
INTRODUCTION

Breast cancer is a leading cause of cancer-related deaths in 
American females [1]. In addition to the changes in lifestyle, 
chemoprevention represents a promising approach for reduc-
ing the morbidity and mortality associated with breast cancer 
[2]. Breast cancer is a heterogeneous malignancy broadly 
grouped into three major subtypes (luminal-type, human 
epidermal growth factor receptor 2 [Her-2]-enriched, and 
basal-like), but a clinical chemopreventative intervention is 
available only for the luminal-type disease [3-5]. Because of 
their safety, edible plants like Allium (garlic, onion, leek, etc.) 
and cruciferous vegetables (broccoli, watercress, mustard, 
etc.) and their bioactive small molecules continue to attract 
research attention with respect to their chemopreventive po-
tential [6-8]. 
	 Epidemiological studies have suggested the beneficial 
effects of garlic and onion on breast cancer risk [9-11]. In a 

French case-control study with 345 patients and controls 
matched for age and socio-economic status, the breast can-
cer risk was inversely associated with increased intake of gar-
lic and onions [9]. In another study conducted in Puerto Rico, 
an inverse association was observed for breast cancer risk 
with moderate consumption (odds ratio [OR] = 0.59) and high 
consumption (OR = 0.51) when compared to low consump-
tion of onion and garlic (Ptrend = 0.02) [10]. The study conclu-
sions did not change when stratified by the menopausal sta-
tus [10]. However, epidemiological evidence of breast cancer 
risk reduction was not discernible for garlic-supplement in the 
Netherlands cohort study [12]. A likely variable contributing to 
this discrepancy could be insufficient levels of bioactive com-
ponents in the supplement, which was not considered in the 
study design [12]. Nevertheless, epidemiological evidence is 
generally supportive of breast cancer risk reduction by dietary 
intake of garlic and onion [9-11].
	 The protective effect of garlic and onions on breast cancer 
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risk is attributable to organosulfur compounds (OSCs), which 
are generated upon processing (mincing, chewing, etc.) [13]. 
The primary sulfur compounds in intact Allium vegetables 
are γ-glutamyl-S-alk(en)yl-L-cysteines, which are hydrolyzed 
and oxidized to yield S-alk(en)yl-L-cysteine sulfoxide (alliin) 
[13]. Alliin is odorless and accumulates during storage of the 
Allium vegetables. Processing of Allium vegetables releases 
an enzyme (alliinase) that converts alliin to allicin and other 
alkyl alkane-thiosulfinates [13]. Finally, allicin and related thio-
sulfinates are decomposed to yield various sulfur compounds 
including diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl 
trisulfide (DATS), dithiins, ajoene, etc. [13]. The anticancer 
potency of the above listed OSCs is in the order DATS > 
DADS > DAS in cultured breast cancer cells in vitro [14]. Na 
et al. [15] were the first to demonstrate in vivo growth inhibi-
tory effect of DATS in a therapeutic setting (xenograft model) 
using luminal-type MCF-7 cells. A very mild regimen of twice 
weekly oral administration of about 0.9 mg DATS/kg body 
weight for one month exhibited remarkable (> 80%) inhibition 
of MCF-7 xenograft growth in athymic mice [15]. Even though 
we intend to eventually develop DATS itself for chemopre-

vention of breast cancer as a point of reference, it is estimat-
ed that 1 g of fresh garlic can yield up to 1.1 mg of DATS [16]. 
The level of DATS in fresh garlic is relatively higher than that 
of DAS (0.1 mg) or DADS (up to 0.6 mg) [16].
	 Despite promising in vitro and in vivo data on anticancer 
effects of DATS in breast cancer, the underlying mechanisms 
are not fully understood. In the study, we compared RNA-seq 
data using control (vehicle-treated) and DATS-treated MCF-
7 and MDA-MB-231 human breast cancer cell lines to gain 
insights into the mechanism(s) by which DATS inhibits the 
growth of breast cancer cells. 

