.63)  

a Result acquired with the classification boundary set to approximately match the sensitivity of the minimum BMD T-score fracture predictor. 
b Result acquired with the classification boundary set to the osteoporosis T-score threshold of − 2.5 SD (World Health Organization, 2003; Kröger et al., 1992). 
* Predictor variable remained statistically significant (p < 0.05) in the logistic regression model. 
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degenerative changes, and to predict fragility fractures. We also pre-
sented visual explanations of the predictions produced by the model. 

With the OSTPRE dataset, the classification accuracy in scoliosis was 
94.1% which exceeded the inter-rater agreement in radiologist labelling 
(92.5%). The AUC of 0.96 was higher than what was reported in a study 
detecting scoliosis in children from full-body DXA measurements (AUC 
0.80) (Jamaludin et al., 2020). Interestingly, a study detecting scoliosis 
from back photographs (Yang et al., 2019) reported an AUC (0.95) close 
to our results. Scoliosis has an identifiable appearance and the visuali-
zations suggested the network had learned a consistent and sensible 
recognition model. It appeared to be looking for bends from the profile 
of the spine. The failed predictions were largely borderline cases that 
pose difficulties also for human expert readers. Testing with the external 
KUH dataset led to a slight decrease in performance (AUC 0.93). This 
might be connected to the lower inter-rater agreement in the labelling 

compared to the OSTPRE dataset. However, the performance drop was 
small, which indicates that the model generalizes well to different data 
sources. 

The performance in detecting unreliability was slightly lower (AUC 
0.91), but the accuracy (82.4%) still surpassed the inter-rater agreement 
of the radiologists (78.8%). The closest reference found, a study 
detecting existing vertebral fractures from lateral DXA images of the 
spine (Derkatch et al., 2019), reported an AUC of 0.94. Although both 
studies were identifying structural anomalies, the formulation of the 
output label was different. Existing fractures have a more distinct 
appearance whereas our classification task included different types of 
degeneration and other abnormalities affecting image reliability. This 
difficulty was also observed in the visualizations (supplementary ma-
terial Fig. 9). The model had often recognized areas of degeneration but 
could not always identify three or more sufficiently affected vertebrae. 
However, it was able to detect different kinds of abnormality, suggesting 
that the network had learned requisite feature extraction capabilities. 
The model generalized well to the external KUH dataset (AUC 0.94), 
even exceeding the validation results. The performance improvement 
was unexpected but could be explained by the differences in test pop-
ulation and labelling panel. The hospital data may have more bias 
compared to the population-based OSTPRE dataset. Also, the labelling of 
unreliability was a complex task and the quality of the labels could have 
improved as three experts were used instead of two. This seemed to 
produce more consistent results compared to the validation sets. 
Importantly, this result further indicates that the model generalizes well 
to different data sources and classification tasks. 

The fracture prediction was the most challenging classification task. 

Fig. 4. Receiver operating characteristic (ROC) curves with the area under the ROC curve (AUC) values and confusion matrices for (a) and (b) scoliosis detection and 
(c) and (d) unreliability detection taken from the OSTPRE dataset 10-fold cross-validation with the median AUC performance. The classification boundaries are 
marked in ROC curves with x-symbols. 

Table 2 
External test performance results in scoliosis and unreliability detection using 
the KUH dataset. Values shown are averages with minimum and maximum value 
over the 10 models that produced the median AUC value in repeated 10-fold 
cross-validation using the OSTPRE dataset.  

Experiment Sensitivity 
(%) 

Specificity 
(%) 

Accuracy (%) AUC 

Scoliosis 74.5 
(65.0–80.5) 

93.7 
(90.9–96.9) 

89.6 
(88.3–90.2) 

0.93 
(0.92–0.95) 

Unreliability 92.7 
(89.1–97.9) 

72.9 
(56.7–81.0) 

82.8 
(77.2–85.0) 

0.94 
(0.94–0.95)  
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The deep learning model’s AUC (0.63) slightly exceeded the benchmark 
predictivity of both lumbar spine BMD T-score (AUC 0.62) and hip BMD 
T-score (AUC 0.62) but was similar to the minimum BMD T-score taken 
from spine or hip (AUC 0.63). They all fall within BMD’s typical fracture 
prediction AUC range of 0.60–0.75 reported in the literature (Leslie and 
Lix, 2014). The combined model of deep learning output and minimum 
BMD T-score produced the best AUC (0.64). This suggests that, in 
addition to bone density information, the deep learning model extracts 
other predictive information from the spine image. In our OSTPRE 
dataset, when predicting osteoporotic fractures, the neural network 
approach had a higher predictive ability than TBS (AUC 0.58). Inter-
estingly, the deep learning model remained as an independent predictor 
of fractures when combined with BMD T-score from the lumbar spine, 
whereas TBS was not an independent predictor when combined with 
BMD T-score either from the lumbar spine or the hip, or with deep 
learning. Based on the visualizations, the deep learning model did not 
find very detailed features but looked for wider patterns that correlate 
with a good spinal condition, and apparently overall resistance to 

