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Abstract
Multiple sclerosis (MS), like many putative autoimmune 
diseases, has been known to be associated with the human 
leukocyte antigen (HLA) class II region for more than 3 decades. 
However, exactly how HLA class II alleles increase the risk of 
MS is not yet conclusively known. Recent work in large human 
cohorts has highlighted the fact that nearly all common HLA-
DRB1 allelotypes are either positively or negatively associated 
with the disease, detracting from allele-specific antigen presen-
tation as the sole mechanism of MHC associated disease 
susceptibility. Here, we put into context recent data on the HLA 
class II region in MS, including allelic heterogeneity, gene-
environ ment interactions and epigenetics. It is clear that a 
complete understanding of the epistatic interactions and epi-
genetic features of this region will be crucial to comprehending 
disease pathogenesis.

Introduction
Multiple sclerosis (MS) as a disease has been recognized 
for well over a century, but relatively little is understood 
about its cause. MS is a putative autoimmune disorder of 
the central nervous system, characterized by inflammatory 
demyelination, varying degrees of axonal pathology and 
progressive neurological dysfunction. Risk factors asso
ciated with the disease appear to exert effects many years 
before the clinical onset of MS, lending credence to the 
idea of a causal cascade in MS development. Genetic
epidemiological studies point unequivocally to large 
genetic and environmental influences on susceptibility [1]. 
An association between MS and alleles of the major histo
compatibility complex (MHC) was found in the 1970s, 
notably involving the class II human leukocyte antigen 
HLADR2 [2]. This was later finemapped to the 
extended haplotype HLA-DRB5*0101HLA-DRB1*1501
HLA-DQA1*0102HLA-DQB1*0602 [3] (to briefly explain 
HLA nomenclature, the first two digits of an allele describe 
its serological antigen (called an allelotype) while the third 
and fourth digits are used to list the allele subtypes. Alleles 
with different numbers in these first four digits must differ 
by at least one nonsynonymous nucleotide substitution). 

This extended haplotype confers a relative risk of 
approximately 3, but much larger effects are seen if 
haplotypic and diplotypic (both haplotypes in combination) 
information is taken into account, and the odds ratio for 
risk spanned by variation in the class II HLA region is 
thought to exceed 30.

Genomewide association studies have highlighted the fact 
that the HLA class II region exerts by far the strongest 
genetic effect on risk [4], but exactly how it alters the risk 
of developing MS is not yet fully understood. As HLA
DRB1 alleles have different structural capacities for antigen 
presentation depending on their amino acid sequence, the 
MS MHC association has been used to support the concept 
that disease pathogenesis is the result of an autoimmune 
reaction, perhaps against myelinrelated antigens in the 
restricting context of HLA-DRB1*1501. However, it has 
become clear only very recently that it is now untenable 
that all MHC related disease risk is due to the DRB1*1501 
allele, as was originally thought. This conclusion may be 
unwelcome for those who have made large investments in 
the transgenic animal models that depend on it, as these 
models are now clearly uninformative to truly understand 
disease pathogenesis.

Allelic heterogeneity
While MS is associated with the HLA-DRB1*1501 haplo
type in Northern European populations [3], in other 
regions like the Mediterranean basin, such as Sardinia, 
association is predominantly seen with the HLA-DRB1*0301, 
HLA-DRB1*0405 and HLA-DRB1*1303 haplotypes [5]. 
HLA-DRB1*13 is also MSassociated in Israel [6], but in 
continental Italy HLA-DRB1*07 is the primary association 
[7]. A reexamination of the HLA associations in Northern 
European MS populations [811], using thousands of 
patients, uncovered many haplotypes (DRB1*03, *01, *10, 
*11, *14, *08) that were both positively and negatively 
associated with the disease. Haplotypes differed in their 
contribution to disease risk and either acted on their own 
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or had an effect in trans with another haplotype. Thus, 
every major allelotype of HLA-DRB1 is associated with MS 
(summarized in Table 1).