MATERIALS AND METHODS

Reagents
DATS (99.2%) was purchased from LKT Laboratories (St. 
Paul, MN, USA), dissolved in dimethyl sulfoxide (DMSO; 28 
mmol/L stock), and stored at –80°C prior to use. Cell culture 
media were from MediaTech (Manassas, VA, USA). Fetal bo-
vine serum was obtained from Atlanta Biologicals (Norcross, 
GA, USA). Antibodies against ROBO1 and SLIT2 were from 

Figure 1. DATS treatment altered breast cancer transcriptomes. (A) Chemical structure of DATS. (B) Volcano scatter plots showing genes 
upregulated or downregulated in MCF-7 and MDA-MB-231 cells in response to DATS. (C) Venn diagram showing unique and common genes by 
DATS treatment in MCF-7 and MDA-MB-231 cells. (D) Heatmap diagram visualizing the differentially expressed genes by DATS treatment in MCF-7 
and MDA-MB-231 cells. DATS, diallyl trisulfide; MCF-7, michigan cancer foundation-7; MDA-MB-231, MD anderson-metastatic breast-231.
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Proteintech Group (Rosemont, IL, USA), while anti-C-X-C 
motif chemokine receptor 4 antibody was from Abcam (Cam-
bridge, MA, USA). Alexa Fluor 488-conjugated phospho-(S-
er10) histone H3 antibody was from Cell Signaling Technol-
ogy (Danvers, MA, USA). Anti-phospho-(Ser10)-histone H3 
antibody was from Millipore-Sigma (Burlington, MA, USA). 
Anti-β-actin antibody and propidium iodide (PI) were from 
Sigma (St. Louis, MO, USA). 

Cell culture
MCF-7 and MDA-MB-231 human breast cancer cell lines 
were purchased from the American Type Culture Collection 
(Manassas, VA, USA), and each cell line was maintained as 
suggested by the supplier. These cell lines were last authenti-

cated by us in March of 2017. 

RNA-seq analysis
Samples were prepared three times independently. Briefly, 
MCF-7 and MDA-MB-231 cells were plated in 10-cm dishes 
at a density of 1 × 106 cells/dish and incubated overnight for 
attachment. The cells were treated with DMSO (final con-
centration: 0.07%) or 20 µmol/L of DATS for 16 hours. Total 
RNA was isolated using RNeasy Mini Kit from Qiagen (Ger-
mantown, MD, USA). RNA quality determination and RNA-
seq analysis were performed by Novogene (Sacramento, 
CA, USA). Other details of RNA-seq analysis were similar 
as described by us previously [17]. The RNA-seq data were 
analyzed using the Reactome, Gene Ontology (GO), and 

Figure 2. Reactome enrichment analysis for differentially expressed genes by DATS treatment in human breast cancer cells. (A, B) 
Reactome enrichment analysis of (A) upregulated or (B) downregulated genes by DATS exposure in MCF-7 and MDA-MB-231 cells. DATS, diallyl 
trisulfide; MCF-7, michigan cancer foundation-7; MDA-MB-231, MD anderson-metastatic breast-231; TNFR, tumor necrosis factor receptor; SRP, 
signal-recognition particle; CENPA, centromere protein A; AURKA, aurora kinase A; TPX2, targeting protein for Xklp2; Padj, adjusted P-value.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analyses. The RNA-seq data presented in this study 
have been submitted to the Gene Expression Omnibus of 
the National Center for Biotechnology Information and can be 
retrieved by accession number GSE173616. 

Western blotting 
The MCF-7 or MDA-MB-231 cells were plated in 6-cm dishes 
at a density of 5 × 105 cells/dish and allowed to attach. The 
cells were treated with DMSO (control) or DATS (10 or 20 
μmol/L) for 4, 8, and 16 hours. The whole-cell lysates were 
prepared as described by us previously [18]. 