fractures. 
The moderate level of the fracture prediction results was somewhat 

expected. Previously proposed models for fracture risk assessment have 
reported results at a similar level with little improvement to BMD (Ferizi 
et al., 2019; Goldshtein et al., 2018). The risk of fractures is complex and 
includes factors like the tendency to fall, which cannot be directly 
inferred from DXA images. This makes it difficult to estimate the highest 
attainable predictability. There is also some uncertainty involved in the 
fracture labels. Apart from the hip fractures, the information had been 
gathered by questionnaires. All the reported fractures were confirmed 
from medical records, but some occurred fractures may have left unre-
ported (Honkanen et al., 1999). Furthermore, some minor vertebral 
fractures may not cause symptoms and therefore can go unnoticed. 

The dataset used in this study was relatively small, so it represents 
only a subset of the real-world distribution. The limited size of the 
training set makes the model prone to overfitting as observed in the 
learning curves. This also limits the network architecture because 
deeper models generally require more training data. Data augmentation 
and regularization techniques can help to some extent, but they do not 
remove the need for comprehensive real-world samples, especially in 
the fracture prediction. It should be noted that only 92 patients (3.9%) 
had suffered fractures during the 5-year follow-up making the label 
heavily imbalanced. A longer follow-up period and an extended age 
range of participants could increase the proportion of positive examples. 
Another limitation is that the labelling for scoliosis and unreliability was 
based on only two experts in the OSTPRE dataset and three in the KUH 
dataset. As there is always some discrepancy in labelling between ex-
perts and even between labelling rounds, establishing the ground truth 
is difficult. For a more accurate assessment, a larger group of radiologists 
and other clinical experts should be incorporated. 

The visualization results differed in all the classification tasks 
enabling us to reason about the feature extraction mechanisms. The 
revealed features seemed simple, which can be explained by the some-
what shallow architecture of the network. However, the visualizations 
should be interpreted with caution because the methods have their 
limitations (Rudin, 2019). For example, the heatmap methods have been 
shown to struggle when there are multiple contributing features in an 
image. Furthermore, in a deep learning model, the representation is 
distributed, and activations may need to be combined to form a mean-
ing. No technique yet exists to explain a deep neural network 
completely. 

5. Conclusion 

In this study, we have found that deep learning can identify patho-
logical features from DXA images at a level comparable to human ex-
perts. Incidental findings in bone mineral density measurements can 
indicate image unreliability and add information about the patient. We 
have also found that deep learning can extract features that predict 
fractures as accurately as bone density T-scores. Further research with 
larger datasets is needed to confirm the approach’s generalizability and 
to reveal its full potential. However, we have shown that DXA images 
can be analyzed by using a robust convolutional neural network that 
works for different classification tasks. Deep learning could complement 
the current imaging standard for osteoporosis by gathering additional 
information from the image, and improve its predictive ability in the 
future. 
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Fig. 5. (a) Receiver operating characteristic (ROC) curves with the area under 
the ROC curve (AUC) values and (b) confusion matrices for fracture prediction 
taken from the OSTPRE dataset 10-fold cross-validation with the median AUC 
performance. The classification boundary of the deep learning (DL) model is 
marked in the ROC curve with an x-symbol. The figures also show the bench-
mark predictors of minimum BMD T-score, TBS, and age. 
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Fig. 6. Visualizations of a correctly classified positive example case in (a) scoliosis detection, (b) unreliability detection, and (c) fracture prediction. (I) Preprocessed 
and cropped input image, (II) heatmap produced by gradient-weighted class activation after the last convolutional layer (red indicates the highest activation), (III) 
pixel-wise Vanilla gradients map (white indicates positive and black negative gradients), (IV) feature maps from randomly selected kernels (8 out of 64) of the last 
convolutional layer, and (V) generated inputs to maximize activation in randomly selected kernels of the last convolutional layer. Since the pixels that the DXA 
scanner produces are not square (0.6 mm of width and 1.05 mm of height), all the illustrations have been rescaled to appear anatomically correct. 

Fig. 7. Learning curves of (a) scoliosis detection, (b) unreliability detection, and (c) fracture prediction taken from the OSTPRE dataset cross-validation subset with 
median AUC performance. The two curves for each case represent the average error of the training (blue) and validation (red) datasets over the course of training. 
The training was performed for 100 epochs, each epoch representing one pass through the entire training dataset. The model state in the lowest point of the 
validation error was restored at the end of the training. 
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