This conspicuous fact has drawn little attention. Animal 
models simply transgenic for HLA-DRB1*1501 seem 
increasingly irrelevant for the study of the human disease 
because of it [12]. Indeed, it has recently been shown that 
HLA-DRB1*1501 haplotypes can range from super
susceptible to protective depending on other haplotypic 
features [13]. The HLA-DRB1 association with MS seems 
to be geographydependent and is probably one deter
minant of the latitude gradient in MS incidence that is seen 
in temperate climes. It is worth considering that both 
disease and allele gradients could result from similar 
environ mental pressures. Although associations do reflect 
the frequency of specific alleles in different countries, the 
differences among countries cannot completely explain 
disease frequency. The influence of so many haplotypes on 
risk, not to mention the prominent interactions, brings into 
question the venerable belief that MHC associations are 
determined by structural capacity for antigen presentation.

Structure-function relationships
Different HLA-DRB1 alleles encode proteins with different 
binding affinities for diseaserelated peptides, as 
determined by their protein sequence. This has plausibly 
been considered to influence the composition of T cell 
repertoires, ultimately resulting in HLA-DRB1 alleles 
restricting disease risk. However, our analysis [14] has 
shown that no sequence variant of HLA-DRB1 can fully 
explain the risk attributable to all diseaseassociated alleles 
across the globe. One explanation could be that disease
causing peptides vary by geography, but the similar disease 

pathology worldwide would not support this. In the 
Canadian melting pot of immigrants, MHC associations 
have remained true to region of origin and give no support 
to the notion that any geographic specificity of antigenic 
peptides is relevant (SVR and GCE, unpublished 
observations).

Environment
Another plausible hypothesis is that the environment of 
each geographical region interacts with liable HLA-DRB1 
haplotypes. In a given population such interaction could 
influence the likelihood of presenting disease peptides with 
a timing and tissue localization that will have an impact on 
MS susceptibility. This makes the assumption that the 
associations of MHC class II molecules in MS result 
entirely from roles in specific and restricted antigen 
presentation to T cells, a dogma that now warrants 
reconsideration [15].

Environmental factors with convincing evidence for some 
involvement in MS pathogenesis include sunshine/vitamin 
D, EpsteinBarr virus (EBV) and smoking [1618]. Twin 
concordance varies by place of birth, strongly hinting that 
geneenvironment interactions will be important in MS [19].

There are several ways in which the environment could 
interact with the MHC. Recent studies have localized a 
functional vitamin D response element (VDRE) to the 
promoter region of HLA-DRB1 and this VDRE is always 
present on HLA-DRB1*15 haplotypes [20]. Although this 
interaction may have a key role in the increased risk of MS 
indicated by this haplotype in Northern Europe, it cannot 
explain why different HLA-DRB1*15 haplotypes confer 
different risks [13]. More recently, a second interaction has 

Table 1

Examples of HLA associations with MS across the world among common alleles

 HLA-DRB1 allele Associated population Approximate odds ratio

 *01 Canada, Sweden, UK, US, [8,11,26,27] 0.6

 *03 (17) Canada, Sweden, UK, US, Italy, Sicily, Spain, Sardinia [8-11] 1.7

 *04 Sardinia [35] 2.2

 *07 Italy [7] 0.6

 *08 Canada, UK, US, Italy, Sicily, Spain (15/08 genotype) [8,10,11] 6 (15/08 genotype)

 *09 Japan [36] 0.4

 *10 Italy, Canada [7,8,11] 2 (protective in Canadians)

 *11 Canada, Malta [8,11,37] 0.7

 *12† Canada [11] 0.9

 *13 Sardinia, Israel [5,6] 2

 *14 Canada, UK, US, Italy, Sicily, Spain [8,10,11] 0.3

 *15 Near-universal  3

†Based on a small number of observations. The allele frequency of HLA-DRB1*16 is too low to make any definitive conclusions.
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been identified involving the curious monthofbirth effect in 
MS. This has been linked to the same HLA-DRB1 allele [21].

No studies have yet examined the role of smokingHLA 
interactions in MS. Investigations of antiEBV antibody 
levels or symptomatic infection with EBV, HLA-DRB1*15 
and the risk of MS have shown that HLA-DRB1*15 may act 
synergistically with antiEBV antibodies or infectious 
mononucleosis to increase MS risk [22,23]. The biological 
nature of this statistical interaction needs to be elucidated, 
but again it must be remembered that HLA-DRB1*15 is not 
the only MS risk allele.