Cell cycle analysis
The cells (5 × 105 cells/dish) were plated onto 6-cm dishes 
in triplicate and incubated overnight and then treated with 
DMSO (control) or DATS (10 or 20 μmol/L) for 4 and 8 hours. 
The cells were then collected by trypsinization and fixed with 
70% ethanol for overnight at 4°C. Following permeabilization 
with Triton X-100, the cells were incubated with Alexa Fluor 
488-conjugated phospho-(Ser10) histone H3 antibody and 
then stained with PI. The cells were analyzed using Accuri C6 
flow cytometer. 

Statistical analysis
GraphPad Prism (version 8.0.0) was used to perform statis-
tical analyses. One-way ANOVA followed by Dunnett’s test 

Figure 3. Gene Ontology (GO) enrichment analysis for differentially expressed genes by DATS treatment in human breast cancer cells. (A, B) 
GO enrichment analysis of (A) upregulated or (B) downregulated genes by DATS exposure in MCF-7 and MDA-MB-231 cells. DATS, diallyl trisulfide; 
MCF-7, michigan cancer foundation-7; MDA-MB-231, MD anderson-metastatic breast-231; ER, estrogen receptor; CENP-A, centromere protein A; 
Padj, adjusted P-value.
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was used for dose-response analysis. A P-value of < 0.05 
was considered statistically significant. 

RESULTS

RNA-seq analysis
We have shown previously that the viability of MCF-7 and 
MDA-MB-231 cells is inhibited significantly following 24-hour 
treatment with 20 and 40 μmol/L DATS (its chemical structure 
shown in Fig. 1A) [19]. The pharmacokinetic parameters for 
DATS have been determined in rats after intravenous admin-
istration of a single 10 mg dose [20]. The maximum blood 
concentration of DATS was found to be ~31 μmol/L [20]. 
Therefore, MCF-7 and MDA-MB-231 cells were treated with 

20 μmol/L DATS for 16 hours prior to RNA isolation and RNA-
seq analysis. The total mapping rates for the control and 
DATS-treated MCF-7 cells were about 96.12% ± 0.16% and 
95.93% ± 0.12%, respectively. The total mapping rates for 
the control and DATS-treated MDA-MB-231 cells were about 
96.61% ± 0.21% and 96.46% ± 0.12%, respectively. 
	 Figure 1B shows Volcano plots that visualize the distribu-
tion of differentially expressed genes between control and 
DATS-treated cells with an adjusted P-value of < 0.05. DATS 
treatment resulted in upregulation of 539 and 644 genes in 
MCF-7 and MDA-MB-231 cells, respectively, when compared 
to corresponding control cells (Fig. 1B). Downregulation of 
322 and 508 genes was observed following DATS treatment 
in MCF-7 and MDA-MB-231 cells, respectively, in comparison 

Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for differentially expressed genes by DATS 
treatment in human breast cancer cells. (A, B) KEGG pathway enrichment analysis of (A) upregulated or (B) downregulated genes by DATS 
exposure in MCF-7 and MDA-MB-231 cells. DATS, diallyl trisulfide; MCF-7, michigan cancer foundation-7; MDA-MB-231, MD anderson-metastatic 
breast-231; Padj, adjusted P-value.
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with corresponding control cells (Fig. 1B). The Venn diagram 
revealed unique and overlapping gene expression between 
control and DATS-treatment groups (Fig. 1C). The heatmaps 
of three replicates of control and DATS-treated samples ex-
hibited highly consistent transcriptional changes (Fig. 1D).

Pathway analyses
Figure 2 shows the results of the Reactome pathway analysis 
of the RNA-seq data. The Reactome database covers anno-
tations for a diverse set of molecular and cell biological top-
ics, including cell cycle, metabolism, signaling, transport, cell 
motility, immune function, host-virus interaction, and neural 
function. In MCF-7 cells, the top 5 pathways with DATS-medi-
ated upregulation of genes included signaling by interleukins, 
neutrophil degranulation, regulation of expression of SLITs 
and ROBOs, interleukin-4 and interleukin-13 signaling, and 
influenza virus transcription and replication (Fig. 2A). The top 
5 pathways with upregulation of genes following DATS treat-
ment in MDA-MB-231 cells were signaling by ROBO recep-
tors, regulation of expression of SLITs and ROBOs, influenza 
infection, influenza life cycle, and influenza viral transcription 
and replication (Fig. 2A). In MCF-7 cells, the top 5 pathways 
with DATS-mediated downregulation of genes included cell 
cycle checkpoints, ESR-mediated signaling, estrogen-de-
pendent gene expression, chromosome maintenance, and 
processing of DNA double-strand break (Fig. 2B). The top 
5 pathways with downregulation of genes following DATS 
treatment in MDA-MB-231 cells were M phase, mitotic pro-
metaphase, cell cycle checkpoints, DNA double-strand break 
repair, and resolution of sister chromatid cohesion (Fig. 2B). 
The results of GO enrichment analysis, which all three ontol-
ogies (cellular component, molecular function, and biological 
processes), are shown in Figure 3. The KEGG pathway anal-
ysis identifies changes in expression of genes associated 
with metabolic pathway, oxidative phosphorylation, cell cycle, 
ubiquitin-mediated proteolysis, and so forth. The results of 

the KEGG pathway analysis are shown in Figure 4 signifying 
changes in gene expression following DATS treatment in 
MCF-7 and MDA-MB-231 cells. 

The effect of DATS treatment on protein levels 
of SLIT2 ligand and ROBO1 receptor
The SLIT/ROBO signaling functions to suppress tumor in 
breast and other solid tumors [21,22]. Because upregulation 
of genes associated with the SLIT/ROBO pathway was ob-
served following DATS treatment in both MCF-7 and MDA-
MB-231 cells in the Reactome pathway analysis, we focused 
on this pathway for validation of the RNA-seq data. Expres-
sion of SLIT2 or ROBO1 protein was not altered meaningfully 
in either cell line (Fig. 5). These results ruled out a role for the 
SLIT/ROBO pathway in antitumor effects of DATS.

The effect of DATS treatment on cell cycle 
progression
The flow histograms for cell cycle distribution in control and 
DATS-treated MCF-7 and MDA-MB-231 cells are shown in 
Figure 6A. The fraction of G2/M phase cells was increased 
significantly after DATS treatment in both cell lines (Fig. 6B). 
Flow histograms for levels of Ser10 phosphorylated histone 
H3, a marker of cells in mitosis phase, are shown in Figure 
6C. DATS treatment also caused an increase in Ser10 phos-
phorylation of histone H3 in both cell lines when compared 
to control cells (Fig. 6D). These results confirmed G2 and M 
phase cell cycle arrest upon DATS treatment in MCF-7 and 
MDA-MB-231 cells.

DISCUSSION

In the present study, we used human breast cancer cell lines 
representative of two major subtypes to determine DATS-me-
diated changes in gene expression. Several cancer-relevant 
pathways are affected by DATS treatment in both cell lines 

Figure 5. Effect of DATS treatment on the expression of SLIT2/ROBO1 signaling-related proteins. Immunoblot analysis for SLIT2, ROBO1, 
CXCR4, and b-Actin proteins using lysates from MCF-7 and MDA-MB-231 cells treated with either DMSO (control) or desired doses of DATS for 
indicated time points. Numbers above bands are fold change of each protein relative to corresponding DMSO-treated control. Experiments were 
repeated twice with comparable results. Molecular weights for the observed bands for SLIT2 were indicated. DATS, diallyl trisulfide; MCF-7, michigan 
cancer foundation-7; MDA-MB-231, MD anderson-metastatic breast-231; CXCR4, C-X-C motif chemokine receptor 4; DMSO, dimethyl sulfoxide.
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Figure 6. DATS arrested cells at G2 as well as mitotic phase in human breast cancer cells. (A) Representative propidium iodide (PI) histogram 
displaying 2 N and 4 N DNA content in MCF-7 and MDA-MB-231 cells after 8-hour treatment with DMSO (control) or 20 mmol/L DATS. (B) 
Quantification of the percentage of cells at G2 and M phases in MCF-7 and MDA-MB-231 cells treated with DMSO (control) or indicated doses of 
DATS for 4 or 8 hours. Results shown are mean ± SD (n = 3) and statistical analysis was done by one-way ANOVA followed by Dunnett’s test (*P 
< 0.05). (C) Representative cell cycle histogram of DNA stained with PI and mitotic marker in MCF-7 and MDA-MB-231 cells after 8-hour treatment 
with DMSO (control) or 20 µmol/L DATS. (D) Quantification of the percentage of cells undergoing mitosis in MCF-7 and MDA-MB-231 cells treated 
with DMSO (control) or indicated doses of DATS for 4 or 8 hours. Results shown are mean ± SD (n = 3) and statistical analysis was done by one-way 
ANOVA followed by Dunnett’s test (*P < 0.05). DATS, diallyl trisulfide; MCF-7, michigan cancer foundation-7; MDA-MB-231, MD anderson-metastatic 
breast-231; DMSO, dimethyl sulfoxide.