Epistasis or haplotype effects
Although other risk components are present on HLA-DRB1 
haplotypes in the class II region, and HLA-DQ molecules 
undoubtedly have a role [5,24], there is no single HLA-DQ 
element common to all diseaseassociated haplotypes. It 
does, however, seem that there are combinations of HLA
DQB1, HLADQA1 and HLADRB1 that are required to 
confer risk of MS [25], and investigation of alleles present 
at HLA-DQ have shed light on haplotypic associations of 
HLA-DRB1*13 and HLA-DRB1*04 in MS [25]. These 
haplotypic effects may reflect the effects of selection for 
functions that are epistatic in nature. HLA class I haplotype 
tagging can differentiate the risk conferred by different 
HLA-DRB1*15 haplotypes (despite all having the same 
alleles of DQ) [13], further indicating that there is more in 
the MHC than HLA-DQ and HLA-DRB1 in determining 
MS risk. HLA class I may be an epistatic partner of HLA-
DRB1, but given that several class I alleles differentiate 
HLA-DRB1*15 haplotypes [13] and that HLA class I 
associations in MS have been conflicting (HLAA, B and C 
have all been implicated [2628]), it is unlikely that HLA 
class I has a major role in MS, and the more reliable 
haplotype transmission data imply it is not an independent 
contributor to risk [29].

Epigenetics
A missing link seems to be the epigenetic modification of 
class II region genes. The genetic epidemiology of MS had 
clearly implied a major epigenetic effect, with mothers 
more likely to be the common parent in affected half
siblings [18] and to be the intervening parent when affected 
auntniece pairs are studied [30]. This effect has now been 
localized to the MHC itself [31]. DNA and chromatin 
modifications regulate the expression of HLA class II genes 
[32], and the epigenetic status of the genome varies 
dynamically compared with the static DNA sequence and is 
influenced by the environment [33]. MS environmental 
factors (vitamin D, smoking, EBV) can all influence the 
epigenome [1]. It is therefore plausible that the different 
HLA associations observed across the globe are a reflection 
of specific environmental factors influencing epigenetic 
marks on liable haplotypes, which affect the expression or 
function of class II genes and permit the MS pathogenic 

cascade. Epigenetics may be the mechanism that brings 
together many of the factors (genetic and environmental) 
that are MSassociated. Epigenetics has been suggested to 
underlie recombination hotspots [34] and this may provide 
an additional explanation for the fact that linkage 
disequilibrium maintains particular haplotypic combina
tions in the class II region. Combining epigenetic infor ma
tion with class II haplotype sequence will probably provide 
an improved understanding of MS disease mechanisms.

This brings us back to the venerable concept of antigen 
presentation as an explanation for MHC class II disease 
associations. The data so far are inconclusive, but it may be 
time to recall that many of the concepts of immune 
response genes came from very restricted experimental 
situations. It is not a given that the frequently much more 
complex circumstance of autoimmune disease would be 
analogous. Many putative autoimmune diseases lack even 
a single validated autoantigen. The paradigm for MHC
disease association continues to be MHC class II allele
specific antigen presentation to T cells. However, MS 
suggests a broader view, with other features of the haplo
types, including epigenetic modifications, appearing to 
participate in important epistatic interactions. The sheer 
variety of diseaseassociated alleles in this and other auto
immune diseases warrants reconsideration of the paradigm. 
It may be that MHC disease associations are driven less by 
allelespecific antigen presentation and more by the 
propensity of specific haplotypes to undergo strategic 
epigenetic modifications. The role of DNA methy lation in 
the process of tissuespecific expression might plausibly 
relate to the establishment of immunological tolerance, but 
there is no direct evidence to support such a notion.

Conclusions
The notion of HLA-DRB1*1501 as the one disease allele in 
MS is rapidly yielding to a more complex view. An orchestra 
of class II genes, their interactions and their regulatory 
components have now been shown to be important. The 
epigenetic pattern within the MHC laid down by differential 
methylation warrants consideration as the master conductor 
of MHC diplotypeassociated disease risk.
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