A

* *

50

40

30

20

10

C
e
lls

in
G

/M
p
h
a
s
e

(%
)

2

0

DATS ( mol/L)�

0 10 20

4 hours 8 hours

MCF-7

0 10 20

C
o
u
n
t

400

300

200

100

D
M

S
O

0
30,000 500,000 1,200,000

MCF-7 (8 h)
400

300

200

100

D
M

S
O

0

MDA-MB-231 (8 h) B

C D

61.8% 18.3%

0.4% 15.2%

59.8%

1.4%

18.3%

18.3%

400

300

200

100D
A

T
S

(2
0

m
o
l/
L
)

�

0
30,000 500,000 1,200,000

400

300

200

100

0

42.0% 31.3%

0.7% 18.8%

36.5%

0.7%

38.8%

20.5%

50

40

30

20

10

C
e
lls

in
G

/M
p
h
a
s
e

(%
)

2

0

DATS ( mol/L)�

0 10 20

4 hours 8 hours

MDA-MB-231

0 10 20

Propidium iodide

D
A

T
S

(2
0

m
o
l/
L
)

�

*

*
***

*

*
20

15

10

5

0

DATS ( mol/L)�

0 10 20

4 hours 8 hours

MCF-7

0 10 20

p
(S

1
0
)

h
is

to
n
e

H
3

D
M

S
O

30,000 500,000 1,200,000

MCF-7 (8 h)

D
M

S
O

0 500,000 1,200,000

MDA-MB-231 (8 h)

D
A

T
S

(2
0

m
o
l/
L
)

�

30,000 500,000 1,200,000 0 500,000 1,200,000

9

6

3

p
(S

1
0
)

h
is

to
n
e

H
3

p
o
s
it
iv

e
c
e
lls

(%
)

0

DATS ( mol/L)�

0 10 20

4 hours 8 hours

MDA-MB-231

0 10 20

Propidium iodide

D
A

T
S

(2
0

m
o
l/
L
)

�

*

**

*
*

p
(S

1
0
)

h
is

to
n
e

H
3

p
o
s
it
iv

e
c
e
lls

(%
)

*

10
4

10
3. 5

10
5

10
6

10
3. 3

10
4

10
5

10
6

10
4

10
3. 5

10
5

10
6

10
3. 3

10
4

10
5

10
6

2.6%

15.7%

1.4% 59.8%18.6%

2.6%

15.7%

0.4% 61.8% 15.2%

17.5%

21.3%

0.7% 36.5% 20.5%

8.6%

22.7%

0.7% 42.0%18.8%

70,000 500,000 1,432,0181,000,000

70,000 500,000 1,432,0181,000,000



135

Mechanistic Targets of DATS in Breast Cancer

http://www.jcpjournal.org

as revealed by the Reactome, GO, and KEGG pathway anal-
yses. While gene expression changes associated with the 
SLIT/ROBO pathway did not translate to upregulation of their 
protein levels after DATS treatment, the G2/M phase cell cy-
cle arrest was consistent with the RNA-seq analysis. We pro-
pose that DATS-mediated cell cycle arrest likely contributes 
to the antitumor effect of DATS. However, it remains to be 
seen whether DATS-mediated cell cycle arrest is selective for 
cancer cells and does not occur in normal mammary epitheli-
al cells. It is equally important to determine if DATS treatment 
causes G2/M phase cell cycle arrest in Her2-enriched breast 
cancer cells. We plan to explore these possibilities in future 
studies.
	 The Reactome pathway analysis revealed downregulation 
of genes associated with ESR (estrogen receptor, ER)-medi-
ated signaling and estrogen-dependent gene expression after 
DATS treatment in the MCF-7 cell line. The ER-α is epige-
netically silenced in the MDA-MB-231 cell line. The RNA-seq 
data in MCF-7 cells confirm our earlier finding on DATS-me-
diated suppression of ER-α expression and activity in breast 
cancer cells [23]. DATS is a relatively more potent suppressor 
of ER-α protein expression than DAS or DADS [23]. The 
DATS treatment also suppresses 17β-estradiol (E2)-induced 
expression of pS2 and cyclin D1 that are ER-α target gene 
products [23]. In conclusion, this study identifies ER-α as a 
novel target of DATS in mammary cancer cells [23].
	 The present study reveals downregulation of the genes 
associated with other cancer-relevant signaling pathways 
potentially contributing to the antitumor effect of DATS. As 
an example, DATS treatment caused a decrease in expres-
sion of genes associated with JAK-STAT signaling pathway 
(KEGG pathway analysis). The JAK-STAT3 pathway plays 
an important oncogenic role in breast cancer [24]. We have 
shown previously that DATS treatment inhibits leptin-stim-
ulated phosphorylation (activation) of STAT3 in MCF-7 and 
MDA-MB-231 cells [25]. More importantly, Ser727 phosphor-
ylation was decreased significantly by DATS administration 
in vivo in a triple-negative xenograft model of basal-like 
SUM159 cells [25]. 
	 We have shown previously that DATS inhibits self-renew-
al of breast cancer stem-like cells (bCSC) in MCF-7 and 
SUM159 cells [26]. Inhibition of bCSC by DATS was ac-
companied by downregulation of Forkhead box Q1 (FoxQ1) 
protein [26]. Overexpression of FoxQ1 in both MCF-7 and 
SUM159 cell lines conferred significant protection against 
DATS-mediated inhibition of bCSC population [26]. Surpris-
ingly, the RNA-seq analysis did not reveal downregulation of 
FoxQ1 in either MCF-7 or MDA-MB-231 cells (present study, 
data not shown). However, there were differences in experi-
mental conditions that could explain this discrepancy. 
	 For bCSC work, the cells were treated for 24 hours or 72 
hours with 2.5 and/or 5 μmol/L DATS [26]. In the present 
study, cells were treated for 16 hours with 20 μmol/L DATS. 
Nevertheless, among several stemness-related genes, 

the expression of pre-B-cell leukemia transcription factor 1 
(PBX1) was significantly downregulated by DATS treatment 
in both MCF-7 and MDA-MB-231 cells (data not shown). 
Overexpression of PBX1 has been reported in the stroma 
of invasive breast cancer, and ductal and invasive lobular 
breast cancers when compared to normal mammary tissue 
[27]. Moreover, a high PBX1 expression was associated with 
poor prognosis in ER+ breast cancer patients [27]. Addition-
al significantly (P = 0.05 or lower) downregulated genes in 
DATS-treated MDA-MB-231 cells included ARID1A, CNOT1, 
HIF1A, JAG1, LEO1, SETD2, SEMA3C, and ZC3H13 (data 
not shown). Further work is necessary to determine the sig-
nificance of these genes in bCSC inhibition by DATS. 
	 In conclusion, the present study identifies signaling path-
ways that may contribute to the antitumor effect of DATS. 
However, additional work is needed to validate other gene 
expression changes following DATS treatment based on the 
results of the Reactome, GO, and KEGG pathway analyses. 
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